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Preface

Second Edition (2013)

I still like CFD and found more topics that I like after the publication of the first edition. Also, I received reports
on typos and errors from people who like CFD (Thank you so much!). So, I decided to revise the book. The contents
remain highly biased, but can still be a good reference book for students studying basics of CFD and researchers
developing fundamental CFD algorithms. I hope that the second edition will make them like CFD even more.

Katate Masatsuka
Yorktown, October 2013

First Edition (2009)

CFD: Computational Fluid Dynamics.

I like CFD. I like it so much that I decided to write how much I like CFD. Here, in this volume, I focus on basic
notations and formulas, governing equations, and exact solutions used in CFD. I hope that you like them too.

• Basics:
Some basic stuff such as notations, formulas, and theorems.

• Model Equations:
Model equations commonly used in the algorithm development.

• Euler Equations:
The Euler equations and related equations for inviscid flows.

• Navier-Stokes Equations:
The Navier-Stokes equations and related equations for viscous flows.

• Turbulence Equations:
Averaged Navier-Stokes equations and a little about turbulence models.

• Exact Solutions I:
General solutions and techniques for deriving exact solutions.

• Exact Solutions II:
Exact solutions for selected equations which can be used for accuracy study.

Naturally, the content is highly biased. This is everything about what I like in CFD. It does not contain any topics
that I don’t like. So, this is certainly not a textbook, but can still be a good reference book. In particular, this volume
may be useful for students studying basics of CFD and researchers developing fundamental CFD algorithms (I hope
that they like CFD too).

Katate Masatsuka
Yorktown, February 2009
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Chapter 1

Basics

1.1 Differential Notations

The following notations for derivatives are widely used:

• First derivatives:

∂u

∂x
= ∂xu = ux. (1.1.1)

• Second derivatives:

∂2u

∂x2 = ∂xxu = uxx. (1.1.2)

• n-th derivative:

∂nu

∂xn
= ∂x···x︸︷︷︸

n

u = ux···x︸︷︷︸
n

. (1.1.3)

It is nice to have more than one way to express the same thing. In particular, I like the subscript notation such as
ux because it is very easy to write and also takes much less vertical space than others. Of course, it will be very
inconvenient for very high-order derivatives (because the expression will be too long), but such high-order derivatives
do not usually arise in CFD books. pa

• Material/Substantial/Lagrangian derivative:

Dα

Dt
= ∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
+ w

∂α

∂z
. (1.1.4)

I like this derivative. It is very interesting. It represents the time rate of change of the quantity α when it is being
convected in a flow with the velocity (u, v, w). So, when this derivative is zero, Dα/Dt = 0, the distribution (e.g., a
contour plot) of α(x, y, z) in space moves with the velocity (u, v, w), preserving its initial shape. On the other hand,
when the time derivative is zero, ∂tα = 0, the distribution of α(x, y, z) does not move and stays fixed in space for all
times.

1



2 CHAPTER 1. BASICS

1.2 Vectors and Operators

1.2.1 Vectors and Tensors
Vectors and tensors are usually denoted by boldface letters, rather than by arrows put on top of them. It is simple
and very effective. I like it. By the way, in this book, the vector is almost always a column vector and a row vector is
expressed as a transpose of a column vector indicated by the superscript t.

a =

 a1
a2
a3

 , b =

 b1
b2
b3

 , at = [a1, a2, a3], bt = [b1, b2, b3]. (1.2.1)

Examples of the second-rank tensors:

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 , At =

 A11 A21 A31
A12 A22 A32
A13 A23 A33

 , (1.2.2)

where At is a transpose of A that is defined as a matrix with rows and columns interchanged.

1.2.2 Dot/Inner Product and Tensor Product
The dot/inner product yields a scalar quantity by combining a pair of vectors as follows:

a · b = atb = a1b1 + a2b2 + a3b3, (1.2.3)
a2 = a · a = ata, (1.2.4)

or a pair of tensors as follows:

A : B =
∑

all i,j
AijBij

= A11B11 +A12B12 +A13B13 +A21B21 +A22B22

+A23B23 +A31B31 +A32B32 +A33B33. (1.2.5)

The latter is often called the tensor product. Two dots are used for the tensor product because it is summed over two
indices, perhaps. In any case, it produces a single real number from vectors/tensors no matter how many components
they have. This is very nice. Of course, we have

a · b = b · a, A : B = B : A. (1.2.6)

1.2.3 Vector/Outer Product
The vector/outer product produces a vector:

a × b =

∣∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣ = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 , (1.2.7)

where e1, e2, e3 are the unit vectors, i.e., a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3. I like the fact that
a × b and b × a represent two different vectors, pointing opposite directions with the same magnitude. It is very
geometrical and easy to visualize.
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1.2.4 Dyadic Tensor
The dyadic tensor, denoted by ⊗, is a second-rank tensor made out of two vectors:

a⊗b = abt =

 a1
a2
a3

 [b1, b2, b3] =

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 , (1.2.8)

so, the (i, j)-th component is given by

(a⊗b)ij = aibj . (1.2.9)

In fact, the dyadic tensor is defined, with c = [c1, c2, c3]t, by

(a⊗b)c = a(b · c), (1.2.10)

from which you can figure out what a⊗b should be, i.e., write out the right hand side in components and rearrange
the result in the form as in the left hand side to find Equation (1.2.8). Of course, we have in general,

a⊗b ̸= b⊗a. (1.2.11)

Unlike the vector product, the geometrical meaning of this is not immediately clear to me. But I like it. It is simple
enough.

1.2.5 Scalar Triple Product
I like the scalar triple product defined for three vectors a, b, and c by

a · (b × c). (1.2.12)

It is, in fact, equal to the volume of the parallelepiped formed by the vectors a, b, and c. I like it very much because
then I can easily understand various formulas associated with the scalar triple product. For example, we have

a · (b × c) = b · (c × a) = c · (a × b), (1.2.13)

and of course

(b × c) · a = (c × a) · b = (a × b) · c, (1.2.14)

which are trivial relations because all represent the same volume. It is also easy to understand that the volume
represented by the scalar triple product is a signed volume, meaning that switching the two vectors in the vector
product results in the negative of the scalar triple product (because the vector product points the opposite direction):

a · (b × c) = −a · (c × b), (1.2.15)
b · (c × a) = −b · (a × c), (1.2.16)
c · (a × b) = −c · (b × a). (1.2.17)

As you might expect and can easily verify, the scalar triple product can be expressed by the determinant:

a · (b × c) =

∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣ . (1.2.18)

It is quite easy to see that the scalar triple product vanishes if the two vectors in the vector product are the same
(because then the vector product becomes the zero vector). It is also quite easy to understand that the scalar triple
product vanishes if any two vectors are identical, e.g.,

a · (a × c) = a · (b × a) = 0. (1.2.19)
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It vanishes, of course, because the parallelepiped becomes flat in that case and the volume ( = the scalar triple product)
becomes zero. I now tell you why I really like the scalar triple product. I like it because the volume V of a tetrahedron
formed by the three vectors, a, b, and c, is given by

V = 1
6

|a · (b × c)| , (1.2.20)

and a tetrahedron is one of my favorite computational cells in CFD. Note that the vectors a, b, and c are the edge
vectors centered at a common vertex of the tetrahedron. The volume is defined with the absolute value of the scalar
triple product to keep it positive in case any of the vectors points the opposite direction. Of course, then, it is easy to
understand that the scalar triple product does not change at all under rotation of coordinate system:

a · (b × c) = a′ · (b′ × c′), (1.2.21)

where a′, b′, and c′ are the vectors rotated by a rotation matrix R,

a′ = Ra, b′ = Rb, c′ = Rc. (1.2.22)

This is natural because rotating a parallelepiped (or a tetrahedron) does not change its volume.

1.2.6 Vector Triple Product
Of course, there is a vector triple product. The vector triple product is defined by

a × (b × c). (1.2.23)

The following formula is known as Lagrange’s formula or vector product expansion:

a × (b × c) = b(a · c) − c(a · b). (1.2.24)

It is known also as the BAC-CAB identity. That is useful for memorizing the formula. But that’s not the reason that I
like the vector triple product. I like it because it is useful in CFD. To see how useful it is, consider the dot product of
the vector triple product and a:

[a × (b × c)] · a = 0. (1.2.25)

Yes, it is zero because it is a scalar triple product with two identical vectors: a, b × c, and a. It means that the vector
triple product of a, b, and c is perpendicular to a. That is interesting. In CFD, we sometimes need to find vectors
tangent to a face of a computational cell from the face normal vector, or more generally, find a vector perpendicular to
a given vector. For example, the situation arises in the rotated-hybrid Riemann solvers [112]. Usually in finite-volume
methods, a single numerical flux is computed in the direction normal to the face, n̂, where the hat indicates that
the vector is a unit vector. The rotated-hybrid method computes the face-normal numerical flux as a combination of
two numerical fluxes by breaking n̂ into two orthogonal directions and applying two different numerical fluxes in the
two directions. The method applies a robust but dissipative numerical flux in a physically meaningful direction, n̂1,
e.g., normal to a shock wave, and a less robust but much less dissipative numerical flux in the direction n̂2 that is
perpendicular to n̂1. The resulting flux has been shown to be very robust for strong shocks without adding too much
dissipation in smooth regions. Since n̂1 is determined by a physical consideration, the problem is to find n̂2 that is
perpendicular to a given vector, n̂1. Then, we can find n̂2 by the vector triple product [112]:

n̂2 = n̂1 × (n̂ × n̂1)
|n̂1 × (n̂ × n̂1)|

, (1.2.26)

where the denominator is the magnitude of the numerator to make n̂2 a unit vector. Note that the numerator is not
necessarily a unit vector. Clearly, we have n̂2 · n̂1 = 0, i.e., n̂2 is perpendicular to n̂1 as desired. That is nice. I like
the vector triple product very much.

1.2.7 Identity Matrix
This is a matrix whose diagonal entries are all 1 and other entries are zero. Such a matrix is called the identity matrix.
For example, the 3 × 3 identity matrix is given by

I =

 1 0 0
0 1 0
0 0 1

 . (1.2.27)
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Note that the n× n identity matrix has n2 − n zeroes. This means that the number of zeroes increases quadratically
with n. Of course, I like the identity matrix. In particular, I like its alternative notation which is very compact. For
example, the 3 × 3 identity matrix above is denoted by

I = diag(1, 1, 1). (1.2.28)

This is very useful when we write the identity matrix of a very large size. Why is it called the identity matrix? Well, I
think it’s because we have

IA = AI = A, (1.2.29)

for any matrix A in any dimension.

1.3 Orthogonal Vectors

Consider three orthogonal unit vectors, n, ℓ, m (see Figure 1.3.1):

n · n = ℓ · ℓ = m · m = 1, (1.3.1)
n · ℓ = ℓ · m = m · n = 0, (1.3.2)

n = ℓ × m, (1.3.3)
ℓ = m × n, (1.3.4)

m = n × ℓ, (1.3.5)
n⊗n + ℓ⊗ℓ + m⊗m = I. (1.3.6)

Suppose that n = [nx, ny, nz]t, ℓ = [ℓx, ℓy, ℓz]t, m = [mx,my,mz]t. Then, the above relations can be expanded as
follows:

n2
x + n2

y + n2
z = 1, (1.3.7)

ℓ2
x + ℓ2

y + ℓ2
z = 1, (1.3.8)

m2
x +m2

y +m2
z = 1, (1.3.9)

nxℓx + nyℓy + nzℓz = 0, (1.3.10)

ℓxmx + ℓymy + ℓzmz = 0, (1.3.11)

mxnx +myny +mznz = 0, (1.3.12)

ℓymz − ℓzmy = nx,
ℓzmx − ℓxmz = ny,
ℓxmy − ℓymx = nz,

nyℓz − nzℓy = mx,
nzℓx − nxℓz = my,
nxℓy − nyℓx = mz,

mynz −mzny = ℓx,
mznx −mxnz = ℓy,
mxny −mynx = ℓz,

(1.3.13)

n2
x + ℓ2

x +m2
x = 1, (1.3.14)

n2
y + ℓ2

y +m2
y = 1, (1.3.15)

n2
z + ℓ2

z +m2
z = 1, (1.3.16)

nxny + ℓxℓy +mxmy = 0, (1.3.17)

nxnz + ℓxℓz +mxmz = 0, (1.3.18)

nynz + ℓyℓz +mymz = 0. (1.3.19)

Introduce an arbitrary vector v = [u, v, w]t, and define the following quantities,

qn = v · n, qℓ = v · ℓ, qm = v · m, (1.3.20)
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m

n

ℓ

Figure 1.3.1: Three mutually orthogonal vectors.

then we have

qnn + qℓℓ + qmm = v, (1.3.21)

q2
n + q2

ℓ + q2
m = v2. (1.3.22)

Equation (1.3.21) can be expanded as follows:

qnnx + qℓℓx + qmmx = u, (1.3.23)

qnny + qℓℓy + qmmy = v, (1.3.24)

qnnz + qℓℓz + qmmz = w. (1.3.25)

These relationships can be differentiated as follows:

dqnnx + dqmmx + dqℓℓx = du, (1.3.26)
dqnny + dqmmy + dqℓℓy = dv, (1.3.27)
dqnnz + dqmmz + dqℓℓz = dw. (1.3.28)
qn dqn + qℓ dqℓ + qm dqm = u du+ v dv + w dw. (1.3.29)

I like these relations because they can be very useful when I write a three-dimensional CFD code with v as a velocity
vector, and n, ℓ, m as a normal vector of a cell face and two tangent vectors respectively. In particular, these relations
can be used to eliminate tangent vectors from expressions such as the absolute value of a Jacobian matrix projected
along a normal vector which arises, for example, in the Roe solver [128]. See Sections 3.6.1 and 3.13.

Now consider a symmetric second-rank tensor τ :

τ =

 τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 , (1.3.30)
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where τyx = τxy, τzx = τxz, and τzy = τyz. We define the following quantities:

τnx = τxxnx + τxyny + τxznz, (1.3.31)
τny = τyxnx + τyyny + τyznz, (1.3.32)
τnz = τzxnx + τzyny + τzznz, (1.3.33)
τnn = τnxnx + τnyny + τnznz, (1.3.34)
τnℓ = τnxℓx + τnyℓy + τnzℓz, (1.3.35)
τnm = τnxmx + τnymy + τnzmz, (1.3.36)
τnv = τnxu+ τnyv + τnzw. (1.3.37)

Then, we have the following identities:

τnnnx + τnmmx + τnℓℓx = τnx, (1.3.38)
τnnny + τnmmy + τnℓℓy = τny, (1.3.39)
τnnnz + τnmmz + τnℓℓz = τnz, (1.3.40)
τnnqn + τnmqm + τnℓqℓ = τnv, (1.3.41)

τnndτnn + τnmdτnm + τnℓdτnℓ = τnxdτnx + τnydτny + τnzdτnz, (1.3.42)
τnndqn + τnmdqm + τnℓdqℓ = τnxdu+ τnydv + τnzdw, (1.3.43)
dτnnnx + dτnmmx + dτnℓℓx = dτnx, (1.3.44)
dτnnny + dτnmmy + dτnℓℓy = dτny, (1.3.45)
dτnnnz + dτnmmz + dτnℓℓz = dτnz. (1.3.46)

I like these identities very much because they can be useful for eliminating tangent vectors from expressions such as
the absolute value of a Jacobian matrix projected along a normal vector that arises, for example, in the upwind viscous
flux [106].

1.4 Index Notation

I like index notation because it is compact and useful especially for proving vector identities. Also, I can save my
time and money because I don’t need to write Σ for summations any more.

1.4.1 Einstein’s Summation Convention
Einstein’s summation convention means that whenever two indices are repeated, summation is taken over that index:
for example,

aibi = a1b1 + a2b2 + a3b3, (1.4.1)

which is nice because the dot product a · b can be simply written as aibi without using boldface letters or Σ. The i-th
component of the matrix-vector product Ab can be expressed as

(Ab)i = Aijbj = Ai1b1 +Ai2b2 +Ai3b3, (1.4.2)

where (Ab)i denotes the i-th component of Ab. Thus, we can write

Ab =

 (Ab)1
(Ab)2
(Ab)3

 =

 A11b1 +A12b2 +A13b3
A21b1 +A22b2 +A23b3
A31b1 +A32b2 +A33b3

 . (1.4.3)

Of course, the index used for the summation is a dummy, and so we can use any letter we like, e.g.,

a · b = aibi = ajbj = akbk, (1.4.4)

which are all equal to a1b1 + a2b2 + a3b3.
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1.4.2 Kronecker’s Delta
Of course, I like the second-rank tensor called Kronecker’s delta:

δij =
{

1 if i = j,
0 if i ̸= j.

(1.4.5)

This is nothing but the components of the identity matrix:

I =

 δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

 1 0 0
0 1 0
0 0 1

 . (1.4.6)

I like Kronecker’s delta especially because it is sometimes called the substitution operator base on the following property:

δijaj = ai, (1.4.7)

which looks like i is substituted into j. This is nice also because δij has disappeared on the right hand side, making
the right hand side very simple. By the substitution, we have

δijaibj = aibi, (1.4.8)

which means

I : (a⊗b) = atI b = a · b. (1.4.9)

In a way, we have just proved a vector identity. It is also easy to show that

δii = 3, (1.4.10)

which is the trace of the identity matrix, and also that

δijδjk = δik, (1.4.11)

i.e., the product of two identity matrices is the identity matrix:

II = I. (1.4.12)

1.4.3 Eddington’s Epsilon
The third-rank tensor called Eddington’s epsilon:

εijk =

 0 if any two of i, j, k are the same,
1 for even permutation,

−1 for odd permutation,
(1.4.13)

reminds me of the Rubik cube that I like. By definition, we have

εijk = −εjik = −εikj , (1.4.14)

εijk = εjki = εkij . (1.4.15)

And we have naturally

δijεijk = 0, (1.4.16)

which is because Kronecker’s delta turns εijk into εiik that is zero by definition. I would use E to denote the third-rank
tensor of Eddington’s epsilon. Then, I have

E1jk →

 ε111 ε112 ε113
ε121 ε122 ε123
ε131 ε132 ε133

 =

 0 0 0
0 0 1
0 −1 0

 , (1.4.17)

E2jk →

 ε211 ε212 ε213
ε221 ε222 ε223
ε231 ε232 ε233

 =

 0 0 −1
0 0 0
1 0 0

 , (1.4.18)

E3jk →

 ε311 ε312 ε313
ε321 ε322 ε323
ε331 ε332 ε333

 =

 0 1 0
−1 0 0
0 0 0

 , (1.4.19)
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which look to me like the slices of the Rubic cube. I like E especially because I can write the vector product as

a × b = E (a⊗b). (1.4.20)

As you might expect, then, Eddington’s epsilon can be used to express the determinant of A,

detA = εijkA1iA2jA3k, (1.4.21)

or of three vectors,

εijkaibjck =

∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣ . (1.4.22)

Even more interestingly, it can be rewritten as

εijkaibjck = ai

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣ = aibj

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

c1 c2 c3

∣∣∣∣∣∣∣∣ = aibjck

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣ , (1.4.23)

which means

εijk =

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣ . (1.4.24)

I like this formula because I can use it to derive various identities. Consider

εijkεlmn =

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
δl1 δl2 δl3

δm1 δm2 δm3

δn1 δn2 δn3

∣∣∣∣∣∣∣∣ , (1.4.25)

which can be written as

εijkεlmn =

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
δl1 δm2 δn3

δl1 δm2 δn3

δl1 δm2 δn3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
δirδlr δirδmr δirδnr

δjrδlr δjrδmr δjrδnr

δkrδlr δkrδmr δkrδnr

∣∣∣∣∣∣∣∣ . (1.4.26)

Therefore, we obtain by Equation (1.4.11)

εijkεlmn =

∣∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣ . (1.4.27)

This is a very useful formula. For example, with l = k, it becomes

εijkεkmn = δkk

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣− δjk

∣∣∣∣∣ δim δin

δkm δkn

∣∣∣∣∣+ δik

∣∣∣∣∣ δjm δjn

δkm δkn

∣∣∣∣∣
= 3

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣−

∣∣∣∣∣ δim δin

δjkδkm δjkδkn

∣∣∣∣∣+

∣∣∣∣∣ δjm δjn

δikδkm δikδkn

∣∣∣∣∣
= 3

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣−

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣+

∣∣∣∣∣ δjm δjn

δim δin

∣∣∣∣∣
= 3

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣−

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣−

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣ , (1.4.28)
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and thus

εijkεkmn =

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣ = δimδjn − δinδjm, (1.4.29)

which is sometimes called the ε-δ identity. Furthermore, with l = i and m = j, Equation (1.4.27) becomes

εijkεijn = 3δkn − δkn = 2δkn. (1.4.30)

Finally, by setting l = i, m = j, and n = k, we obtain

εijkεijk = 6. (1.4.31)

These relations can be used to prove vector identities. For example, the i-th component of the triple vector product
a × (b × c) can be expressed as

(a × (b × c))i = εijkaj(εklmblcm), (1.4.32)

which becomes by the formula (1.4.29)

(a × (b × c))i = εijkεklmajblcm

= εkijεklmajblcm

= (δilδjm − δjlδim)ajblcm

= δilδjmajblcm − δjlδimajblcm

= ajbicj − ajbjci

= bi(ajcj) − ci(ajbj), (1.4.33)

and we have thus proved Lagrange’s formula,

a × (b × c) = b(a · c) − c(a · b). (1.4.34)

1.5 Div, Grad, Curl

1.5.1 Coordinate Systems
I like vector differential operators, especially in Cartesian coordinates (x, y, z). In cylindrical (r, θ, z) or spherical
coordinates (r, θ, ϕ) (see Figures 1.5.1 and 1.5.2), I like them, of course, but they can be a little complicated. Note
that these coordinates are related: in cylindrical coordinates,

x = r cos θ, (1.5.1)
y = r sin θ, (1.5.2)
z = z, (1.5.3)

while in spherical coordinates,

x = (r sinϕ) cos θ, (1.5.4)
y = (r sinϕ) sin θ, (1.5.5)
z = r cosϕ. (1.5.6)

Now, denote the unit vectors for these coordinates by

ex, ey, ez, in Cartesian coordinates, (1.5.7)
er, eθ, ez, in cylindrical coordinates, (1.5.8)
er, eθ, eϕ, in spherical coordinates, (1.5.9)
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y

z

x

O

θ

r

z

(r, θ, z)

Figure 1.5.1: Cylindrical coordinates.

and vector components as in

a = a1 ex + a2 ey + a3 ez, in Cartesian coordinates, (1.5.10)
a = ar er + aθ eθ + az ez, in cylindrical coordinates, (1.5.11)
a = ar er + aθ eθ + aϕ eϕ, in spherical coordinates, (1.5.12)

then we can write vector differential operators as in the following sections.

1.5.2 Gradient of Scalar Functions

The gradient of a scalar function α(x, y, z) is defined by

gradα = lim
∆V→0

1
∆V

∮
αn dS, (1.5.13)

or simply by

dα = gradα · dx, (1.5.14)

where

dx = dx ex + dy ey + dz ez, in Cartesian coordinates, (1.5.15)
dx = dr er + rdθ eθ + dz ez, in cylindrical coordinates, (1.5.16)
dx = dr er + r sinϕdθ eθ + r dϕ eϕ, in spherical coordinates. (1.5.17)
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Figure 1.5.2: Spherical coordinates.

The gradient in all three coordinate systems:

gradα = ∂α

∂x
ex + ∂α

∂y
ey + ∂α

∂z
ez, in Cartesian coordinates, (1.5.18)

gradα = ∂α

∂r
er + 1

r

∂α

∂θ
eθ + ∂α

∂z
ez, in cylindrical coordinates, (1.5.19)

gradα = ∂α

∂r
er + 1

r sinϕ
∂α

∂θ
eθ + 1

r

∂α

∂ϕ
eϕ, in spherical coordinates. (1.5.20)

These are relatively intuitive and easy to understand. I like them. By the way, if you want to derive these formulas (and
all formulas hereafter), simply apply the definition (1.5.13) to a small volume element, e.g., a small cube in Cartesian
coordinates, or simply expand the differential definition (1.5.14).

1.5.3 Divergence of Vector Functions
The divergence of a vector function a(x, y, z) is defined by

div a = lim
∆V→0

1
∆V

∮
a · n dS, (1.5.21)

and yields

div a = ∂a1

∂x
+ ∂a2

∂y
+ ∂a3

∂z
in Cartesian coordinates, (1.5.22)

div a = 1
r

∂(rar)
∂r

+ 1
r

∂aθ
∂θ

+ ∂az
∂z

in cylindrical coordinates, (1.5.23)

div a = 1
r2
∂(r2ar)
∂r

+ 1
r sinϕ

∂aθ
∂θ

+ 1
r sinϕ

∂(aϕ sinϕ)
∂ϕ

in spherical coordinates. (1.5.24)
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1.5.4 Curl of Vector Functions
The curl of a vector function a(x, y, z) is defined by

curl a = − lim
∆V→0

1
∆V

∮
a × n dS, (1.5.25)

which becomes

curl a =

∣∣∣∣∣∣∣∣∣∣
ex ey ez

∂

∂x

∂

∂y

∂

∂z

a1 a2 a3

∣∣∣∣∣∣∣∣∣∣
in Cartesian coordinates, (1.5.26)

curl a = 1
r

∣∣∣∣∣∣∣∣∣∣
er reθ ez

∂

∂r

∂

∂θ

∂

∂z

ar raθ az

∣∣∣∣∣∣∣∣∣∣
in cylindrical coordinates, (1.5.27)

curl a = 1
r2 sinϕ

∣∣∣∣∣∣∣∣∣∣
er reϕ r sinϕ eθ

∂

∂r

∂

∂ϕ

∂

∂θ

ar raϕ sinϕaθ

∣∣∣∣∣∣∣∣∣∣
in spherical coordinates, (1.5.28)

or equivalently

curl a =
(
∂a3

∂y
− ∂a2

∂z

)
ex +

(
∂a1

∂z
− ∂a3

∂x

)
ey +

(
∂a2

∂x
− ∂a1

∂y

)
ez, (1.5.29)

curl a = 1
r

[(
∂az
∂θ

− ∂(raθ)
∂z

)
er + r

(
∂ar
∂z

− ∂az
∂r

)
eθ +

(
∂(raθ)
∂r

− ∂ar
∂θ

)
ez
]
, (1.5.30)

curl a = 1
r2 sinϕ

[(
∂(raθ sinϕ)

∂ϕ
− ∂(raϕ)

∂θ

)
er + r sin θ

(
∂(raϕ)
∂r

− ∂ar
∂ϕ

)
eθ

+ r

(
∂ar
∂θ

− ∂(raθ sinϕ)
∂r

)
eϕ
]

= 1
r sinϕ

(
∂(aθ sinϕ)

∂ϕ
− ∂aϕ

∂θ

)
er + 1

r

(
∂(raϕ)
∂r

− ∂ar
∂ϕ

)
eθ

+ 1
r

(
1

sinϕ
∂ar
∂θ

− ∂(raθ)
∂r

)
eϕ . (1.5.31)

1.5.5 Gradient of Vector Functions
The gradient of a vector function a(x, y, z) is defined, as in the scalar case, by

grad a = lim
∆V→0

1
∆V

∮
a⊗n dS, (1.5.32)

or simply by

da = (grad a) dx. (1.5.33)
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In Cartesian coordinates:

grad a =



∂a1

∂x

∂a1

∂y

∂a1

∂z

∂a2

∂x

∂a2

∂y

∂a2

∂z

∂a3

∂x

∂a3

∂y

∂a3

∂z

 . (1.5.34)

In cylindrical coordinates:

grad a =



∂ar
∂r

1
r

∂ar
∂θ

− aθ
r

∂ar
∂z

∂aθ
∂r

1
r

∂aθ
∂θ

+ ar
r

∂aθ
∂z

∂az
∂r

1
r

∂az
∂θ

∂az
∂z


. (1.5.35)

In spherical coordinates:

grad a =



∂ar
∂r

1
r sinϕ

∂ar
∂θ

− aθ
r

1
r

∂ar
∂ϕ

− aϕ
r

∂aθ
∂r

1
r sinϕ

∂aθ
∂θ

+ ar
r

+ aϕ
r tanϕ

1
r

∂aθ
∂ϕ

∂aϕ
∂r

1
r sinϕ

∂aϕ
∂θ

− aθ
r tanϕ

1
r

∂aϕ
∂ϕ

+ ar
r


. (1.5.36)

I like the gradient of a vector, especially those ’extra’ terms arising in cylindrical and spherical coordinates. They
make the formulas look very special. These terms come from the fact that some of the unit vectors vary in space; their
derivatives are non-zero: in cylindrical coordinates,

∂er
∂θ

= eθ,
∂eθ
∂θ

= −er, (1.5.37)

and in spherical coordinates,

∂er
∂θ

= sinϕ eθ,
∂eθ
∂θ

= − cosϕ eϕ − sinϕ er,
∂eϕ
∂θ

= cosϕ eθ,
∂er
∂ϕ

= eϕ,
∂eϕ
∂ϕ

= −er. (1.5.38)

For example, in cylindrical coordinates, the extra terms arise as follows. Consider the vector,

a = ar er + aθ eθ + az ez. (1.5.39)

Take the differential of a,

da =
(
∂ar
∂r

dr + ∂ar
r∂θ

rdθ + ∂ar
∂z

dz

)
er + ar

(
�
��∂er
∂r

dr + ∂er
r∂θ

rdθ +
�
��∂er
∂z

dz

)

+
(
∂aθ
∂r

dr + ∂aθ
r∂θ

rdθ + ∂aθ
∂z

dz

)
eθ + aθ

(
�
��∂eθ
∂r

dr + ∂eθ
r∂θ

rdθ +
�

��∂eθ
∂z

dz

)

+
(
∂az
∂r

dr + ∂az
r∂θ

rdθ + ∂az
∂z

dz

)
ez + az

(
�
��∂ez
∂r

dr +
�
��∂ez

r∂θ
rdθ +

�
��∂ez
∂z

dz

)
,
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which by Equation(1.5.37) becomes

da =
(
∂ar
∂r

dr + ∂ar
r∂θ

rdθ + ∂ar
∂z

dz

)
er +

(ar
r

)
rdθ eθ

+
(
∂aθ
∂r

dr + ∂aθ
r∂θ

rdθ + ∂aθ
∂z

dz

)
eθ −

(aθ
r

)
rdθ er

+
(
∂az
∂r

dr + ∂az
r∂θ

rdθ + ∂az
∂z

dz

)
ez

=
(
∂ar
∂r

dr +
(
∂ar
r∂θ

− aθ
r

)
rdθ + ∂ar

∂z
dz

)
er

+
(
∂aθ
∂r

dr +
(
∂aθ
r∂θ

+ ar
r

)
rdθ + ∂aθ

∂z
dz

)
eθ

+
(
∂az
∂r

dr + ∂az
r∂θ

rdθ + ∂az
∂z

dz

)
ez. (1.5.40)

We find the gradient by writing the result in the form, da = (grad a) dx, where dx = (dr, rdθ, dz):

da =



∂ar
∂r

1
r

∂ar
∂θ

− aθ
r

∂ar
∂z

∂aθ
∂r

1
r

∂aθ
∂θ

+ ar
r

∂aθ
∂z

∂az
∂r

1
r

∂az
∂θ

∂az
∂z





dr

rdθ

dz


. (1.5.41)

That is, the matrix above is the gradient of a in cylindrical coordinates. I like deriving, in the same way, the gradient
in spherical coordinates also, but I’ll let you do it because it is simple and fun. Enjoy.

The divergence of a tensor will also have extra terms and the Laplacian of a vector will also have such in these
coordinates as we will see below.

1.5.6 Divergence of Tensor Functions
The divergence of a tensor function A(x, y, z) is defined, in the same way as in the scalar case, by

div A = lim
∆V→0

1
∆V

∮
An dS. (1.5.42)

In Cartesian coordinates:

div A =



∂A11

∂x
+ ∂A12

∂y
+ ∂A13

∂z

∂A21

∂x
+ ∂A22

∂y
+ ∂A23

∂z

∂A31

∂x
+ ∂A32

∂y
+ ∂A33

∂z


. (1.5.43)

In cylindrical coordinates:

A =

 Arr Arθ Arz
Aθr Aθθ Aθz
Azr Azθ Azz

 , (1.5.44)
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div A =



1
r

∂(rArr)
∂r

+ 1
r

∂Arθ
∂θ

+ ∂Arz
∂z

− Aθθ
r

1
r

∂(rAθr)
∂r

+ 1
r

∂Aθθ
∂θ

+ ∂Aθz
∂z

+ Arθ
r

1
r

∂(rAzr)
∂r

+ 1
r

∂Azθ
∂θ

+ ∂Azz
∂z


. (1.5.45)

In spherical coordinates:

A =

 Arr Arθ Arϕ
Aθr Aθθ Aθϕ
Aϕr Aϕθ Aϕϕ

 , (1.5.46)

div A =



1
r2
∂(r2Arr)

∂r
+ 1
r sinϕ

∂Arθ
∂θ

+ 1
r sinϕ

∂(Arϕ sinϕ)
∂ϕ

− Aθθ
r

− Aϕϕ
r

1
r2
∂(r2Aθr)

∂r
+ 1
r sinϕ

∂Aθθ
∂θ

+ 1
r sinϕ

∂(Aθϕ sinϕ)
∂ϕ

+ Arθ
r

+ Aϕθ
r tanϕ

1
r2
∂(r2Aϕr)

∂r
+ 1
r sinϕ

∂Aϕθ
∂θ

+ 1
r sinϕ

∂(Aϕϕ sinϕ)
∂ϕ

− Aθθ
r tanϕ

+ Arϕ
r


. (1.5.47)

Again, I like those extra terms arising in cylindrical and spherical coordinates. What is interesting is the way they
arise. OK, so let me show you how to derive the divergence of a tensor function in cylindrical coordinates. I would
begin with the definition (1.5.42). Consider a small volume defined by the increment in each coordinate direction:

V = dr × (rdθ) × dz = rdrdθdz. (1.5.48)

Since the volume is small, the surface integral on the right hand side of the definition (1.5.42) can be expressed as∮
An dS = ∂(AnrerdS)

∂r
dr + ∂(AnθeθdS)

∂θ
dθ + ∂(AnzezdS)

∂z
dz, (1.5.49)

where n = nrer + nθeθ + nzez. It is actually more convenient to write by dSr = nrdS, dSθ = nθdS, dSz = nzdS,∮
An dS = ∂(AdSrer)

∂r
dr + ∂(AdSθeθ)

∂θ
dθ + ∂(AdSzez)

∂z
dz, (1.5.50)

where

dSr = rdθdz, dSθ = drdz, dSz = rdθdr. (1.5.51)

Note that the above expression has been obtained by Taylor expansion between the two opposite surface of the volume
and the surface vector has also been expanded together because it can change along a coordinate direction. Each term
can be computed in a straightforward manner:

∂(AdSrer)
∂r

dr = ∂

∂r


 Arr Arθ Arz
Aθr Aθθ Aθz
Azr Azθ Azz

 dSr
0
0

 dr

= ∂

∂r
{dSr [Arr er +Aθr eθ +Azr ez]} dr

= ∂

∂r
{r [Arr er +Aθr eθ +Azr ez]} drdθdz

=
[(

∂(rArr)
∂r

er + ∂(rAθr)
∂r

eθ + ∂(rAzr)
∂r

ez
)

+ r

(
Arr

�
��∂er
∂r

+Aθr
�

��∂eθ
∂r

+Azr
�

��∂ez
∂r

)]
drdθdz

=
(

1
r

∂(rArr)
∂r

er + 1
r

∂(rAθr)
∂r

eθ + 1
r

∂(rAzr)
∂r

ez
)
V. (1.5.52)
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Similarly, we obtain

∂(AdSθeθ)
∂θ

dθ = ∂

∂r
{dSθ [Arθ er +Aθθ eθ +Azθ ez]} dθ

=
{(

∂Arθ
∂θ

er + ∂Aθθ
∂θ

eθ + ∂Azθ
∂θ

ez
)

+
(
Arθ

∂er
∂θ

+Aθθ
∂eθ
∂θ

+Azθ
�

��∂ez
∂θ

)}
drdθdz,

which becomes by Equation (1.5.37)

∂(AdSθeθ)
∂θ

dθ =
{(

∂Arθ
∂θ

er + ∂Aθθ
∂θ

eθ + ∂Azθ
∂θ

ez
)

+ (Arθeθ −Aθθer)
}
drdθdz

=
[(

1
r

∂Arθ
∂θ

− Aθθ
r

)
er +

(
1
r

∂Aθθ
∂θ

+ Arθ
r

)
eθ + 1

r

∂Azθ
∂θ

ez
]
V. (1.5.53)

The last component is the simplest one:

∂(AdSzez)
∂z

dz =
[
∂Arz
∂z

er + ∂Aθz
∂z

eθ + ∂Azz
∂z

ez
]
V. (1.5.54)

Finally, substituting these results into Equation (1.5.50) and subsequently substituting it into the definition (1.5.42),
where ∆V is denoted here by the small volume V , we find

div A = lim
V→0

1
V

∮
An dS

=
(

1
r

∂(rArr)
∂r

+ 1
r

∂Arθ
∂θ

− Aθθ
r

+ ∂Arz
∂z

)
er

+
(

1
r

∂(rAθr)
∂r

+ 1
r

∂Aθθ
∂θ

+ Arθ
r

+ ∂Aθz
∂z

)
eθ

+
(

1
r

∂(rAzr)
∂r

+ 1
r

∂Azθ
∂θ

+ ∂Azz
∂z

)
ez, (1.5.55)

which is the same as Equation (1.5.45). We have thus derived the divergence in cylindrical coordinates. As we have
seen above, the extra terms are generated by the derivatives of the unit vectors, which vary in space. I find it very
interesting. Do you?

1.5.7 Laplacian of Scalar Functions
The Laplacian of a scalar function α(x, y, z) is defined as the divergence of the gradient:

div gradα = ∂2α

∂x2 + ∂2α

∂y2 + ∂2α

∂z2 , (1.5.56)

div gradα = 1
r

∂

∂r

(
r
∂α

∂r

)
+ 1
r2
∂2α

∂θ2 + ∂2α

∂z2 , (1.5.57)

div gradα = 1
r2

∂

∂r

(
r2 ∂α

∂r

)
+ 1
r2 sin2 ϕ

∂2α

∂θ2 + 1
r2 sinϕ

∂

∂ϕ

(
sinϕ∂α

∂ϕ

)
, (1.5.58)

in Cartesian, cylindrical, and spherical coordinates respectively. Incidentally, the Laplacian operator is often denoted
by ∆:

∆α = div gradα. (1.5.59)

This is a very simple and economical notation. I like it.
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1.5.8 Laplacian of Vector Functions
The Laplacian of a vector function is defined as the divergence of the gradient just like in the scalar case. But it is a
bit more complicated than the scalar case in cylindrical and spherical coordinates.

In Cartesian coordinates:

div grad a =



∂2a1

∂x2 + ∂2a1

∂y2 + ∂2a1

∂z2

∂2a2

∂x2 + ∂2a2

∂y2 + ∂2a2

∂z2

∂2a3

∂x2 + ∂2a3

∂y2 + ∂2a3

∂z2


. (1.5.60)

In cylindrical coordinates:

div grad a =


div grad ar − ar

r
− 2
r2
∂aθ
∂θ

div grad aθ + 2
r2
∂ar
∂θ

− aθ
r2

div grad az

 , (1.5.61)

where the Laplacian for each scalar component is given by Equation (1.5.57).
In spherical coordinates:

div grad a =



div grad ar − 2ar
r2 − 2

r2
∂aϕ
∂ϕ

− 2aϕ
r2 tanϕ

− 2
r2 sinϕ

∂aθ
∂θ

div grad aθ + 2
r2
∂ar
∂ϕ

− aϕ

r2 sin2 ϕ
− 2
r2 sinϕ

∂aθ
∂θ

div grad aϕ − aθ

r2 sin2 ϕ
+ 2
r2 sin2 ϕ

∂ar
∂θ

+ 2 cosϕ
r2 sin2 ϕ

∂aϕ
∂θ


,

(1.5.62)

where the Laplacian for each scalar component is given by Equation (1.5.58).

1.5.9 Material/Substantial/Lagrangian Derivative
The material derivative of a scalar function: in Cartesian coordinates,

Dα

Dt
= ∂α

∂t
+ (gradα) · v = dα

dt
+ u

dα

dx
+ v

dα

dy
+ w

dα

dz
, (1.5.63)

in cylindrical coordinates with the velocity (vr, vθ, vz),

Dα

Dt
= ∂α

∂t
+ (gradα) · v = dα

dt
+ vr

∂α

∂r
+ vθ

r

∂α

∂θ
+ vz

∂α

∂z
, (1.5.64)

and in spherical coordinates with the velocity (vr, vθ, vϕ),

Dα

Dt
= ∂α

∂t
+ (gradα) · v = dα

dt
+ vr

∂α

∂r
+ vθ
r sinϕ

∂α

∂θ
+ vϕ

r

∂α

∂ϕ
. (1.5.65)

The material derivative of a vector function a(x, y, z, t) is simple in Cartesian coordinates:

Da
Dt

= ∂a
∂t

+ (grad a)v =



Da1

Dt

Da2

Dt

Da3

Dt


, (1.5.66)
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but of course it has some ’extra’ terms in cylindrical coordinates,

Da
Dt

= ∂a
∂t

+ (grad a)v =



Dar
Dt

− aθvθ
r

Daθ
Dt

+ arvθ
r

Daz
Dt


, (1.5.67)

where the material derivative for each scalar component is given by Equation (1.5.64), and also in spherical coordinates,

Da
Dt

= ∂a
∂t

+ (grad a)v =



Dar
Dt

− aθvθ + aϕvϕ
r

Daθ
Dt

+ vθ(ar + aϕ cotϕ)
r

Daϕ
Dt

+ arvϕ − aθvθ cotϕ
r


, (1.5.68)

where the material derivative for each scalar component is given by Equation (1.5.65).

1.5.10 Complex Lamellar and Beltrami Flows
A vector field defined by a(x, y, z) which satisfies

a · (curl a) = 0, (1.5.69)

is called a complex lamellar field. If a is a fluid velocity, this corresponds to a flow where the velocity and the vorticity
(the curl of the velocity) are orthogonal to each other. It is then called a complex lamellar flow. I like it because it
sounds like a flow over a lifting wing section. On the other hand, a vector field that satisfies

a × (curl a) = 0, (1.5.70)

is called a Beltrami field. If a is a velocity, this corresponds to a flow where the velocity and vorticity are parallel to
each other. This is called a Beltrami flow. I like this one also. It reminds me of trailing vortices of an aircraft.

Consult other books such as Ref.[67] to find out more details on the vector differential operators.

1.6 Del Operator

The del operator (which is called nabla as a symbol) in Cartesian coordinates is defined by

∇ =
[
∂

∂x
,
∂

∂y
,
∂

∂z

]
. (1.6.1)

I like the del operator. But some people don’t like it because they say it depends on the coordinate system and doesn’t
carry much physical meaning while div, grad, and curl are independent of coordinate systems and do carry clear physical
meanings. I know what they mean, and actually like it. Nonetheless, it is a useful operator. Div, grad, and curl can
be expressed by using the del operator as follows:

gradα = ∇α, (1.6.2)

div a = ∇ · a, (1.6.3)

curl a = ∇ × a, (1.6.4)

grad a = ∇a, (1.6.5)

div A = ∇ · A. (1.6.6)
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What is nice about the del operator is that it can be treated as a vector and thus can be used as follows.

div gradα = ∇ · ∇α = ∇2α = ∆α, (1.6.7)

curl(gradα) = ∇ × ∇α, (1.6.8)

grad(div a) = ∇(∇ · a), (1.6.9)

div(curl a) = ∇ · ∇ × a, (1.6.10)

curl(curl a) = ∇ × ∇ × a, (1.6.11)

(grad a)b = (b · ∇) a. (1.6.12)

This is a great advantage of ∇. But it must be kept in mind that it is actually an operator. That is, a · b = b · a, but
a · ∇ ̸= ∇ · a.

1.7 Vector Identities

Do you like to memorize the following vector identities?

curl a = E (grad a)t, (1.7.1)

div curl a = 0, (1.7.2)

curl gradα = 0, (1.7.3)

grad (αβ) = α gradβ + β gradα, (1.7.4)

grad (αa) = a⊗gradα+ α grad a, (1.7.5)

a × curl b = (grad b)ta − (grad b)a, (1.7.6)

(grad a)a = grad a · a
2

− a × curl a, (1.7.7)

a · (grad a)a = a · grad a · a
2

, (1.7.8)

(a⊗b) : grad a = b · grad a · a
2

, (1.7.9)

grad (a · b) = (grad a)b + (grad b)a + a × curl b + b × curl a, (1.7.10)

div (αa) = α div a + gradα · a, (1.7.11)

div grad a = grad(div a) − curl(curl a), (1.7.12)

div (a × b) = b · curl a − a · curl b, (1.7.13)

div(a⊗b) = (grad a)b + a div b, (1.7.14)

a · div(a⊗b) = div
(a · a

2
b
)

+ a · a
2

div b, (1.7.15)

a · div(b⊗c) = (a · b) div c + (a⊗c) : grad b, (1.7.16)

div (αA) = A gradα+ α div A, (1.7.17)

div (Ab) = (div At) · b + At : grad b, (1.7.18)

curl (αa) = α curl a + gradα× a, (1.7.19)

curl (a × b) = a div b + (grad a)b − (div a)b − (grad b)a, (1.7.20)

a · (Ab) = A : (a⊗b), (1.7.21)

a · (Ab) = (Ata) · b, (1.7.22)

a · (Ab) = (Aa) · b if A is symmetric, (1.7.23)
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where E is Eddington’s epsilon; α and β are scalar functions; a, b, and c, are vector functions; and A is a second-rank
tensor function. To me, it is more interesting to prove these identities than to memorize them. In doing so, the
component notation is very useful. For example, the (i, j)-th component of div (αa) can be written and expanded as

[div (αa)]ij = ∂(αaj)
∂xj

= α
∂aj
∂xj

+ ∂α

∂xj
aj , (1.7.24)

and so, we have just proved

div (αa) = α div a + gradα · a. (1.7.25)

Another example would be a × curl b, whose i-th component is

(a × curl b)i = εijkajεkmn
∂bn
∂xm

= εijkεkmnaj
∂bn
∂xm

, (1.7.26)

which becomes by the formula (1.4.29),

(a × curl b)i = (δimδjn − δinδjm)aj
∂bn
∂xm

= δimδjnaj
∂bn
∂xm

− δinδjmaj
∂bn
∂xm

= δimaj
∂bj
∂xm

− δinaj
∂bn
∂xj

= aj
∂bj
∂xi

− aj
∂bi
∂xj

= ((grad b)ta)i − ((grad b)a)i. (1.7.27)

Thus, Equation (1.7.6) has been proved. Try it for yourself. It’s fun.

1.8 Coordinate Transformation of Vectors

I like to switch back and forth among the thee coordinate systems, and actually often need to transform a vector
such as a fluid velocity from one coordinate system to another. Let v be the velocity vector whose components are
denoted by

v = [u, v, w]t in Cartesian coordinates, (1.8.1)

v = [ur, uθ, uz]t in cylindrical coordinates, (1.8.2)

v = [ur, uθ, uϕ]t in spherical coordinates. (1.8.3)

Then, the velocity vector can be transformed from cylindrical coordinates to the Cartesian coordinates by u

v

w

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 ur

uθ

uz

 , (1.8.4)

and from the Cartesian coordinates to cylindrical coordinates by ur

uθ

uz

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 u

v

w

 . (1.8.5)
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Similarly, the velocity vector can be transformed from spherical coordinates to the Cartesian coordinates by u

v

w

 =

 cos θ sinϕ − sin θ cos θ cosϕ
sin θ sinϕ cos θ sin θ cosϕ

cosϕ 0 − sinϕ


 ur

uθ

uϕ

 , (1.8.6)

and from the Cartesian coordinates to spherical coordinates by ur

uθ

uϕ

 =

 cos θ sinϕ sin θ sinϕ cosϕ
− sin θ cos θ 0

cos θ cosϕ sin θ cosϕ − sinϕ


 u

v

w

 . (1.8.7)

1.9 Coordinate Transformation of Partial Derivatives

Sometime I feel like transforming partial derivatives form one coordinate system to another. For cylindrical coor-
dinates, we have

x = r cos θ, y = r sin θ, z = z, (1.9.1)

and

r =
√
x2 + y2, (1.9.2)

cos θ = x√
x2 + y2

, (1.9.3)

sin θ = y√
x2 + y2

. (1.9.4)

Then, by the chain rule, we have

∂

∂x
= ∂r

∂x

∂

∂r
+ ∂θ

∂x

∂

∂θ
+ ∂z

∂x

∂

∂z
, (1.9.5)

∂

∂y
= ∂r

∂y

∂

∂r
+ ∂θ

∂y

∂

∂θ
+ ∂z

∂y

∂

∂z
, (1.9.6)

∂

∂z
= ∂r

∂z

∂

∂r
+ ∂θ

∂z

∂

∂θ
+ ∂z

∂z

∂

∂z
. (1.9.7)

Of course, we have
∂z

∂x
= 0, ∂z

∂y
= 0, ∂r

∂z
= 0, ∂θ

∂z
= 0, ∂z

∂z
= 1, (1.9.8)

and we find from Equations (1.9.2)

∂r

∂x
= cos θ, ∂r

∂y
= sin θ, (1.9.9)

and from Equations (1.9.3) and (1.9.4)

∂θ

∂x
= − sin θ

r
,

∂θ

∂y
= cos θ

r
. (1.9.10)

Therefore, we have the following transformation:

∂

∂x

∂

∂y

∂

∂z


=


cos θ − sin θ

r
0

sin θ cos θ
r

0

0 0 1





∂

∂r

∂

∂θ

∂

∂z


. (1.9.11)



1.9. COORDINATE TRANSFORMATION OF PARTIAL DERIVATIVES 23

The inverse transformation is given by

∂

∂r

∂

∂θ

∂

∂z


=


cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1





∂

∂x

∂

∂y

∂

∂z


. (1.9.12)

For spherical coordinates, we have

x = (r sinϕ) cos θ, y = (r sinϕ) sin θ, z = r cosϕ, (1.9.13)

and

r =
√
x2 + y2 + z2, (1.9.14)

cos θ = x√
x2 + y2

, (1.9.15)

sin θ = y√
x2 + y2

, (1.9.16)

cosϕ = z√
x2 + y2 + z2

, (1.9.17)

cosϕ =
√
x2 + y2√

x2 + y2 + z2
. (1.9.18)

Then, by the chain rule, we have

∂

∂x
= ∂r

∂x

∂

∂r
+ ∂θ

∂x

∂

∂θ
+ ∂ϕ

∂x

∂

∂ϕ
, (1.9.19)

∂

∂y
= ∂r

∂y

∂

∂r
+ ∂θ

∂y

∂

∂θ
+ ∂ϕ

∂y

∂

∂ϕ
, (1.9.20)

∂

∂z
= ∂r

∂z

∂

∂r
+ ∂θ

∂z

∂

∂θ
+ ∂ϕ

∂z

∂

∂ϕ
. (1.9.21)

We find from Equations (1.9.14)

∂r

∂x
= cos θ sinϕ, ∂r

∂y
= sin θ sinϕ, ∂r

∂z
= cosϕ, (1.9.22)

from Equations (1.9.15) and (1.9.16)

∂θ

∂x
= − sin θ

r sinϕ
,

∂θ

∂y
= cos θ
r sinϕ

,
∂θ

∂z
= 0, (1.9.23)

and Equations (1.9.17) and (1.9.18)

∂θ

∂x
= cos θ cosϕ

r
,

∂θ

∂y
= sin θ cosϕ

r
,

∂θ

∂z
= − sinϕ

r
. (1.9.24)

Therefore, we obtain the following transformation:

∂

∂x

∂

∂y

∂

∂z


=



sinϕ cos θ − sin θ
r sinϕ

cos θ cosϕ
r

sinϕ sin θ cos θ
r sinϕ

sin θ cosϕ
r

cosϕ 0 − sinϕ
r





∂

∂r

∂

∂θ

∂

∂ϕ


. (1.9.25)
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The inverse transformation is given by

∂

∂r

∂

∂θ

∂

∂ϕ


=


sinϕ cos θ sinϕ sin θ cosϕ

−r sinϕ sin θ r sinϕ cos θ 0

r cosϕ cos θ r sin θ cosϕ −r sinϕ





∂

∂x

∂

∂y

∂

∂z


. (1.9.26)

If I wish, I can use these transformations to derive the vector operators such as the gradient in cylindrical or spherical
coordinates from those in Cartesian coordinates. Anyway, it is always good to understand the relationship between
different coordinate systems. So, of course, I like these transformations.

1.10 Eigenvalues and Eigenvectors

A scalar quantity λ is called an eigenvalue of A if it satisfies

(A − λI)r = 0, (1.10.1)

for a square matrix A and a non-zero vector r. The vector r is called the right eigenvector of A associated with this
particular eigenvalue λ. A row vector ℓt that satisfies,

ℓt(A − λI) = 0, (1.10.2)

is called the left eigenvector of A, again associated with this particular eigenvalue λ. I like these right and left
eigenvectors because they are not uniquely determined and any scalar multiple of an eigenvector is also an eigenvector,
i.e., still satisfies the above equation. So, I can scale the eigenvectors in any way I want. This is nice.

Note that there exist n eigenvalues (together with associated eigenvectors) for an n× n matrix A:

λ1, λ2, λ3, · · · , λn. (1.10.3)

If these values are distinct, their associated eigenvectors are linearly independent. (But even if there are some repeated
eigenvalues, their eigenvectors may still be linearly independent.) If the eigenvectors are linearly independent, then we
can diagonalize the matrix A:

Λ = R−1AR, (1.10.4)

where R is the right eigenvector matrix,

R =

 r1 r2 r3 · · · rn

 . (1.10.5)

Λ is a diagonal matrix with the eigenvalues of A placed along its diagonal,

Λ =



λ1 0 0 0 · · · 0

0 λ2 0 0 · · · 0

0 0 λ3 0 · · · 0

0 0 0 λ4
. . .

...
...

...
...

. . . . . . 0
0 0 0 · · · 0 λn


, (1.10.6)
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and L = R−1 is in fact the left eigenvector matrix (whose rows are the left eigenvectors),

L =



ℓt1

ℓt2

ℓt3
...

ℓtn


. (1.10.7)

Although R is not unique (since the eigenvectors cannot be uniquely defined), L is uniquely defined this way for a
given R. By the way, if the matrix A is symmetric, its eigenvalues are all real and the eigenvectors corresponding to
different eigenvalues are orthogonal to one another. This is nice. I like symmetric matrices.

1.11 Similar Matrices

Consider square matrices, A, B, and M of the same size. If A and B are related through M in the form:

B = M−1AM, (1.11.1)

then A and B are said to be similar and Equation (1.11.1) is called a similarity transformation. If A and B are similar,
they have the same eigenvalues. Moreover, their eigenvectors, say rA and rB for a particular eigenvalue, are related by

rB = M−1rA. (1.11.2)

So, once I know the eigenvectors of A, I can find eigenvectors of any matrices similar to A simply by using this relation.
In particular, this is very useful when we analyze conservation laws in various forms because change of variables always
results in a similarity transformation of the Jacobian matrices and so it suffices to analyze just one form of the equation.
This is very nice. I like the similarity transformation.

1.12 Divergence Theorem

The divergence theorem is given by ∫
V

div a dV =
∮
S

a · n dS, (1.12.1)

where n is the normal vector to the surface of the volume V . I like it, but sometimes I get confused because it is called
the Gauss theorem, or the Green-Gauss theorem, or Green’s theorem in two dimensions (not quite right, though; see
Section 1.13), ∫

V

(
∂ax
∂x

+ ∂ay
∂y

)
dxdy =

∮
S

(axdy − aydx), (1.12.2)

where (dx, dy) denotes the infinitesimal element along the boundary in the counter-clockwise direction. Also, some
people call the following equation the divergence theorem,∫

V

gradαdV =
∮
S

αn dS, (1.12.3)

which should be called the gradient theorem, I think. That is probably because each component can be considered as
a part of the divergence theorem above. For example, in two dimensions, we have∫

V

∂α

∂x
dxdy =

∮
S

αdy, (1.12.4)
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which is basically the first term in Equation (1.12.2). Incidentally, the divergence theorem may be thought of as an
integration by parts. Look at this. We obtain from Equation (1.7.11),∫

V

α div a dV =
∫
V

div (αa) dV −
∫
V

gradα · a dV

=
∮
S

αa · n dS −
∫
V

gradα · a dV. (1.12.5)

Of course, the divergence theorem applies to second-rank tensors (denoted by A):∫
V

div A dV =
∮
S

An dS. (1.12.6)

It is also interesting to derive another form [120] by replacing a by c × b, where c is a constant vector in Equation
(1.12.1): ∫

V

div (c × b) dV =
∮
S

(c × b) · n dS, (1.12.7)

which becomes by Equations (1.7.13) and (1.2.14)∫
V

(b ·���curl c − c · curl b) dV =
∮
S

(b × n) · c dS, (1.12.8)

c ·
(

−
∫
V

curl b dV =
∮
S

(b × n) dS
)
, (1.12.9)

and thus ∫
V

curl b dV = −
∮
S

(b × n) dS. (1.12.10)

Anyway, these formulas are often used in CFD, for example, to evaluate derivatives, to reduce the order of differential
equations (e.g., the Galerkin formulation of the Laplace equation), or to simply compute the volume of a computational
cell. So, the divergence theorem is very useful in CFD, and I like it.

1.13 Stokes’ Theorem

If there is the divergence theorem, there is, of course, the curl theorem. But it is more widely known as Stokes’
theorem. It is given, for an arbitrary vector a, by∫

S

curl a · n dS =
∮
∂S

a · dl, (1.13.1)

where S is a bounded surface, dS and n are the infinitesimal area and its unit outward vector, respectively, and
dl = (dx, dy, dz) denotes the infinitesimal line-element in the counter-clockwise direction over the boundary of S
denoted by ∂S. In Cartesian coordinates, we write a = (ax, ay, az) and obtain the curl theorem as∫

S

[(
∂az
∂y

− ∂ay
∂z

)
dydz +

(
∂ax
∂z

− ∂az
∂x

)
dzdx+

(
∂ay
∂x

− ∂ax
∂y

)
dxdy

]
=
∮
∂S

(axdx+ aydy + azdz). (1.13.2)

I like it because Green’s theorem is immediately obtained by setting az = 0 and others to be constant in z:∫
S

(
∂ay
∂x

− ∂ax
∂y

)
dxdy =

∮
∂S

(axdx+ aydy). (1.13.3)

It is also possible to derive the following from the Stoke’s theorem [120]: replace a by c × b, where c is a constant
vector in Equation (1.13.1): ∫

S

curl (c × b) · n dS =
∮
∂S

(c × b) · dl, (1.13.4)
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which becomes by Equations (1.7.20) and (1.2.14)∫
S

(c div b + (���grad c)b − (���div c)b − (grad b)c) · n dS =
∮
∂S

c · (b × dl), (1.13.5)

c ·
(∫

S

(n div b − (grad b)tn) dS =
∮
∂S

(b × dl)
)
, (1.13.6)

and thus ∫
S

(n div b − (grad b)tn) dS =
∮
∂S

(b × dl). (1.13.7)

In fluid dynamics, Stokes’ theorem arises naturally in Kelvin’s circulation theorem as in Section 3.24 and also in
relation to the three-dimensional stream functions as in Section 4.24, for example. In fact, the curl theorem and the
divergence theorem are both special cases of Stokes’ theorem (also called the Kelvin-Stokes theorem). So, I actually
like to call them both Stokes’ theorem. See differential geometry textbooks, e.g., Ref.[148], for more details.

1.14 Conservation Laws

Many flow equations come in the form of conservation laws. That is, the time rate of change of a quantity within
a control volume is balanced by the net change per unit time brought by the local flow. A typical example of such
a quantity is the fluid mass. To express the conservation law mathematically, consider a control volume V with the
boundary S. Let U be a vector of conservative variables (quantities which are conserved), and Fn be the flux vector
normal to the control volume boundary (e.g., ‘mass’ flow per unit time). Then, we can write the conservation laws as

d

dt

∫
V

U dV +
∮
S

Fn dS = 0. (1.14.1)

This is called the integral form of conservation laws. It simply states that the integral value of U changes in time only
due to the net effect of the flux across the control volume boundary. In Cartesian coordinates, the normal flux vector
can be written as

Fn = Fnx + Gny + Hnz, (1.14.2)

where n = (nx, ny, nz), and F, G, H are the flux vectors in the directions of x, y, z, respectively. Also, we may write

d

dt

∫
V

U dV +
∮
S

F n dS = 0, (1.14.3)

where F is a second-rank flux tensor defined by F = [F,G,H]. I like this form because I then immediately notice that
the surface integral can be written as a volume integral by the divergence theorem:

d

dt

∫
V

U dV +
∫
V

div F dV = 0, (1.14.4)

where, of course, every component of F must be differentiable within the control volume. A nice thing about this is
that as long as the control volume is fixed in space, we can write this as a single integral,∫

V

(
∂U
∂t

+ div F
)
dV = 0, (1.14.5)

and since this is valid for arbitrary control volumes, we can write

∂U
∂t

+ div F = 0. (1.14.6)

This is called the differential form of conservation laws. In Cartesian coordinates, it is written as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0. (1.14.7)
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I like it, but I prefer the integral form because the integral form allows discontinuous solutions (or weak solutions, more
generally) while the differential form does not. The integral form is more fundamental, more general, and thus more
useful especially in developing shock-capturing methods. It is also useful even when the control volume deforms in
time, i.e., for moving mesh methods [52]. Moreover, the integral form is applicable to control volumes of any shape;
it is the basis of the finite-volume method. So, it is indeed very nice.

Having said that, I actually like the differential form (1.14.6) very much because it can be written in a conservative
form by expressing the divergence in terms of the surface integral as suggested by the definition (1.5.21):

∂U
∂t

+ lim
V→0

1
V

∮
F · n dS = 0. (1.14.8)

Of course, it cannot be exact unless V → 0, and so it will be an approximation in a finite (computational) volume:

∂U
∂t

+ 1
V

∮
F · n dS ≈ 0. (1.14.9)

But it is actually widely used in node-centered finite-volume methods, which can be thought of as solving the differential
form at nodes in a conservative manner. It can be a good approximation especially for second-order accurate methods.
It is also very useful to construct a conservative scheme. In fact, all advantages mentioned above about the integral form
are valid also for the conservative integral formulation of the differential form. If you don’t like such an approximation,
the exact conversion of the divergence to the surface integral is possible by the primitive function approach. Define G
by

F = 1
V

∫
V

G(ξ, η, ζ) dξ dη dζ, (1.14.10)

where V is the control volume defined in the neighborhood of a point (x, y, z) with a fixed volume V , and (ξ, η, ζ)
is a set of dummy variables to perform the integral over the control volume. Then, F is the volume average of G, or
equivalently, G is the primitive function of F :

divF = 1
V

div
∫
V

G(ξ, η, ζ) dξ dη dζ,= 1
V

∮
G · n dS, (1.14.11)

which is exact for a fixed V . Therefore, the differential form (1.14.6) can be written exactly as

∂U
∂t

+ 1
V

∮
G · n dS = 0. (1.14.12)

Note that the flux needed at the control volume boundary is the primitive function of the physical flux in this case.
This form is the basis of high-order finite-difference methods typically developed for regular grids [181].

I like to compare the three forms above on a one-dimensional control volume. Consider a control volume of spacing
∆x, which we call j, defined by the left boundary xj − ∆x/2 and the right boundary xj + ∆x/2, where xj is the
center of the control volume.

Integral Form

Applying the integral form (1.14.1) over the control volume, we obtain

dUj

dt
+ 1

∆x
[
Fj+1/2 − Fj−1/2

]
= 0, (1.14.13)

where Fj±1/2 denotes the flux at xj ± ∆x/2, and Uj is the averaged solution over the control volume,

Uj = 1
∆x

∫ xj+∆x/2

xj−∆x/2
U dx. (1.14.14)

I like it very much because the fluxes on the left and right boundaries can be computed from the solution at the
boundaries, i.e.,

Fj+1/2 = F(Uj+1/2), Fj−1/2 = F(Uj−1/2), (1.14.15)
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which is nice and simple. Note that the formulation (1.14.13) is exact and therefore higher-order numerical schemes
can be developed by improving the accuracy of the interface fluxes (and the quadrature of the flux integral in two and
three dimensions). This is a very popular formulation in CFD.

Approximate Conservative Differential Form

Next, applying the conservative approximation to the differential form (1.14.9) at the center x = xj , we get

dUj

dt
+ 1

∆x
[
Fj+1/2 − Fj−1/2

]
= 0, (1.14.16)

where Uj is the point value of the solution at x = xj . This is another popular formulation in practical CFD codes.
Obviously, it is a second-order accurate approximation to the differential form of the conservation law because it is
equivalent to the central difference formula to the derivative ∂F/∂x. It means that higher-order approximation to the
fluxes does not necessarily lead to higher-order accuracy in the whole equation. To achieve higher-order accuracy, a
more sophisticated discretization is required for the time derivative, e.g, the Galerkin discretization, rather than the
point evaluation as above. If it has source terms, they also need to be discretized carefully for higher-order accuracy
[102].

Exact Conservative Differential Form

On the other hand, applying the exact form (1.14.12) at the center x = xj , we obtain

dUj

dt
+ 1

∆x

[
FG
j+1/2 − FG

j−1/2

]
= 0, (1.14.17)

where FG is the x-component of G, i.e., the primitive function of F,

F(x) = 1
∆x

∫ x+∆x/2

x−∆x/2
FG(ξ) dξ, ∂F

∂x
= 1

∆x

[
FG
j+1/2 − FG

j−1/2

]
. (1.14.18)

This form is exact. Therefore, high-order accuracy in FG
j+1/2 and FG

j−1/2 does yield high-order accuracy in the whole
equation, which is very nice. Note that it is the primitive function of the flux, not the flux itself, that is required at
the control volume boundaries. Note also that the point value of the flux is now the volume average of the primitive
function:

F(xj) = 1
∆x

∫ xj+∆x/2

xj−∆x/2
FG(x) dx. (1.14.19)

As you might have noticed by now, thee forms are equivalent to one another for second-order accurate methods
because the volume-averaged solution differs from the point value by O(∆x2):

Uj = Uj + O(∆x2). (1.14.20)

which can be easily proved by substituting the Taylor expansion of U(x) around x = xj into the right hand side of
Equation (1.14.14). I like second-order methods because it doesn’t really matter what quantity to compute (volume
averages or point values). That is, I can say that my second-order CFD code computes volume averages when I set
the initial solution by volume averages, or I can also say that it computes point values when I set the initial solution
by the point values. I like it very much.

1.15 Conservation Laws in Generalized Coordinates

Consider the coordinate transformation:

ξ = ξ(x, y, z), η = η(x, y, z) ζ = ζ(x, y, z), (1.15.1)
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which defines a map between the physical coordinates (x, y, z) and the computational (or generalized) coordinates
(ξ, η, ζ). It maps a curvilinear grid in the physical space to a Cartesian grid in the computational space. Then, partial
derivatives are transformed by the chain rule,

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ
, (1.15.2)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
+ ζy

∂

∂ζ
, (1.15.3)

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
+ ζz

∂

∂ζ
. (1.15.4)

Metric coefficients such as ξx, ηx, ζx, are given by

ξx = J(yηzζ − yζzη), ξy = J(xζzη − xηzζ), ξz = J(xηyζ − xζyη), (1.15.5)

ηx = J(yζzξ − yξzζ), ηy = J(xξzζ − xζzξ), ηz = J(xζyξ − xξyζ), (1.15.6)

ζx = J(yξzη − yηzξ), ζy = J(xηzξ − xξzη), ζz = J(xξyη − xηyξ), (1.15.7)

J = 1
xξ(yηzζ − yζzη) − xη(yξzζ − yζzξ) − xζ(yξzη − yηzξ)

, (1.15.8)

which can be readily computed once the transformation is given in the following form,

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ). (1.15.9)

For more details, see Refs.[36, 57, 155]. For example, the differential form of the conservation law (1.14.7) can be
written as

∂U⋆

∂t
+ ∂F⋆

∂ξ
+ ∂G⋆

∂η
+ ∂H⋆

∂ζ
= 0, (1.15.10)

where

U⋆ = U
J
, (1.15.11)

F⋆ = 1
J

(Fξx + Gξy + Hξz) , (1.15.12)

G⋆ = 1
J

(Fηx + Gηy + Hηz) , (1.15.13)

H⋆ = 1
J

(Fζx + Gζy + Hζz) . (1.15.14)

If F, G, H depend on the derivatives of U, these derivatives are transformed by Equations (1.15.2), (1.15.3), and
(1.15.4). I like this form because now I can work with a regular Cartesian grid in the space (ξ, η, ζ), and apply the
straightforward finite-difference formulas.

1.16 Classification of Systems of Differential Equations

1.16.1 General System of Equations
Consider the system of n quasi-linear partial differential equations in the form,

Ut + AUx + BUy + CUz = 0, (1.16.1)
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P ′

A B x

t

Figure 1.16.1: Domain of dependence (lower triangle) and range of influence (upper triangle)
of a point P , for a linear 2×2 hyperbolic system. They are bounded by the characteristic lines
(wave paths) of right- and left-running waves. Domain of dependence of a point P ′ includes
the right boundary.

where U is a set of n solution variables, and A, B, and C are n×n square matrices. I like such a system because it
may have a plane wave solution,

U = f(x · n − λnt) U0, (1.16.2)

where f is a scalar function, n = (nx, ny, nz) is a unit vector normal to the plane wave, λn is the plane wave speed
in the direction of n, and U0 is a constant vector. In one dimension, this becomes

U = f(x− λt) U0, (1.16.3)

and the wave travels to the left if λ < 0 or to the right if λ > 0. In the space with (x, t) coordinates, the wave
is represented by a curve defined by a local slope dx/dt = λ, along which f is constant. Such a curve is called a
characteristic curve, and f is called the Riemann invariant. In two dimensions, we may use the polar angle to indicate
the normal direction n = (cos θ, sin θ), and write the solution (1.16.2) as

U = f(x cos θ + y sin θ − λ(θ)t) U0, (1.16.4)

where λ(θ) denotes the wave speed in the direction of θ. Once λ(θ) is known, we can determine the wave front by
constructing an envelope of plane waves. This is discussed in Section 1.21. In two dimensions, the wave may propagate
not only in a particular direction as in one dimension but also in all directions at varying speeds. In the space with
(x, y, t) coordinates, such a wave is generally represented by a surface. Such a surface is called characteristic surface,
and again f is the Riemann invariant.

In order to see if the system (1.16.1) has a plane wave solution, we substitute Equation (1.16.2) into the system
to get

(Anx + Bny + Cnz − λnI) U0 = 0. (1.16.5)

This means that the speed of the plane wave λn corresponds to an eigenvalue of the projected Jacobian,

An = Anx + Bny + Cnz, (1.16.6)

and U0 is the corresponding eigenvector, and that there may be n such plane wave solutions. Therefore, if all eigenvalues
of An are real and the corresponding eigenvectors are linearly independent, there will be n independent characteristic
surfaces and n Riemann invariants, and thus a solution at a point in space can be completely determined, in principle
by solving a set of n equations of constant Riemann invariants. In this case, the system (1.16.1) is called hyperbolic
in time. Moreover, if the eigenvalues are distinct, it is called strictly hyperbolic. In that case, the eigenvectors are
automatically linearly independent. If all eigenvalues are complex, then the system is called elliptic. Of course, the
system will be mixed if it has both real and complex eigenvalues. Also, if there are less than n real eigenvalues (i.e.,
An is not full rank), then the system is said to be parabolic.

An important implication of the existence of the plane wave solution is that a solution at a point in space depends
only on the solution values in the region where the plane wave has traveled before reaching that point. Such a region
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Figure 1.16.2: Domain of dependence of a point P for a parabolic problem.

is called the domain of dependence. In one dimension, a typical 2×2 hyperbolic system has two plane wave solutions:
one running to the left and the other to the right. Then, the domain of dependence of a certain point is the union of
the left and right intervals where the right- and left-running waves pass through until they reach that point. This grows
in time, and will look like a triangle bounded by characteristic lines (or curves for nonlinear waves) in (x, t)-space (see
Figure 1.16.1). Note that for a scalar hyperbolic equation the domain of dependence becomes a single point, such as
the point A in Figure 1.16.1 for a right-running wave. Also, it is interesting to note that it will take a finite time for
a solution at a point P to influence other points in the domain. Of course, it cannot propagate faster than the plane
waves (characteristics), and therefore the range of influence (the region influenced by the solution at P ) is bounded
by the characteristics passing through the point P (see Figure 1.16.1). Since the domain of dependence is bounded,
a hyperbolic problem can be solved for a given initial solution if the domain is infinite or periodic (i.e., no boundary).
This type of problem is often called an initial-value problem. If the domain is bounded as in Figure 1.16.1, then a
part of the solution needs to be specified on the boundary because there might be a characteristic which cannot be
traced back to the initial solution (see P ′ in Figure 1.16.1). Such a problem may be called an initial-boundary value
problem. On the other hand, there are no plane wave solutions for elliptic systems. These systems typically arise in
steady state problems, i.e., Ut = 0. Since there are no waves whatsoever, the domain of dependence must be the
entire domain. In other words, since there are no reasons that a solution at any point depends on a certain bounded
region in the domain, it must depend on the entire domain. Elliptic problems, therefore, require solution values to be
specified everywhere on the boundary. This type of problem is called a boundary-value problem. A parabolic problem
typically requires both initial and boundary values. A solution at a point P depends not only on all solutions at all
previous time, but also on the solution at the current time (see Figure 1.16.2). This is another initial-boundary value
problem.

By the way, if A, B, C can be simultaneously symmetrized, e.g., by way of change of variables, the system is
guaranteed to be hyperbolic. Of course, symmetrization is not always possible. But usually, physically meaningful
systems are symmetrizable: e.g., the system of the Euler equations is symmetrizable [10, 39]. It would be even nicer
if the whole system were diagonalizable, i.e., if A, B, C could be simultaneously diagonalized. This means that the
system is transformed into a set of independent scalar advection equations. This is nice. It is certainly possible in one
dimension with only one matrix, but it is generally very difficult to achieve in two and three dimensions.

1.16.2 One-Dimensional Equations
Consider the one-dimensional hyperbolic system of the form,

Ut + AUx = 0. (1.16.7)

This can be diagonalized by multiplying it by the left-eigenvector matrix L of A from the left,

LUt + LARLUx = 0, (1.16.8)
LUt + ΛLUx = 0, (1.16.9)

where R is the right-eigenvector matrix of A and Λ is the diagonal eigenvalue matrix of A. For linear hyperbolic
systems (i.e., A is constant, and so L is constant) we can write

(LU)t + Λ(LU)x = 0. (1.16.10)
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The quantity LU is the Riemann invariant or characteristic variable. I like this diagonalized system very much because
it is now a set of scalar equations. The k-th component is given by

∂vk
∂t

+ λk
∂vk
∂x

= 0, (1.16.11)

where vk is the k-th component of the Riemann invariant,

vk = (LU)k, (1.16.12)

which is simply convected at the speed given by the k-th eigenvalue λk of A. This is very nice. A scalar advection
equation is so much easier to deal with than the system of equations. On the other hand, for nonlinear systems, the
Riemann invariant can be expressed only in the differential form L∂U (difficult to integrate it analytically). Namely,
there must be some quantity (i.e., the characteristic variables) V such that L∂U = ∂V, but it is difficult to find it.

Suppose that the system (1.16.7) involves n equations for n variables. Then, note that we can write

∂U = R∂V = r1∂V1 + r2∂V2 + r3∂V3 + · · · + rn∂Vn, (1.16.13)

where V = [V1, V2, V3, . . . , Vn]t and rk is k-th column of R. The above equation indicates that any change in the
solution U can be decomposed into the sum of the changes in the characteristic variables and each contribution
is proportional to the corresponding right eigenvector. This means that the k-th right eigenvector indicates what
variables can change due to the change in the k-th characteristic variables (or the k-th wave): for example, one of the
eigenvectors of the one-dimensional Euler equations, with the primitive variables U = [ρ, u, p]t, is given by

r = [1, 0, 0]t, (1.16.14)

which indicates that only the density can change due to this wave. Incidentally, this is called the entropy wave because
the corresponding characteristic variable is associated with the entropy. See Section 3.4.2.

I like also to look at Equation (1.16.13) in the following form:

∂U = Π1∂U + Π2∂U + Π3∂U + · · · + Πn∂U, (1.16.15)

where the matrix Πk, k = 1, 2, 3, . . . , n, is defined by

Πk = rkℓtk, (1.16.16)

where ℓtk is the k-th row of L. In this form, we see that the matrix Πk projects the solution change into the space of
the k-th eigenvector. For this reason, it is often called the projection matrix [99, 106]. It arises also in the context of
projected spatial operators in two dimensional equations [117]. Of course, we have

n∑
k=1

Πk = I. (1.16.17)

By using the projection matrix, we can write the decomposition of the Jacobian matrix, A = RΛL, as

A =
n∑
k=1

λkΠk. (1.16.18)

Then, the positive and negative parts of the Jacobian matrix, which are the parts corresponding to positive and negative
eigenvalues, respectively, can be easily identified:

A− =
∑
λk≤0

λkΠk, A+ =
∑
λk>0

λkΠk, (1.16.19)

where A− and A+ denote the positive and negative parts, respectively. Such a decomposition is often used to construct
upwind schemes: one-sided scheme towards the upwind direction. See Ref.[99, 106], for examples that explicitly utilize
the projection matrix.

It is also interesting to write the conservation law (1.16.7) as follows,

Ut + RLARLUx = 0, (1.16.20)
Ut + RΛVx = 0, (1.16.21)

Ut +
n∑
k=1

λk
∂vk
∂x

rk = 0. (1.16.22)

This shows how each subproblem (advection term) affects the time rate of conservative variables, and again, each
contribution is proportional to the right eigenvector. It is also very clear from this that each subproblem, i.e., Equation
(1.16.11), is obtained simply by multiplying the system by the left eigenvector ℓtk from the left.
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1.16.3 Two-Dimensional Steady Equations
The classification discussed in Section 1.16.1 can be extended to steady equations. Consider the steady two-dimensional
system,

AUx + BUy = 0. (1.16.23)
This admits a steady plane wave solution of the form,

U = f(xnx + yny) U0, (1.16.24)
provided

(Anx + Bny) U0 = 0. (1.16.25)
That is, if the generalized eigenvalue problem,

det (B − λA) = 0, (1.16.26)
has a real solution λ = −nx/ny. For a system of n equations, there will be n eigenvalues. If all n eigenvalues are real
and the corresponding eigenvectors are linearly independent, the steady system is called hyperbolic. If all are complex,
it is called elliptic. It can, of course, be mixed if there are both real and complex eigenvalues. Again, if there are less
than n real eigenvalues, the system will be parabolic.

As an example, convert the linear scalar second-order partial differential equation,
aϕxx + b ϕxy + c ϕyy + dϕx + e ϕy + f = 0, (1.16.27)

where a, b, c, d, e, f are functions of (x, y, z), into a system of the form (1.16.23), by introducing new variables,
u = ϕx, v = ϕy, (1.16.28)

leading to
AUx + BUy = S, (1.16.29)

where

U =
[
u
v

]
, A =

[
a b/2
0 1

]
, B =

[
b/2 c
−1 0

]
, S =

[
−du− ev − f

0

]
, (1.16.30)

and the second equation (vx − uy = 0) is a necessary condition that comes from the definition of the new variables
(1.16.28). Note also that we split b ϕxy into two: b

2 ϕxy + b
2 ϕxy = b

2 uy + b
2 vx. Now, we have

det (B − λA) = 0, (1.16.31)
i.e.,

det
[
b/2 − λa c− bλ/2

−1 −λ

]
, (1.16.32)

or
aλ2 − bλ+ c = 0, (1.16.33)

and therefore we see that the system is hyperbolic if b2 − 4ac > 0 (and the eigenvectors are linearly independent),
and elliptic if b2 − 4ac < 0. Of course, it is called parabolic if b2 − 4ac = 0. In this case, there exists only a single
(degenerate) characteristic, and it is not sufficient to describe the solution behavior. This type of equation requires
low-order terms in S to describe the solution. For example, the parabolic equation uy = uxx is basically the heat
equation with y interpreted as time. Obviously, its character cannot be described without the first-order term, uy.

It is interesting to note that if A−1 exists, we can write the two-dimensional system (1.16.23) in the form,
Ux + A−1BUy = 0. (1.16.34)

This looks like a one-dimensional system with x taken as time. It will really behave like a time-dependent system if
x-axis is contained entirely in the range of influence of any point (no backward characteristics). If this is true, then, x
is called time-like and y is called space-like. The two-dimensional steady Euler system is a good example. See Section
3.17 for details.

By the way, I like adding a time-derivative term to the steady system because then the whole system can be
hyperbolic in time: a real eigenvalue indicates a wave traveling in a particular direction while a complex eigenvalue
indicates a wave traveling isotropically (all directions). Finally, it is interesting to know that the eigenvalues and
eigenvectors of the steady system can be used to decompose the system into hyperbolic and elliptic parts. See
Ref.[117] for details.
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1.17 Classification of Scalar Differential Equations

Consider, again, the second-order partial differential equation,

aϕxx + b ϕxy + c ϕyy + dϕx + e ϕy + f = 0, (1.17.1)

where a, b, c, d, e, f are functions of (x, y, z). It is really nice that we can easily identify the type of the equation,
before attempting to solve it, by

b2 − 4ac < 0, Elliptic,

b2 − 4ac = 0, Parabolic,

b2 − 4ac > 0, Hyperbolic,

(1.17.2)

as shown in the previous subsection. This is very important because the strategy for numerically solving the equation
can be quite different for different types. A typical elliptic equation is the Laplace equation,

uxx + uyy = 0. (1.17.3)

This equation requires a boundary condition everywhere on the domain boundary: specify the solution (Dirichlet
condition), specify the solution derivative normal to the boundary (Neumann condition), or specify the combination of
the solution and the normal derivative (Robin condition) [155]. The solution inside the domain is smooth. In particular,
its maximum/minimum occurs only on the boundary; this is often called the maximum principle.

A typical parabolic equation is the heat equation,

uy − uxx = 0, (1.17.4)

where y-axis acts like time. See Figure 1.16.2 with t replaced by y. An initial distribution of u (temperature) along
x-axis (y = 0) will continue to diffuse along x-direction as y increases. This equation requires boundary conditions
at y = 0 (initial temperature distribution specified) and along the left and right boundaries (temperature at two end
points on x-axis). The solution is again smooth. Even if an initial solution is not smooth, it will be smeared out as
time goes on. This is very nice.

A typical hyperbolic equation is the wave equation,

uxx − uyy = 0, (1.17.5)

where again y may be considered as time. This describes a solution traveling in x with time y (recall that characteristic
surfaces exist for hyperbolic systems). It requires an initial solution to be specified at y = 0, but the solution at each
(x, y) depends only on a part of the initial data. Basically, it only needs to know where it comes from in the initial
data. Also, by taking a domain to be periodic, i.e., u(xmin) = u(xmax), we can avoid boundary conditions, thus
leading to a pure initial-value problem. The solution does not have to be smooth and can be even discontinuous. But
such a solution is not differentiable and will not satisfy the wave equation above. In fact, there is an integral equation
associated with the wave equation which allows discontinuous solutions. See Section 2.1 for details.

I like the fact that only the first three terms, i.e., the second derivative terms, determine the character of the
equation; we do not need to take into account all the terms to analyze the equations. In fact, generally, many
important features of solutions of partial differential equations depend only on the highest-order terms (called the
principal part) of the equation [180]. This is really nice. Suppose that you have a partial differential equation in the
form (1.16.27) with an extremely complicated source term f(x, y), e.g., those involving terms like ϕxϕy or ϕ2

x. Then,
just look at the three second-order terms only, aϕxx + b ϕxy + c ϕyy, and you will find the type of your equation by
Equation (1.17.2), which then guides you to an appropriate numerical method for solving it.

1.18 Pseudo-Transient Equations

I like CFD because partial differential equations are often manipulated for computational advantages or just for conve-
nience. They even change the type. For example, consider the following elliptic equation:

uxx + uyy = 0. (1.18.1)
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It can be solved as a time-dependent equation,

uτ = uxx + uyy, (1.18.2)

where τ is a time-like variable called pseudo time. The solution to the original problem is then obtained as a steady
state solution to the pseudo-time-dependent problem. The method is generally called the pseudo-transient method (or
continuation). It is very interesting and useful because methods developed for time-dependent initial-value problems
can be directly applied to steady problems (those without time derivatives). Note that the type of partial differential
equations have been changed from elliptic to parabolic. This is very interesting. The elliptic equation can be solved as
a parabolic equation; the solution to the elliptic equation is obtained in the steady state. I like it because then I think I
can also define a pseudo-transient equation by introducing the second derivative uττ instead of the first-derivative uτ :

uττ = uxx + uyy, (1.18.3)

which is the wave equation and thus hyperbolic. In this case, the solution to the elliptic equation is obtained by solving
a hyperbolic equation towards the steady state. I’m actually not aware of any work in CFD that actually does so.
However, I do know a method that does it in the form of first-order system:

uτ = ν(px + qy), pτ = 1
Tr

(ux − p), qτ = 1
Tr

(uy − q), (1.18.4)

where Tr is a free parameter. This system is hyperbolic, but reduces to the elliptic equation (1.18.1) in the steady
state for any positive value of Tr as described in Section 2.5. This is very interesting because we can apply methods
developed for hyperbolic systems to solve the elliptic problem. I like it very much. See Section 2.5 and Refs.[98, 99,
103, 104] for details on the method of first-order hyperbolic systems.

The pseudo-transient method is, in a way, a method of manipulated governing equations as mentioned at the
beginning. Consider a hyperbolic conservation law in two dimensions:

Ut + Fx + Gy = 0, (1.18.5)

where U is a solution vector, and F and G are the flux vectors. If we are only interested in the steady state, then the
time t can be thought of as pseudo time τ :

Uτ + Fx + Gy = 0. (1.18.6)

The system is still hyperbolic, but we can alter the character of wave propagations by multiplying the spatial part by
a matrix P:

Uτ + P (Fx + Gy) = 0, (1.18.7)

where P may be taken as a positive definite matrix so that the waves do not change the direction of propagation and
the same type of boundary conditions apply. The matrix P can be designed, for example, to optimize the condition
number of the equation, the ratio of the fastest wave speed to the slowest wave speed, in order to accelerate the
convergence to the steady state (i.e., no waves left behind) [77]. Note that the system reduces to the original system in
the steady state as long as P is non-singular (which is true for a positive definite matrix). That is, the transient solution
may be completely wrong, but it converges faster to the steady solution of the original equation. This technique is
called the local-preconditioning technique [46, 80, 117, 161, 168]. It has an added benefit of improving the accuracy
of numerical schemes in the low-Mach-number limit [45, 163]. Furthermore, some preconditioning matrices can be
used to split the governing equations into hyperbolic and elliptic parts [117], enabling optimal discretization [94, 113]
as well as optimal multigrid convergence [116]. That is very interesting. I like it. I also find it interesting that the
pseudo-compressible formulation [21] for the incompressible Euler and Navier-Stokes equations can also be thought of
as a kind of pseudo-transient method.

Another area where the pseudo-transient method is found useful and actually widely applied is the solution method
for nonlinear systems, e.g., Newton’s method. Newton’s method is a very powerful method for solving nonlinear
systems, but it can take a long time to achieve a rapid convergence unless the initial solution is close enough to the
solution. To enhance the convergence, the pseudo-transient method can be employed in its early stage (typically by
gradually increasing the pseudo time step). Such a technique is often employed in practical CFD codes. It is a simple
but very effective method and I like it very much.

Finally, time-dependent computations can be performed with the pseudo-transient method by the dual-time ap-
proach [59] in which the pseudo-transient method can be used to solve, at each physical time step, the system of
equations arising from an implicit-time stepping scheme. I like the fact that a fast steady solver is an essential building
block of implicit-time stepping.
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1.19 Operator Splitting

In CFD, it is sometimes convenient to solve a partial differential equation term by term. Consider the two-dimensional
evolution equation of a solution u(x, y, t) in the form:

ut = (A + B)u, (1.19.1)

where A and B are two different linear differential operators. For example, A may be the advective operator and B
can be the diffusive operator, or A is an x-derivative operator and B is a y-derivative operator. I like that A and B
are linear because then I can easily generate as many time derivatives as I like:

utt = (A + B)ut = (A + B)2 u, (1.19.2)

uttt = (A + B)utt = (A + B)3 u, (1.19.3)

utttt = (A + B)uttt = (A + B)4 u, (1.19.4)

and so on. I would use them to compute the solution at t+ ∆t from the solution u at t as follows:

u(x, y, z, t+ ∆t) = u+ ∆t ut + ∆t2

2
utt + ∆t3

6
uttt + · · ·

= u+ ∆t(A + B)u+ ∆t2

2
(A + B)2 u+ ∆t3

6
(A + B)3 u+ · · ·

=
(

1 + ∆t(A + B) + ∆t2

2
(A + B)2 + ∆t3

6
(A + B)3 + · · ·

)
u, (1.19.5)

which can be expressed as

u(x, y, t+ ∆t) = exp ((A + B)∆t) u. (1.19.6)

Note that u and all its time derivatives on the right hand side are understood as values at t. In CFD, it is sometimes
easier to solve each operator independently in a sequential manner: e.g., solve

u∗
t = Au, (1.19.7)

and then solve

ut = B u∗, (1.19.8)

to compute the solution at the next time step. This is called the operator splitting method or the fractional step
method. The above splitting in particular is often called the Godunov splitting [5]. It is a simple and interesting idea.
There are many good reasons that I like it. In this way, a numerical method can be designed specifically for each
term, and the coding can be made simple. Also, accuracy and stability of the numerical method may be controlled
independently at each step. For example, we may solve the first step by an explicit high-order upwind scheme and the
second step by an implicit diffusion scheme to allow large time steps. However, it is not immediately guaranteed that
the operator splitting formulation is equivalent to the original formulation. To see this, expand the solutions at the
two stages:

u∗(x, y, t+ ∆t) =
(

1 + ∆tA + ∆t2

2
A2 + ∆t3

6
A3 + · · ·

)
u, (1.19.9)

u(x, y, t+ ∆t) =
(

1 + ∆tB + ∆t2

2
B2 + ∆t3

6
B3 + · · ·

)
u∗(x, y, t+ ∆t), (1.19.10)

and therefore,

u(x, y, t+ ∆t) =
(

1 + ∆tB + ∆t2

2
B2 + ∆t3

6
B3 + · · ·

)(
1 + ∆tA + ∆t2

2
A2 + ∆t3

6
A3 + · · ·

)
u

=
(

1 + ∆t(A + B) + ∆t2

2
(A2 + 2BA + B2) +O(∆t3)

)
u. (1.19.11)
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Comparing this with Equation (1.19.5), we find that the solution obtained by the operator splitting method matches
the exact one only up to O(∆t) term because

(A + B)2 = A2 + AB + BA + B2 ̸= A2 + 2BA + B2, (1.19.12)

unless

BA = AB, (1.19.13)

i.e., unless the operators A and B commute. For simple linear operators, the operators often commute straightforwardly,
but it is not always the case especially for nonlinear equations of practical interest. If the splitting error remains, the
accuracy of the operator-split method would be first-order in time at best no matter how accurate each step is. Of
course, the Godunov splitting is not the only splitting method. We have the Strang splitting [150], which recovers
second-order accuracy:

u∗
t = Au with ∆t/2, (1.19.14)

u∗∗
t = B u∗ with ∆t, (1.19.15)
ut = Au∗∗ with ∆t/2. (1.19.16)

In this case, we find

u(x, y, t+ ∆t) =
(

1 + ∆t
2

A + ∆t2

8
A2 +O(∆t3)

)(
1 + ∆tB + ∆t2

2
B2 +O(∆t3)

)(
1 + ∆t

2
A + ∆t2

8
A2 +O(∆t3)

)
u

=
(

1 + ∆t
2

A + ∆tB + ∆t2

8
A2 + ∆t2

2
B2 + ∆t2

2
AB +O(∆t3)

)(
1 + ∆t

2
A + ∆t2

8
A2 +O(∆t3)

)
u

=
(

1 + ∆t(A + B) + ∆t2

2
(A2 + AB + BA + B2) +O(∆t3)

)
u, (1.19.17)

which matches the exact solution up to O(∆t2) and thus leads to second order accuracy. This is nice. Although we
have to solve the A-operator problem twice in this method, it may worth paying the price; a good method doesn’t come
for free. Well, in fact, the Strang splitting can be compounded into a simpler operator and the cost can be reduced [41,
150]. Let A∆t/2 denotes the operator that solves the A-operator problem with ∆t/2, and B∆t denotes the operator
that solves the B-operator problem with ∆t. Then, the Strang splitting over one time step can be expressed as

u(x, y, t+ ∆t) = A∆t/2B∆tA∆t/2 u(x, y, t). (1.19.18)

In the next time step, we have

u(x, y, t+ 2∆t) = A∆t/2B∆tA∆t/2A∆t/2B∆tA∆t/2 u(x, y, t), (1.19.19)

which can be simplified by A∆t/2A∆t/2 = A∆t +O(∆t3) as

u(x, y, t+ 2∆t) = A∆t/2B∆tA∆tB∆tA∆t/2 u(x, y, t). (1.19.20)

In the same fashion, we have

u(x, y, t+ 3∆t) = A∆t/2B∆tA∆tB∆tA∆tB∆tA∆t/2 u(x, y, t), (1.19.21)

and so on. As you see, two operators are combined into a single operator at each time step. The half-time step
operator is required only at the beginning and at the time when the solution is sought. This is nice. Higher-order
operator splitting is also possible. See Refs.[14, 178] for examples. Also, you might want to check for yourself if the
Strang splitting still gives second-order accuracy for equations with three or more operators, and also if the splitting
error vanishes for higher-order terms as well if the operators commute.

I like the operator splitting method. It is simple and systematic. I just would have to be careful for problems with
strong interactions among the operators and also steady state problems where the operator-splitting method may not
converge to the correct solution (e.g., consider the case in which (A + B)u = 0 with A = −B).
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1.20 Rotational Invariance

Let T be a matrix of rotation. Then, for the conservation law,
∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0, (1.20.1)

in which we often denote F(U) to indicate that F is a function of U, if we have

Fn = nxF + nyG + nzH = T−1F(TU), (1.20.2)

for any non-zero vector n = [nx, ny, nz]t, then, the conservation law is said to satisfy the rotational invariance property.
For example, the Euler equations satisfy the rotational invariance property, with the rotation matrix defined by

T =


1 0 0 0 0
0 nx ny nz 0
0 ℓx ℓy ℓz 0
0 mx my mz 0
0 0 0 0 1

 , (1.20.3)

T−1 = Tt =


1 0 0 0 0
0 nx ℓx mx 0
0 ny ℓy my 0
0 nz ℓz mz 0
0 0 0 0 1

 , (1.20.4)

where n, ℓ, m are three orthogonal unit vectors. Using this property, we can find a flux vector projected in any direction
by using F only. In particular, by setting n = [0, 1, 0]t, ℓ = [1, 0, 0]t, m = [0, 0, 1]t, we get

G = T−1F(TU), T = T−1 =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 , (1.20.5)

also by setting n = [0, 0, 1]t, ℓ = [0, 1, 0]t, m = [1, 0, 0]t, we get

H = T−1F(TU), T = T−1 =


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

 . (1.20.6)

I like this; it says we don’t need G and H. See Section 3.8 for more details on the rotational invariance of the Euler
system.

The rotational invariance is very useful. Many people like it. For example, in a finite-volume code, some people
write just a subroutine to compute an interface flux based on F only, and then use the same subroutine to compute a
flux in the face-normal direction by rotating it by Equation (1.20.2). It is nice and useful.

1.21 Plane Waves of Hyperbolic Equations

The wave front of a wave in hyperbolic equations can be determined by Huygen’s principle, i.e., the wave front
by a point disturbance is the envelope of all plane wave fronts that pass simultaneously through that point, leading to
the formula [79]: [

X(θ)
Y (θ)

]
=
[

cos θ − sin θ
sin θ cos θ

] [
λ(θ)
λ′(θ)

]
, (1.21.1)

where λ(θ) is the plane wave speed in the direction of θ (0 ≤ θ < 2π). See Figure 1.20.1. In particular, I like the
following examples.
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O

θ

λ(θ)

F (x, y, θ) = x cos θ + y sin θ − λ(θ) = 0

x

y

Figure 1.20.1: Envelope of plane waves defined by the equation of the plane wave (the tangent to the
envelope) F (x, y, θ) = 0 and the equation of vanishing derivative ∂F/∂θ = 0.

(a) Linear Advection:
Consider the linear scalar hyperbolic equation,

ut + aux + buy = 0, (1.21.2)

where a and b are constants. To see if this has a plane wave solution, we substitute a general plane wave solution,

u = f(x cos θ + y sin θ − λ(θ)t), (1.21.3)

into Equation (1.21.3) and solve the resulting equation for λ(θ). The solution is

λ(θ) = a cos θ + b sin θ, (1.21.4)

which is real, meaning that it has a plane wave solution. We then proceed to find the wave front by[
X(θ)
Y (θ)

]
=
[

cos θ − sin θ
sin θ cos θ

] [
a cos θ + b sin θ

−a sin θ + b cos θ

]
=
[
a
b

]
. (1.21.5)

Therefore, a point disturbance simply propagates in the direction (a, b).

(b) Isotropic Advection:
Consider the following equation,

ut + (R cos θ)ux + (R sin θ)uy = 0, (1.21.6)

In this case, we find λ(θ) = R and λ′(θ) = 0, and so[
X(θ)
Y (θ)

]
=
[

cos θ − sin θ
sin θ cos θ

] [
R
0

]
=
[
R cos θ
R sin θ

]
. (1.21.7)

Therefore, we find that the envelope is a circle defined by

X2 + Y 2 = R2, (1.21.8)

i.e., a disturbance propagates in every direction at the same speed.

(c) System of Equations:
Consider a system of hyperbolic equations,

Ut + AUx + BUy = 0. (1.21.9)
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This has a plane wave solution of the form

U = f(x cos θ + y sin θ − λ(θ)t)U0, (1.21.10)

if λ(θ) is an eigenvalue of the matrix,

An = A cos θ + B sin θ. (1.21.11)

As an example, consider the two-dimensional Euler equations, for which we find

λ(θ) = qn ± a, qn, qn, (1.21.12)

where qn = (u, v) · (cos θ, sin θ) is the flow speed in the direction of θ and a is the speed of sound. So, two waves,
corresponding to those with the speed qn, simply propagate in the flow direction at the flow speed q =

√
u2 + v2;

and the other two, corresponding to those with the speeds qn ± a, have the envelopes given by[
X(θ)
Y (θ)

]
=
[

cos θ − sin θ
sin θ cos θ

] [
u cos θ + v sin θ ± a
−u sin θ + v cos θ

]
=
[
u± a cos θ
v ± a sin θ

]
, (1.21.13)

i.e., the envelope is a circle centered at (u, v),

(X − u)2 + (Y − v)2 = a2. (1.21.14)

In general, I like wave fronts because they can be in quite interesting shapes; see Refs.[60, 117], for example, for
intriguing magnetohydrodynamic waves.

1.22 Rankine-Hugoniot Relation

Let n be the unit normal vector of a discontinuous surface (a shock wave), and VD be the normal speed of the
discontinuity. Then, apply the integral form of conservation laws (1.14.1) across the discontinuity, and let V → 0 to
obtain the Rankine-Hugoniot relation,

[Fn] = VD[U], (1.22.1)

where [ ] denotes the jump across the discontinuity. Derive this by yourself or see Refs.[50, 51, 60] for derivations.
Suppose that the jump is small, so that we can write

dFn = VD dU, (1.22.2)

and hence
∂Fn
∂U dU = VD dU. (1.22.3)

This shows that the shock speed VD is an eigenvalue of ∂Fn
∂U and the jump dU is the corresponding eigenvector. Note

that this is always true for linear equations, but not for nonlinear equations. For nonlinear equations, this is true only
for small jumps. I emphasize that the shock speed is NOT an eigenvalue of the Jacobian matrix for large jumps. The
one-dimensional Euler equations is a good example: the shock speed associated with one of the acoustic waves is given
by (derived from the Rankine-Hugoniot relation)

VD = uL + aL

√
1 + γ + 1

2γ

(
pR − pL
pL

)
, (1.22.4)

where γ = 1.4; uL, pL, and aL are the velocity, pressure, and the speed of sound on one side of the shock; and pR is
the pressure on the other side of the shock. For small change, i.e., pR − pL ≈ 0, it reduces to

VD ≈ uL + aL, (1.22.5)

which is nothing but the eigenvalue of the Jacobian, i.e., the one associated with the same acoustic wave (see Section
3.4.2). This is actually nice. There are two similar eigenvalues in the Euler equations, u + a and u − a, which are
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sometimes called two nonlinear fields associated with the acoustic wave. We then see from Equation (1.22.5) that the
shock speed given by Equation (1.22.4) is associated with the field of u+ a, not the one of u− a. Yes, we can identify
the field associated with a shock wave by taking the limit pR → pL in the shock speed. In fact, if we look at the other
shock speed (again, derived from the Rankine-Hugoniot relation):

V ′
D = uL − aL

√
1 + γ + 1

2γ

(
pR − pL
pL

)
, (1.22.6)

we find by expanding it for small change pR − pL ≈ 0,

V ′
D ≈ uL − aL. (1.22.7)

So, V ′
D is the shock speed associated with the other field. This is nice, isn’t it? I like it very much.

1.23 Linearly Degenerate and Genuinely Nonlinear Fields

Consider a hyperbolic system of the form,

Ut + AUx = 0. (1.23.1)

The k-th eigenvalue of the coefficient matrix A, λk(U) (or the eigenvector rk(U)) defines a characteristic field called
the λk-th field (or rk-th field), or simply k-th characteristic field.

A k-th characteristic field is said to be linearly degenerate if

∂λk(U)
∂U · rk(U) = 0, for all U. (1.23.2)

In the case of linear hyperbolic systems, all eigenvalues are constant and therefore all fields are linearly degenerate. The
contact discontinuity is a discontinuity in a linearly degenerate field: the characteristics are all parallel across such a
discontinuity just like the scalar linear advection. On the other hand, a k-th characteristic field is said to be genuinely
nonlinear if

∂λk(U)
∂U · rk(U) ̸= 0, for all U. (1.23.3)

I like this genuinely nonlinear one because the characteristic speed can now change across waves, thus creating much
more sophisticated waves than the linearly degenerate field. Specifically, there can be nonlinear shocks (converging
characteristics) and nonlinear expansions (diverging characteristics) in this case. Note that any nonlinear scalar con-
servation laws with non-zero characteristic speed is genuinely nonlinear and such scalar conservations laws are said to
have a convex flux. See Refs.[81, 159] for details.

The one-dimensional Euler equations in the primitive variables U = [ρ, u, p]t can be a good example: the eigenvalues
and eigenvectors are given by (see Section 3.4.2)

λ1 = u− a, λ2 = u, λ3 = u+ a, (1.23.4)

r1 =


−ρ

a

1
−ρa

 , r2 =

 1
0
0

 , r3 =


ρ

a

1
ρa

 , (1.23.5)
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where a =
√
γp/ρ, from which we find

∂λ1

∂U · r1 =


∂(u− a)/∂ρ

∂(u− a)/∂u
∂(u− a)/∂p

 ·


−ρ

a

1
−ρa

 =


a

2ρ
1

− a

2p

 ·


−ρ

a

1
−ρa

 = γ + 1
2

̸= 0, (1.23.6)

∂λ2

∂U · r2 =


∂u/∂ρ

∂u/∂u

∂u/∂p

 ·


1

0
0

 =


0

1
0

 ·


1

0
0

 = 0, (1.23.7)

∂λ3

∂U · r3 =


∂(u+ a)/∂ρ

∂(u+ a)/∂u
∂(u+ a)/∂p

 ·


ρ

a

1
ρa

 =


− a

2ρ
1
a

2p

 ·


ρ

a

1
ρa

 = γ + 1
2

̸= 0, (1.23.8)

so that the λ1-field and λ3-field (acoustic waves) are genuinely nonlinear but the λ2-field (entropy wave) is linearly
degenerate.

http://www.cradle-cfd.com
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Chapter 2

Model Equations

2.1 Linear Advection

I like the linear advection equation:

ut + (gradu) · λ = 0, (2.1.1)

or

ut + div (uλ) = 0, (2.1.2)

or simply

Du

Dt
= 0, (2.1.3)

where λ is a constant advection velocity at which the solution u travels. In Cartesian coordinates, the advection
equation becomes, with λ = (a, b, c),

1D: ut + aux = 0, (2.1.4)
2D: ut + aux + buy = 0, (2.1.5)
3D: ut + aux + buy + cuz = 0. (2.1.6)

The linear advection equation is a model equation for a general quasi-linear system of equations, e.g., in one dimension,

Ut + AUx = 0, (2.1.7)

where U is a vector of solutions and A is a coefficient matrix having real eigenvalues. This includes the Euler equations
of gas dynamics. To develop a method for solving such a system, it is a good idea to first study the model equation
which is simpler but retains important features of the general system. Once we develop and study a method for the
model equation, we may move on to extend it to the system of equations. For example, since the system (2.1.7) can
be diagonalized, i.e., decomposed into a set of linear advection equations (see Section 1.16.2), a method developed for
the linear advection equation can be directly applied to each component.

In studying the model equation, I like its integral form,

d

dt

∫
V

u dV +
∮
S

uλ · n dS = 0, (2.1.8)

because this allows discontinuous solutions: any initial solutions, whether continuous or discontinuous, will be simply
advected at the velocity λ. This is, in fact, a good model for developing a method for computing flows with shock
waves. Many techniques for accurately and stably computing discontinuous solutions have been successfully extended
to more general equations such as the Euler equations.

Note that the linear advection equation is closely related to the wave equation in one dimension, but not so much
in higher dimensions. In one dimension, the wave equation is

utt − a2uxx = 0, (2.1.9)

45
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which can be written as

(∂t − a∂x) (∂tu+ a∂xu) = 0. (2.1.10)

Therefore, the wave equation has two general solutions: one traveling at the speed a and the other at the speed −a.
The linear advection equation governs only the one traveling at the speed a. On the other hand, in two dimensions,
the wave equation is defined by

utt − a2 (uxx + uyy) = 0, (2.1.11)

where a > 0. This has a plane wave solution in all directions at the same speed a (substituting a function of the
form f(x cos θ + y sin θ − λt) into the wave equation, and solving the resulting equation for the wave speed λ, we
obtain λ = ±a which is independent of the direction θ). In contrast, the linear advection equation has a plane wave
solution only in a particular direction, i.e., specified by the constant advection vector (a, b). To describe an isotropic
wave propagation, the advection vector needs to be a function of space:

(a, b) = a(cos θ, sin θ). (2.1.12)

This describes a wave traveling isotropically at speed a (see Section 1.21). The advection equation is then still linear,
but it might be nice to stay with constant coefficients. Then, we may use a system description of the isotropic wave:

ut = a (px + qy) , (2.1.13)
pt = aux, (2.1.14)
qt = auy. (2.1.15)

It is easy to show by straightforward differentiations that this system is equivalent to the wave equation (2.1.11). Note
however that this system representation has introduced an additional constraint, (py − qx)t = 0, to the wave equation.
This condition implies that any zero or nonzero ‘vorticity’ is preserved at all later times. This type of model system
was used in Ref.[95] for developing vorticity-preserving schemes. In three dimensions, basically the same is true, except
that the number of constraints now becomes three; the vorticity has three components in three dimensions.

Incidentally, some people use the term ‘convection’ instead of ‘advection’. Personally, I like ‘advection’ better simply
because I’m used to it. I like not to discuss which is better.

2.2 Circular Advection

The advection equation will still be linear even if λ = (a, b, c) is a function of space. For example, the two-dimensional
advection equation,

ut + aux + buy = 0, (2.2.1)

with the advection velocity,

(a, b) = (y,−x), (2.2.2)

represents a flow field that rotates clockwise around the origin. This is called the circular advection equation. A
three-dimensional circular advection equation would be

ut + aux + buy + cuz = 0, (2.2.3)

with

(a, b, c) = (y,−x, 0). (2.2.4)

This represents a circular flow field around z-axis. Alternatively, we can take λ = (0, z,−y) to create a flow around
x-axis, or λ = (z, 0,−x) to create a flow around y-axis. Yet, we may take λ = (y,−x, V ) where V is a constant. I
like this one because it describes a more 3D flow: rotating around z-axis and simultaneously moving in the z direction
at a constant speed V . Note that the circular advection equation can be written also in the conservative form,

ut + div (uλ) = 0, (2.2.5)

λ = (y,−x) in two dimensions, and λ = (y,−x, 0), (z, 0,−x), (z, 0,−x) or (y,−x, V ) in three dimensions.
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2.3 Diffusion Equation

I like the diffusion equation:

ut = div (ν gradu) , (2.3.1)

where ν is a positive diffusion coefficient. As long as ν does not depend on the solution itself, this equation is linear.
In Cartesian coordinates, the diffusion equation becomes

1D: ut = (νux)x, (2.3.2)
2D: ut = (νux)x + (νuy)y, (2.3.3)
3D: ut = (νux)x + (νuy)y + (νuz)z. (2.3.4)

The diffusion equation is parabolic in time (prove it!). It requires both an initial solution and boundary conditions.
Generally, its solution is very smooth. Even if an initial solution is not smooth, it will be made smooth as time goes on
because of the smoothing effect of the second-derivative term on the right hand side, i.e., ‘diffusion term’. The solution
will reach a steady state, unless we introduce a time-dependent boundary condition and/or source term. Then, the
steady solution will be equivalent to that of the Laplace equation (see Section 2.8).

Of course, I like its integral form also,

d

dt

∫
V

u dV +
∮
S

ν gradu · n dS = 0, (2.3.5)

or

d

dt

∫
V

u dV +
∮
S

ν
∂u

∂n
dS = 0. (2.3.6)

This is a good starting point for developing a finite-volume scheme for the diffusion equation. In general, it is
relatively easy to develop a scheme for the diffusion equation in the sense that it only deals with smooth solutions (no
discontinuities), especially for second-order methods on regular computational grids. The issue, if any, would be the
efficiency of the numerical method. In particular, an explicit scheme can be very inefficient due to a severely restricted
time step; implicit schemes are generally preferred. All these (smoothing effect and efficiency) are characteristics of the
viscous part of the Navier-Stokes equations. Therefore, the diffusion equation is a typical model for the viscous terms
of the Navier-Stokes equations. Numerical methods for the viscous terms are often developed based on the diffusion
equations or equivalently on the Laplace equation for spatial discretizations. By the way, the integral form above shows
that the integral value of the solution depends only on the normal solution gradient over the control volume boundary,
S. This is very interesting. It is basically one-dimensional, and the normal gradient can be easily evaluated on regular
grids in which the normal direction often is perfectly aligned with the direction of two solution data points, i.e., a
simple finite-difference formula gives the normal gradient. I like it because I think it is one of the reasons that it is
relatively easy to develop diffusion schemes on regular grids. For irregular grids, on the other hand, the construction
of diffusion schemes is not necessarily easy. Accuracy and convergence can be easily deteriorated unless the normal
gradient is carefully evaluated. See, for example, Refs.[101, 108] for diffusion schemes on irregular grids.

Note that the viscous terms of the compressible Navier-Stokes equations are actually more than the diffusion
equation because they involve not only the normal gradient but also the gradients tangential to the control volume
boundary as described in Section 4.12. Some numerical schemes ignore the tangential gradients, e.g., a thin-layer-
approximation [89, 111]. Such schemes are known to be robust, but accuracy is not obtained because they are not
consistent schemes. Nevertheless, I like such schemes because they can be useful for constructing an implicit scheme
for the compressible Navier-Stokes equations [111]. See Section 4.12.

2.4 Diffusion Equation: Mixed Formulation

Often, the diffusion equation is written and discretized in the following first-order system:

ut = ν div p, (2.4.1)
p = gradu, (2.4.2)
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where p = (p, q, r) is the vector of variables that represents the gradients. In Cartesian coordinates, it reads in one
dimension,

ut = νpx, p = ux, (2.4.3)

in two dimensions,

ut = ν(px + qy), p = ux, q = uy, (2.4.4)

and in three dimensions,

ut = ν(px + qy + rz), p = ux, q = uy, r = uz. (2.4.5)

This formulation is known as the mixed formulation in the finite-element-method community [182], and widely used,
for example, in high-order methods [25, 66, 115]. I like the mixed formulation because apparently it involves only
first-order derivatives, which are easier to discretize, especially on unstructured grids, than second-order derivatives. In
fact, a variety of successful diffusion schemes have been developed based on the mixed formulation [176, 182]. Note
however that we cannot really avoid the second-derivatives in this formulation. The system is perfectly equivalent
to the diffusion equation of second derivatives and the numerical schemes developed for the system is subject to the
well-known severe limitation: the explicit time step of O(h2), where h is a mesh spacing. I actually like it, though,
because it shows that the system is indeed equivalent to the diffusion equation. Notice that the first-order system is
parabolic in time and thus does not alter the physics of the original diffusion equation. The first-order formulation is
used just for the sake of convenience in discretization. I like such an approach very much.

2.5 Diffusion Equation: First-Order Hyperbolic System

There is an interesting first-order hyperbolic system associated with the diffusion equation:

ut = νpx, pt = 1
Tr

(ux − p), (2.5.1)

where Tr is a constant. In two and three dimensions, it is given, respectively, by

ut = ν(px + qy), pt = 1
Tr

(ux − p), qt = 1
Tr

(uy − q), (2.5.2)

and

ut = ν(px + qy + rz), pt = 1
Tr

(ux − p), qt = 1
Tr

(uy − q), rt = 1
Tr

(uz − r). (2.5.3)

This system is equivalent to the diffusion equation in the limit Tr → 0 [20], and often called the hyperbolic heat
equations. Consider the vector form:

∂tU + ∂xF + ∂yG + ∂yH = S, (2.5.4)

where

U =


u

p

q

r

 , F =


−νp

−u/Tr

0

0

 , G =


−νq

0

−u/Tr

0

 , H =


−νr

0

0

−u/Tr

 , S =


0

−p/Tr

−q/Tr

−r/Tr

 . (2.5.5)

The flux Jacobians are given by

A= ∂F
∂U =


0 −ν 0 0

− 1
Tr

0 0 0

0 0 0 0

0 0 0 0

,B= ∂G
∂U =


0 0 −ν 0

0 0 0 0

− 1
Tr

0 0 0

0 0 0 0

,C= ∂H
∂U =



0 0 0 −ν

0 0 0 0

0 0 0 0

− 1
Tr

0 0 0

 . (2.5.6)
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Consider the projected Jacobian along an arbitrary vector, n = [nx, ny, nz]t:

An = Anx + Bny + Cnz =


0 −νnx −νny −νnz

−nx/Tr 0 0 0

−ny/Tr 0 0 0

−nz/Tr 0 0 0

 . (2.5.7)

The projected Jacobian has the following eigenvalues:

λ1 = −
√

ν

Tr
, λ2 =

√
ν

Tr
, λ3,4 = 0. (2.5.8)

The eigenvalues are real, and the associated eigenvectors can be shown to be linearly independent. Hence the system
is hyperbolic. Note that the eigenvalues are independent of n, and therefore the system describes a wave propagating
isotropically. The third and fourth eigenvalues correspond to the inconsistency damping mode [98], acting on the
quantities, qx − py and rx − pz that should be zero. Although it has a hyperbolic character, it is hyperbolic only for
a very short time of the order Tr. After a long time compared with Tr, it behaves like the diffusion equation as the
waves will be damped by the effect of the source term. There have been efforts on solving this system instead of the
diffusion equation [129] as it models in part a relaxation system for the Navier-Stokes equations. I like this approach
because it avoids the discretization of second derivatives. Also, it allows us to apply numerical schemes well developed
for hyperbolic systems to diffusion problems. However, these advantages do not come free. The small relaxation time
Tr makes the system ‘stiff’ and consequently makes it difficult to solve numerically if not impossible.

On the other hand, if we are interested only in the steady state, then, Tr can take any positive value [98]. Observe
that when time derivatives vanish, the hyperbolic system becomes, for any positive Tr, in one dimension,

0 = ν px,
0 = (ux − p)/Tr,

→ 0 = ν px,
p = ux,

→ 0 = ν uxx, (2.5.9)

in two dimensions,

0 = ν (px + qy),
0 = (ux − p)/Tr,
0 = (uy − q)/Tr,

→
0 = ν (px + qy),
p = ux,
q = uy,

→ 0 = ν (uxx + uyy), (2.5.10)

and in three dimensions,

0 = ν (px + qy + rz),
0 = (ux − p)/Tr,
0 = (uy − q)/Tr,
0 = (uz − r)/Tr,

→

0 = ν (px + qy + rz),
p = ux,
q = uy,
r = uz,

→ 0 = ν (uxx + uyy + uzz). (2.5.11)

Therefore, the system is equivalent to the steady diffusion equation (the Laplace equation) for arbitrary Tr ( > 0) in
contrast to the hyperbolic heat equations that are equivalent to the diffusion equation at any instant of time but require
extremely small Tr. To distinguish the two, the hyperbolic system designed to solve steady problems with arbitrary Tr
is simply called the hyperbolic diffusion system. The equivalence to the Laplace equation emerges naturally also in the
energy estimate [104]. Define the energy associated with the hyperbolic diffusion system as

E ≡ u2 + L2
r(p2 + q2)
2

. (2.5.12)

The governing equation for the energy can be derived by multiplying the hyperbolic system (2.5.4) by the row vector,
ℓE = (u, L2

rp, L
2
rq), from the left:

∂tE + ∂xf
E + ∂yg

E + ∂yh
E = −ν(p2 + q2 + r2), (2.5.13)

where

fE = −νup, gE = −νuq, hE = −νur. (2.5.14)
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By integrating the energy equation over the domain Ω, we obtain

d

dt

∫
Ω
E dV = −

∮
∂Ω

fE · n dA− ν

∫
Ω

(p2 + q2 + r2) dV, (2.5.15)

where ∂Ω denotes the boundary of the domain, fE = (fE , gE , hE), n is the unit outward normal vector, and dA
denotes the infinitesimal boundary area. This integral form shows that the total energy is damped by the magnitude
of the solution gradient and changed only by the boundary flux. In the steady state, we have (p, q, r) = ∇u, and the
energy estimate reduces to ∫

Ω
∇u · ∇u dV −

∮
∂Ω
u
∂u

∂n
dA = 0, (2.5.16)

which is the well-known energy estimate of the Laplace equation.
I really like that the stiffness is no longer an issue in this approach. The free parameter, Tr, can therefore be chosen

to make the system strongly hyperbolic for all times, and can also be defined to accelerate the convergence of numerical
methods [98, 99, 104]. In fact, it naturally leads to a very fast method for computing steady state solutions of the
diffusion equation with O(h) explicit time step, not O(h2) [98, 99, 103, 104]. One might have noticed that the first-
order hyperbolic system is equivalent to the mixed formulation in the steady state. However, the discretization is very
different in that methods for hyperbolic systems, e.g., upwind scheme, are directly applicable to the hyperbolic diffusion
system but not to the mixed formulation. This is a great advantage of the hyperbolic formulation because various
schemes and techniques developed in the past decades for hyperbolic systems can be applied to the discretization of
diffusion. Naturally, it is also possible to develop first-order schemes for diffusion [104]. In addition, in this approach, the
solution gradient (p, q, r) can be computed to the same order of accuracy to that of the solution u [98]. Furthermore,
the Neumann condition can be implemented as the Dirichlet condition by the extra variables that will be equivalent to
the solution gradients in the steady state. Do I like this approach? Oh, yes, I do like this approach very much.

2.6 Advection-Diffusion Equation

I like the advection-diffusion equation:

ut + (gradu) · λ = div (ν gradu) , (2.6.1)

or in the conservative form,

ut + div (uλ − ν gradu) = 0. (2.6.2)

In Cartesian coordinates, it is written as

1D: ut + aux = (νux)x, (2.6.3)
2D: ut + aux + buy = (νux)x + (νuy)y, (2.6.4)
3D: ut + aux + buy + cuz = (νux)x + (νuy)y + (νuz)z, (2.6.5)

or

1D: ut + (au− νux)x = 0, (2.6.6)
2D: ut + (au− νux)x + (bu− νuy)y = 0, (2.6.7)
3D: ut + (au− νux)x + (bu− νuy)y + (cu− νuz)z = 0. (2.6.8)

The advection-diffusion equation is a model equation for a general quasi-linear system of equations of the form, e.g.,
in one dimension,

Ut + AUx = DUxx, (2.6.9)

where U is a vector of solutions, A is a coefficient matrix having real eigenvalues, and D is a positive coefficient
matrix. This includes the Navier-Stokes equations written in the quasi-linear form (see Section 4.16). Basically, it is
simply the sum of the advection and diffusion equations. But to solve this numerically, we should be very careful if
we want to simply add a diffusion scheme to an advection scheme. Such a scheme may fail in the intermediate case
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Figure 2.6.1: A typical steady solution of the advection-diffusion equation. u(0) = 0 and u(L) = 1.

where the advective effect and the diffusive effect are equally important. In fact, some high-order schemes are known
to lose the formal accuracy due to incompatible discretizations of the advection and diffusion terms [24, 115, 125].
One important consideration in preserving accuracy is to treat the advection and diffusion terms in a unified manner.
For this purpose, the conservative form (2.6.2) may be particularly useful in which the advection and diffusion terms
are equally treated in the flux form. Naturally, then, the integral form,

d

dt

∫
V

u dV +
∮
S

(
uλ · n − ν

∂u

∂n

)
dS = 0, (2.6.10)

will be useful also.
Another difficulty, which may arise in advection-diffusion problems, is a rather drastic change in the character of

the equation. Consider the one-dimensional advection-diffusion equation,

ut + aux = νuxx, (2.6.11)

where a > 0, in x ∈ (0, L). This is a typical parabolic problem, and therefore we must specify solution values at both
boundaries: u(0) and u(L) which must be different for the solution to be non-trivial. However, if ν = 0, this becomes
a simple advection equation; we are allowed to specify only one value at the left boundary, i.e., u(0). The solution at
the right boundary u(L) must be left unknown and determined by the wave coming all the way from the left boundary.
Then, what happens in general (ν ̸= 0) is that the wave attempts to propagate the left boundary value u(0) to the
right, but cannot continue to the right boundary because u(0) ̸= u(L); the diffusion term resolves the discrepancy by
smoothing the solution between u(L) and the one transported by the wave from the left (see Figure 2.6.1). Certainly,
if the advective effect dominates the diffusive effect, the influence of diffusion will be confined within a narrow region
near the right boundary. There is a nice dimensionless parameter that characterizes this balance:

Pe = aL

ν
, (2.6.12)

which is called the Peclet number. As Pe → 0, the diffusion dominates; thus the narrow region gets broader and
broader. On the other hand, as Pe → ∞, the advection dominates; thus the narrow region gets extremely narrow (as
if making it look like a pure advection problem by ignoring the right boundary condition u(L)). The corresponding
parameter in the Navier-Stokes equations is the Reynolds number; the narrow region is observed near a body in a flow
and called the boundary layer. Of course, we may as well ignore such a layer by discarding the diffusion term completely
(solve the Euler equations instead of the Navier-Stokes equations). But if we really need to resolve the layer (e.g., need
to compute the viscous drag or the heat transfer on a body), we will have to retain the diffusion term and confront a
variety of issues in computing such a solution in terms of both accuracy and efficiency.

I like the advection-diffusion equation. It is a very simple linear scalar equation, but contains essential difficulties
that we will encounter when solving the Navier-Stokes equations for practical problems. It is useful not only for
illustrating such difficulties in a simpler setting, but also for developing a new method for the Navier-Stokes equations.
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2.7 Advection-Reaction Equation

The advection-reaction equation is given by

ut + (gradu) · λ = −ku. (2.7.1)

In Cartesian coordinates, it is written as

1D: ut + aux = −ku, (2.7.2)
2D: ut + aux + buy = −ku, (2.7.3)
3D: ut + aux + buy + cuz = −ku. (2.7.4)

This equation models the transport of a material in a flow with a constant speed λ, decaying at the rate of k. This is
a typical model equation for conservation laws with a source term:

ut + div f = s, (2.7.5)

where f = uλ and s = −ku. Basically I like it, but not with large k because it makes the equation stiff and very
difficult to solve numerically.

2.8 Poisson/Laplace Equations

The Poisson equation:

div gradu = f, (2.8.1)

where f is a given function of space. If f = 0, it is called the Laplace equation. In Cartesian coordinates, the Poisson
equation is written as

1D uxx = f(x), (2.8.2)
2D uxx + uyy = f(x, y), (2.8.3)
3D uxx + uyy + uzz = f(x, y, z). (2.8.4)

I like the Laplace equation because its solution is very smooth. In particular, it is well known that the minimum
and the maximum of the solution can occur only on the boundary (maaaximum principle), implying a smooth solution
in the interior. On the other hand, solutions of the Poisson equation could be non-smooth, depending on the source
term. Anyway, in both cases, the operator is the Laplacian which is very easy to discretize on regular grids: a simple
central differencing works fine. Although typically it takes a long time to obtain a numerical solution (expensive direct
methods or a large number of iterations), the multigrid technique works extremely well for this type of equation [17].
Well, if the grid is not regular and/or high-order accuracy is required, that is a different story as mentioned in Section
2.3.

2.9 Cauchy-Riemann Equations

2.9.1 Velocity Components
In incompressible irrotational flows, the velocity components (u, v) satisfy the Cauchy-Riemann equations:

ux + vy = 0, for incompressibility, (2.9.1)
vx − uy = 0, for irrotationality. (2.9.2)

Write the system in the vector form,

AUx + BUy = 0, (2.9.3)
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where

U =
[
u
v

]
, A =

[
1 0
0 −1

]
, B =

[
0 1
1 0

]
. (2.9.4)

Then, A is invertible, and we find the eigenvalues and eigenvectors of A−1B:

λ1 = i, r1 =
[

1
i

]
, λ2 = −i, r2 =

[
1

−i

]
, (2.9.5)

where i =
√

−1. Therefore, this system is elliptic. If, in addition, u and v are twice differentiable, they satisfy the
Laplace equation independently,

uxx + uyy = 0, (2.9.6)
vxx + vyy = 0. (2.9.7)

Another interesting fact is that the contours of u and v are orthogonal to each other. To see this, observe that the
dot product of the gradients vanishes by the Cauchy-Riemann equations:

(gradu) · (gradv) = uxvx + uyvy = (−vy)vx + (vx)vy = 0. (2.9.8)

I like the Cauchy-Riemann equations because they are basically the same as a pair of Laplace’s equations. Discretize
the Cauchy-Riemann equations by any method, you will often find yourself solving the associated Laplace equations in
effect [61, 107]. Note that solutions of the Laplace equations do not necessarily satisfy the Cauchy-Riemann equations.
For example, the solution, (u, v) = r(sin θ,− cos θ), which represents a sold body rotation, satisfies the Laplace
equations, but does not satisfy the Cauchy-Riemann equations (the vorticity does not vanish). So, if you really want to
solve the Cauchy-Riemann equations, you need a numerical method that really solves the Cauchy-Riemann equations
[105, 107].

The Cauchy-Riemann system is known as a model for the elliptic subsystem of the Euler equations [93, 123] (the
acoustic subsystem for subsonic flows). In fact, it is a model for all elliptic subsystems of a general two-dimensional
differential system. That is, any two-dimensional system of partial differential equations can be decomposed into a set
of advection equations and/or a set of Cauchy-Riemann systems. This is very interesting. See Ref.[117] for details.

2.9.2 Stream Function and Velocity Potential
The stream function ψ and the velocity potential ϕ are defined by

u = ϕx = ψy, (2.9.9)
v = ϕy = −ψx. (2.9.10)

Then, it is obvious that ψ and ϕ satisfy the following Cauchy-Riemann equations,

ψx + ϕy = 0, (2.9.11)
ϕx − ψy = 0. (2.9.12)

If, in addition, ψ and ϕ are twice differentiable, they satisfy the Laplace equation independently,

ϕxx + ϕyy = 0, (2.9.13)
ψxx + ψyy = 0. (2.9.14)

I like the stream function because the boundary condition is made very simple, i.e., constant along a solid body. On the
other hand, the velocity potential can be tricky because it may not be continuous for multiply-connected regions such
as a flow around a lifting airfoil (see Ref.[68], for example). Of course, the contours of ψ and ϕ, or equivalently the
streamlines and the equi-potential lines, are orthogonal at their points of intersections because (gradψ) · (gradϕ) = 0.

2.9.3 Vorticity and Pressure
In Stokes’ flows, where the viscous terms balance with the pressure gradient, the vorticity and the pressure satisfy the
Cauchy-Riemann equations (see Section 4.25):

px + µωy = 0, (2.9.15)
py − µωx = 0, (2.9.16)
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where p is the pressure, ω = vx − uy is the vorticity, and µ is the viscosity. I like it very much because the theory
of complex variables is directly applicable and a variety of exact solutions can be found for viscous flows just like for
potential flows [54].

2.9.4 Time-Dependent Systems
Augment the Cauchy-Riemann equations with time-derivatives as follows:

ut + ux + vy = 0, (2.9.17)
vt − vx + uy = 0, (2.9.18)

which may be written in the vector form,

Ut + AUx + BUy = 0, (2.9.19)

where

U =
[
u
v

]
, A =

[
1 0
0 −1

]
, B =

[
0 1
1 0

]
. (2.9.20)

I like this system because it is no longer the Cauchy-Riemann equations, but equivalent to the Cauchy-Riemann
equations in the steady state. So, I can compute a solution of the Cauchy-Riemann equations by integrating this in time
until the solution stops changing [93, 134]. Note that the time terms have been added in such a way that the resulting
system is stable [93]. Also note that the eigenvalues and eigenvectors of the projected Jacobian An = Anx + Bny,
where (nx, ny) is an arbitrary unit vector, are given by

λ1 = 1, r1 =
[
nx + 1
ny

]
, λ2 = −1, r2 =

[
nx − 1
ny

]
. (2.9.21)

Therefore, this system is hyperbolic in time (although elliptic in space). On the other hand, it is interesting that if we
add time-derivatives to the Laplace equations,

ut = uxx + uyy, (2.9.22)
vt = vxx + vyy, (2.9.23)

these are not hyperbolic but parabolic in time. If we wish to have hyperbolic equations, we must introduce the
second-derivatives, utt and vtt, thus resulting in the wave equations:

utt = uxx + uyy, (2.9.24)
vtt = vxx + vyy. (2.9.25)

These wave equations can be derived also from the Cauchy-Riemann system (2.9.17) and (2.9.18). In either case, i.e.,
parabolic or hyperbolic, these equations are equivalent to the Laplace equations in their steady states. But I definitely
like the hyperbolic equations better since a simple explicit scheme will work very well (with a large time step) to quickly
reach a steady state.

2.10 Biharmonic Equation

The biharmonic equation is a fourth-order partial differential equation given by

div grad(div gradu) = f, (2.10.1)

or equivalently by

∆2 u = f, (2.10.2)

where f is a given function of space. In Cartesian coordinates, the biharmonic equation is written as

1D uxxxx = f(x), (2.10.3)
2D uxxxx + uyyyy + 2uxxyy = f(x, y), (2.10.4)
3D uxxxx + uyyyy + uzzzz + 2uxxyy + 2uyyzz + 2uzzxx = f(x, y, z). (2.10.5)
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I like the biharmonic equation because it does arise in CFD. Stokes’ equations, which govern very low Reynolds number
flows, formulated by the stream function and the vorticity, involve the biharmonic equation for the stream function.
The biharmonic equation is typically solved with the following boundary conditions:

u = g1(x, y, z), ∂u

∂n
= g2(x, y, z), (2.10.6)

where g1 and g2 are given functions, and ∂u/∂n is the derivative in the direction normal to the boundary. For two-
dimensional Stokes’ flow, u corresponds to the stream function. Then, the first boundary condition may be specified
with g1 = 0 to for a solid wall boundary, meaning that the wall is a streamline. The second boundary condition specifies
the velocity tangential to the boundary, and thus the no-slip condition can be specified with g2 = 0 at the wall.

Discretization of fourth-order derivatives may be straightforward on a regular computational grid, but not so
straightforward on irregular grids. An interesting approach is to write the biharmonic equation as a pair of the Laplace
equations [160]:

div gradu = v, (2.10.7)
div grad v = f, (2.10.8)

where v is a new variable. It is easy to verify that these equations are equivalent to the biharmonic equation for u. Then,
the biharmonic equation can be solved by any well-known method for the Laplace equation, e.g., multigrid methods.
I like it. It is always nice to reduce the order of partial differential equations. However, the boundary condition for
the new variable v is not known and may be difficult to apply in some applications [2]. Nevertheless, the number of
boundary conditions required is basically two [160]. For Stokes’ flows, the boundary conditions as described above will
suffice and the boundary condition is not necessary for v. See Ref.[160] for details.

2.11 Euler-Tricomi Equation

Euler-Tricomi equation,

yuxx + uyy + uzz = 0, (2.11.1)

is an interesting model equation often used in the study of numerical methods for transonic flows. Some people call it
the Tricomi equation, and I don’t know exactly why they ignore Euler. Anyway, it is an interesting equation because it
changes its type depending on y: it is hyperbolic where y < 0 and elliptic where y > 0. It thus models transonic flows,
which is hyperbolic when the local velocity exceeds the speed of sound and elliptic when the velocity is lower than the
speed of sound (see Section 3.17 and also Section 3.20). The Euler-Tricomi equation actually develops steep waves
in the hyperbolic region and yields a smooth solution in the elliptic region. This model has been employed for testing
a numerical algorithm designed for transonic flow calculations [58, 137]. To deal with the mixed behavior, a mixed
numerical algorithm (i.e., central-upwind) is employed in Ref.[58] whereas the equation is made hyperbolic in pseudo
time and solved by an upwind method in Ref.[137]. The latter seems to be a popular approach as typically done for
the Euler equations, which are physically hyperbolic in time but mixed hyperbolic-elliptic in space as shown in Section
3.17.

2.12 Relaxation Model

I like relaxation models but I don’t know much about them. See Refs.[62, 88] for details. As far as I know, the
one-dimensional relaxation model is given by

ut + vx = 0, (2.12.1)
vt + a2ux = (cu− v)/τ, (2.12.2)

where τ > 0, a2 > c2. For τ ≪ 1, this system behaves like the advection-diffusion equation,

ut + cux = τ(a2 − c2)uxx. (2.12.3)
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This can be shown by the Chapman-Enskog expansion [81]. Note that this is a simple model for moment equations
(derived from the Boltzmann equation) which behave like the Navier-Stokes equations in the limit of small relaxation
time. The two-dimensional version is given by

ut + vx + wy = 0, (2.12.4)
vt + a2ux = −(v − ru)/τ, (2.12.5)
wt + b2uy = −(w − su)/τ, (2.12.6)

(2.12.7)

where τ > 0, a2 > r2, b2 > s2. For τ ≪ 1, this system behaves like the following advection-diffusion equation,

ut + rux + suy = τ
[
(a2 − r2)uxx − 2rsuxy + (b2 − s2)uyy

]
. (2.12.8)

Note that it is more advantageous to solve the first-order relaxation system than the advection-diffusion equations
because you can avoid any difficulties in dealing with mixed derivatives [165].

We may generalize the relaxation model, and write a system of nonlinear conservation laws,

Ut + Fx = 0, (2.12.9)

as a linear system with a source term, by introducing a new set of variables V,

Ut + Vx = 0, (2.12.10)

Vt + AUx = F(U) − V
τ

, (2.12.11)

where A and τ are constants carefully chosen such that the solution to this system is equivalent to the original
conservation law: the eigenvalues of A must satisfy the so-called sub-characteristic condition and τ must be very small
(see Ref.[81] for details). I like to avoid nonlinearity in this way (A is now constant), but we now have a stiff source
term instead (τ must be very small). So, it is difficult anyway. Methods which use this approach to avoid nonlinearity
are called relaxation methods. See Ref.[81] for details.

2.13 Burgers’ Equation

I like Burgers’ equation (also known as inviscid Burgers’ equation):

ut + uux = 0. (2.13.1)

This can be written in the conservative form,

ut +
(
u2/2

)
x

= 0. (2.13.2)

Then, we can derive a shock speed Vs by integrating this over a discontinuity across two states, uL and uR, i.e., from
the Rankine-Hugoniot relation (1.22.1),

Vs = uL + uR
2

. (2.13.3)

Also, if we multiply Equation (2.13.2) by 2u, then we get another conservation form,

(u2)t +
(

2
3
u3
)
x

= 0, (2.13.4)

from which we find

Vs = 2
3

(
uL + uR − uLuR

uL + uR

)
. (2.13.5)

So, the two conservation forms share the strong solutions (those that satisfy the differential form), but have different
weak solutions (those that satisfy the integral form). In fact, it is natural that they have different weak solutions
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because the conserved quantities are different: Equation (2.13.2) conserves u while Equation (2.13.4) conserves u2. I
like this particular example because it tells us that it is very important to choose the right conservative variables so
that we obtain physically meaningful solutions.

Two-dimensional version is given by

ut + uux + vuy = 0, (2.13.6)
vt + uvx + vvy = 0. (2.13.7)

The following version is also often used,

ut + uux + uy = 0. (2.13.8)

The latter is basically the same, at a steady state, as the one-dimensional equation (2.13.1), with y taken as a time-like
axis. There is also the three-dimensional version:

ut + uux + vuy + wuz = 0, (2.13.9)
vt + uvx + vvy + wvz = 0, (2.13.10)

wt + uwx + vwy + wwz = 0. (2.13.11)

Incidentally, some people think that it is Burger’s equation. This is wrong. It is Burgers’ equation because it is the
equation of Burgers, not of Burger.

2.14 Traffic Equations

The traffic equation is given by

ρt + (ρv)x = 0, (2.14.1)

where ρ is the density of cars traveling on the road (cars/distance) and v is a local speed of a car. It is reasonable to
assume that v is a function of ρ, e.g.,

v

vmax
= 1 − ρ

ρmax
, (2.14.2)

which means that the speed goes up if there are less cars while the speed goes down if there are more cars. Then, the
characteristic speed is given by

∂f

∂ρ
= ∂(ρv)

∂ρ
= vmax

(
1 − 2ρ

ρmax

)
. (2.14.3)

The shock speed Vs can also be found, by the Rankine-Hugoniot relation (1.22.1), as

Vs = fR − fL
ρR − ρL

= vmax

(
1 − ρR + ρL

ρmax

)
. (2.14.4)

I like the traffic equation because the relation between the speed and the car density, such as Equation (2.14.2),
is required for the traffic equation to be closed but can be determined in any way we want. Various forms may be
proposed for modeling a real traffic flow. But remember that we would have to derive the characteristic and shock
speeds for each relation we choose. For example, why don’t you take this relation,

v

vmax
= 1 − ρ2

ρ2
max

, (2.14.5)

and derive the characteristic and shock speeds? See Ref.[81, 170] for more details on the traffic equation.
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2.15 Viscous Burgers’ Equations

Viscous Burgers’ equation is given by

ut + uux = νuxx, (2.15.1)

where ν is a positive constant. I like this equation because it is a simple model for the Navier-Stokes equations. Of
course, I like the two-dimensional version also:

ut + uux + vuy = ν (uxx + uyy) , (2.15.2)
vt + uvx + vvy = ν (vxx + vyy) , (2.15.3)

which is in fact the two-dimensional incompressible Navier-Stokes equations without the pressure gradient. I like this
one also,

ut + uux + uy = νuxx, (2.15.4)

which will behave like the one-dimensional equation (with time-like y) at a steady state. Finally, of course, I like the
three-dimensional version,

ut + uux + vuy + wuz = ν (uxx + uyy + uzz) , (2.15.5)
vt + uvx + vvy + wvz = ν (vxx + vyy + vzz) , (2.15.6)

wt + uwx + vwy + wwz = ν (wxx + wyy + wzz) . (2.15.7)

One of the most interesting features of the viscous Burgers equation is that its solution can be constructed from a
solution of the diffusion equation. This is very interesting, isn’t it? See Section 6.4.1 for details.

http://www.cradle-cfd.com


Chapter 3

Euler Equations

3.1 Thermodynamic Relations

I like gases that obey the ideal gas law (also called the thermal equation of state):

p = ρRT, (3.1.1)

where p is the gas pressure, ρ is the gas density, T is the gas temperature, and R is the gas constant which is 287
N ·m/kg for the sea-level air. Naturally, a gas that obeys this relation is called an ideal gas (or a thermally perfect gas).
The ideal gas law implies that the state of a gas at a point in a flow is determined by any two of the three variables:
the pressure p, the density ρ, and the temperature T . These variables are then called state variables: the variables
which depend only on the state of gas and not on how it was changed from one state to another. It is interesting that
this relation (3.1.1) has nothing to do with time. In a flow, all these variables will generally change in time. But their
relation (3.1.1) holds at any instant of time at any location in the flow (no matter how violent the flow is). In other
words, the gas is always in equilibrium. Of course, this may not be true in reality, but this is the basic assumption of
thermodynamics, and in fact, it applies remarkably well to a wide range of flows, from low-speed to supersonic. That
is why I like thermodynamics so much. It is very useful for fluid dynamics and CFD.

The internal energy of a gas is defined as the sum of all microscopic energies related to molecular motions (trans-
lation, rotation, vibration, etc). In this book, we use e to denote the specific internal energy (‘specific’ means per-unit-
mass). The internal energy is generally a state variable and depends on two other state variables, e.g, T and p. But it
is well known that for ideal gases it depends only on the temperature:

e = e(T ). (3.1.2)

Note now that from the equation of state that p/ρ also depends only on T . This makes us want to introduce another
quantity called the specific enthalpy, denoted by h:

h ≡ e+ p

ρ
, (3.1.3)

so that the enthalpy also depends only on the temperature,

h = h(T ). (3.1.4)

It is interesting that the first law of thermodynamics, which is a simple energy conservation law, can be expressed in
terms of both e and h: with the specific volume v defined by v = 1/ρ,

dq = de+ pdv, (3.1.5)

or

dq = dh− 1
ρ
dp, (3.1.6)

where dq is an added specific heat. I must mention here that both de and dh depend only on the state while dq
depends on the process (how the heat is added), and that the work done, say dw, depends on the process also but this

59
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has been replaced by pdv, i.e., a reversible work done solely by the pressure (i.e., no viscous forces). Note that the
above equations (3.1.5) and (3.1.6) are true for non-ideal gases also. Now, what is even more interesting is that if we
define the constant-volume specific heat cv and the constant-pressure specific heat cp as the amounts of heat required
to increase the temperature of unit mass by one degree at constant volume and pressure respectively,

cv =
(
∂q

∂T

)
v

, cp =
(
∂q

∂T

)
p

, (3.1.7)

then, it immediately follows from Equations (3.1.5) and (3.1.6) that

cv =
(
∂e

∂T

)
v

, cp =
(
∂h

∂T

)
p

. (3.1.8)

This is very interesting. It shows that cv represents a change in e per unit change in T at constant volume while cp
represents a change in h per unit change in T at constant pressure. It is known from kinetic theory that for molecules
with α degrees of freedom for translational and rotational energy, the specific heats are given by

cv = α

2
R, (3.1.9)

cp =
(

1 + α

2

)
R, (3.1.10)

and thus their ratio is independent of R,

γ = cp
cv

= α+ 2
α

, (3.1.11)

where γ is called the ratio of specific heats (also called the adiabatic exponent). For monatomic gases, we have α = 3
and hence γ = 5/3; for diatomic gases (e.g., air), we have α = 5 and hence γ = 7/5. These results imply that γ is a
constant. But this is not a general result; vibrational energy of molecules has not been taken into account. If the gas
temperature is high enough to excite the vibrational energy, then it will generally depend on T .

For ideal gases, both e and h are functions of T only, and therefore, we obtain from Equation (3.1.5)

cv =
(
∂q

∂T

)
v

= ∂e

∂T
, (3.1.12)

cp =
(
∂q

∂T

)
p

= ∂e

∂T
+ p

(
∂v

∂T

)
p

= cv + p

(
∂v

∂T

)
p

. (3.1.13)

Since the last term above becomes R/p by the ideal gas law (3.1.1), we have the important relation:

cp − cv = R. (3.1.14)

This is very nice. Now we can solve this with Equations (3.1.9), (3.1.10), and (3.1.11) for cv and cp to get

cv = 1
γ − 1

R, (3.1.15)

cp = γ

γ − 1
R. (3.1.16)

For high temperature gases, γ may depend on T , and so are cv and cp. Then, by integrating Equation (3.1.8), which
are now ordinary derivatives, we obtain

e(T ) =
∫
cv dT + constant, (3.1.17)

h(T ) =
∫
cp dT + constant. (3.1.18)

Yet, for a calorically perfect gas, which is defined as a gas with constant specific heats, we can write

e = cvT = R

γ − 1
T, (3.1.19)

h = cpT = γR

γ − 1
T. (3.1.20)
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This is very nice. For example, we can arrange the equation of state into the form,

p = (γ − 1)ρe = (γ − 1)
(
ρE − ρv2

2

)
, (3.1.21)

where v is the velocity vector and E is the specific total energy,

E = 1
γ − 1

p

ρ
+ 1

2
v2. (3.1.22)

Relation (3.1.21) is then called the equation of state for a calorically perfect gas (a calorically perfect gas is also
called a polytropic gas [76, 81]). By the way, some people use E and H to denote the total energy and enthalpy:
E = p

γ−1 + 1
2ρv2 and H = E + p. Others use E to denote the specific total energy as in Equation (3.1.22) and H to

denote the specific total enthalpy,

H = E + p

ρ
. (3.1.23)

I like the latter, but the former is fine too. They are just different definitions. I like not to discuss which is better.
Throughout this book, I will use the latter simply because I like it.

There is another quantity that I like. Consider the following,

dq

T
= de

T
+ p

dv

T
, (3.1.24)

which is the first law (3.1.5) divided by the temperature. This can be written as, by the ideal gas law,

dq

T
= cv

dT

T
+ ρRd

(
1
ρ

)
, (3.1.25)

which further can be written as, for a calorically perfect gas, as

dq

T
= d(cvT )

T
− d(Rρ)

ρ

= d
(
lnT cv − ln ρR

)
. (3.1.26)

Therefore, dq
T can be written as an exact differential; it is thus a state variable (although dq is not a state variable).

This is defined as an entropy s:

ds ≡ dq

T
= d

(
lnT cv − ln ρR

)
. (3.1.27)

This is nice but we must recall that this relation is subject to the assumption of reversible process. In general, e.g., for
viscous flows with heat transfer, this is not true, and the second law of thermodynamics states that the entropy must
increase:

ds = dq

T
+ ds′, (3.1.28)

where ds′ denotes a contribution from irreversible processes which is non-negative (ds′ ≥ 0). It follows from this that
for an adiabatic process we have

ds = ds′ ≥ 0, (3.1.29)

and for an adiabatic and reversible process we have

ds = 0. (3.1.30)

That is, the entropy is constant for an adiabatic and reversible process. Such a process is called isentropic. For an
isentropic process, some very important relations can be derived. We have from Equation (3.1.27)

ds = cv
dT

T
−R

dρ

ρ
, (3.1.31)
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and thus by the ideal gas law (dp/p = dρ/ρ+ dT/T ),

ds = cv
dp

p
− cp

dρ

ρ

= cp
dT

T
−R

dp

p
. (3.1.32)

For a calorically perfect gas, we can write these as

γ − 1
R

ds = dT

T
− (γ − 1)dρ

ρ

= dp

p
− γ

dρ

ρ

= γ
dT

T
− (γ − 1)dp

p
, (3.1.33)

and thus

γ − 1
R

ds = d

(
ln T

ργ−1

)
= d

(
ln p

ργ

)
= d

(
ln T γ

pγ−1

)
. (3.1.34)

Therefore, we obtain the following important relations for an isentropic process (ds = 0):

T

ργ−1 = constant, (3.1.35)

p

ργ
= constant, (3.1.36)

T γ

pγ−1 = constant, (3.1.37)

where constants on the right hand sides are, of course, not all the same. These relations are generally called isentropic
relations or adiabatic relations (dq = 0). They are very useful for a wide range of applications because many flows can
be considered as adiabatic and reversible. For example, a supersonic flow over an airfoil can be adiabatic and reversible
except inside possible shock waves or inside a thin viscous/thermal boundary layer on the airfoil. Even for a curved
shock wave across which the entropy increases by different amount for different streamlines, the flow is isentropic along
each streamline (except for the jump across the shock wave). Note that in such a case the constants in these relations
differ from one streamline to another.

Overall, I like a calorically perfect gas since it has actually been used quite successfully for a wide range of flows.
So, in the rest of this book, I will simply call it a perfect gas.

3.2 Speed of Sound

The speed of sound is a speed at which a disturbance produced by a sound wave travels in a gas. The distur-
bance is generally very small (a sound wave is not at all as strong as a shock wave), so that the process is considered
as isentropic. The speed of sound a is then given by

a2 =
(
∂p

∂ρ

)
s

. (3.2.1)

For a perfect gas, we have the isentropic relation p/ργ = constant, and thus

a2 = γ
p

ρ
. (3.2.2)
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Using the equation of state, p = ρRT , we can write this also in terms of T ,

a2 = γRT. (3.2.3)

Generally, I like to use a to denote the speed of sound, but sometimes I will instead use c to avoid a possible conflict
with other variables. But in the special case that the speed of sound is constant everywhere in a flow field (e.g.,
isothermal flows), I think I would rather use c than a since it looks like standing for ‘constant’.

3.3 Euler Equations

Conservative Form

The conservative form of the Euler equations:

∂tρ+ div(ρv) = 0, (3.3.1)
∂t(ρv) + div(ρv⊗v) + grad p = 0, (3.3.2)

∂t(ρE) + div(ρvH) = 0. (3.3.3)

Some people claim that only the momentum equation should be called the Euler equation because Leonhard Euler
actually derived the momentum equation only. But usually all these equations (momentum + continuity + energy) are
called the Euler equations. Either way, I like the Euler equations.

Primitive Form

The primitive form of the Euler equations:

Dρ

Dt
+ ρ div v = 0, (3.3.4)

ρ
Dv
Dt

+ grad p = 0, (3.3.5)

Dp

Dt
+ ρc2 div v = 0. (3.3.6)

Other Energy Equations

I like energy equations because the energy equations, (3.3.3) and (3.3.6), may be replaced by any of the followings:

∂(ρH)
∂t

− ∂p

∂t
+ div(ρvH) = 0, (3.3.7)

ρ
DE

Dt
+ div (pv) = 0, (3.3.8)

ρ
De

Dt
+ p div v = 0, (3.3.9)

ρ
Dh

Dt
− Dp

Dt
= 0, (3.3.10)

ρ
DH

Dt
− ∂p

∂t
= 0, (3.3.11)

or even by the entropy equation. From Equation (3.1.27), we have

ds = cv
dT

T
−R

dρ

ρ
, (3.3.12)



64 CHAPTER 3. EULER EQUATIONS

which can be written for a perfect gas as

ds = de

T
− p

Tρ2 dρ. (3.3.13)

Therefore, we obtain from Equations (3.3.9) and (3.3.4)

ρ
Ds

Dt
= 0. (3.3.14)

According to the second law of thermodynamics, this should be interpreted as an inequality in general:

ρ
Ds

Dt
≥ 0. (3.3.15)

3.4 1D Euler Equations

3.4.1 Conservative Form

Ut + Fx = 0, (3.4.1)

where

U =

 ρ

ρu

ρE

 , F =

 ρu

ρu2 + p

ρuH

 . (3.4.2)

Flux Jacobian

A = ∂F
∂U =


0 1 0

(γ − 3)u
2

2
(3 − γ)u γ − 1(

γ − 1
2

u2 −H

)
u H + (1 − γ)u2 γu

 . (3.4.3)

Eigenstructure

A = RΛL, (3.4.4)

where

Λ =

 u− c 0 0
0 u 0
0 0 u+ c

 , (3.4.5)

R =

 1 1 1
u− c u u+ c
H − uc u2/2 H + uc

 , (3.4.6)

L =



1
2

(
γ − 1
2c2 u2 + u

c

)
−1

2

(
γ − 1
c2 u+ 1

c

)
γ − 1
2c2

1 − γ − 1
2c2 u2 γ − 1

c2 u −γ − 1
c2

1
2

(
γ − 1
2c2 u2 − u

c

)
−1

2

(
γ − 1
c2 u− 1

c

)
γ − 1
2c2


, (3.4.7)
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LdU =



dp− ρc du

2c2

−dp− c2 dρ

c2

dp+ ρc du

2c2

 . (3.4.8)

It is interesting to note that the quantity dp−c2 dρ
c2 corresponds to the entropy change ds and the corresponding right

eigenvector indicates (as discussed in Section 1.16.2) how the conservative variables change due to this entropy change, ∂ρ

∂(ρu)
∂(ρE)

 ∝

 1
u

u2/2

 . (3.4.9)

This is often called an entropy wave. The associated eigenvalue u gives the speed at which the entropy wave travels:
it moves with the local fluid velocity. It is actually more interesting to look at it in the primitive form where we see
exactly what variable is affected by the entropy change.

3.4.2 Primitive Form

Wt + AwWx = 0, (3.4.10)

where

W =

 ρ
u
p

 , Aw =

 u ρ 0
0 u 1/ρ
0 ρc2 u

 . (3.4.11)

Incidentally, I wouldn’t call Aw the primitive Jacobian. This is because Aw is not a Jacobian [166]: there does not
exist a (flux) vector H such that ∂H/∂W = Aw . So, I simply call Aw the coefficient matrix of the primitive form of
the Euler equations.

Eigenstructure

Aw = RwΛLw, (3.4.12)

where

Λ =

 u− c 0 0
0 u 0
0 0 u+ c

 , Rw =


− ρ

2c
1 ρ

2c
1
2

0 1
2

−ρc

2
0 ρc

2

 , (3.4.13)

Lw =


0 1 − 1

ρc

1 0 − 1
c2

0 1 1
ρc

 , LwdU =


du− dp

ρc

dρ− dp

c2

du+ dp

ρc

 . (3.4.14)

The second component above represents the entropy wave, and we thus find ∂ρ

∂u

∂p

 ∝

 1
0
0

 . (3.4.15)

Therefore, it is the density that changes due to the entropy wave; the velocity and the pressure are not affected. A
typical example is a contact surface (or contact discontinuity) observed in shock tube problems: a surface across which
two different gases are initially in contact moves with the local fluid speed carrying the density jump. In fact, the
entropy wave is sometimes called the contact wave.
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Change of Variables

dU = ∂U
∂W dW, dW = ∂W

∂U dU, (3.4.16)

where

∂U
∂W =

 1 0 0
u ρ 0

u2/2 ρu 1/(γ − 1)

 , (3.4.17)

∂W
∂U =

(
∂U
∂W

)−1

=


1 0 0

−u

ρ

1
ρ

0

(γ − 1)u2/2 −(γ − 1)u γ − 1

 . (3.4.18)

Note that the coefficient matrix Aw is similar to the conservative Jacobian A,

Aw = ∂W
∂U A ∂U

∂W . (3.4.19)

Hence, the eigenvectors are related by

L = Lw ∂W
∂U , R = ∂U

∂WRw, (3.4.20)

and the eigenvalues are the same as those of the conservative Jacobian because similar matrices share the same
eigenvalues (see Section 1.11).

3.4.3 Characteristic Variables
Multiply the primitive form (3.4.10) by Lw from the left to get

LwWt + LwAwWx = 0, (3.4.21)

LwWt + LwAwRwLwWx = 0, (3.4.22)

Wc
t + ΛWc

x = 0, (3.4.23)

where the new variables defined by

∂Wc = Lw∂W =


∂u− 1

ρc
∂p

∂ρ− 1
c2 ∂p

∂u+ 1
ρc
∂p

 , (3.4.24)

are called the characteristic variables, and the equation (3.4.23) is called the characteristic form. It is very nice that
the system (3.4.23) is a completely diagonalized form of the Euler equations, so that we have a set of independent
scalar nonlinear advection equations:(

∂u

∂t
− 1
ρc

∂p

∂t

)
+ (u− c)

(
∂u

∂x
− 1
ρc

∂p

∂x

)
= 0, (3.4.25)

(
∂ρ

∂t
− 1
c2
∂p

∂t

)
+ u

(
∂ρ

∂x
− 1
c2
∂p

∂x

)
= 0, (3.4.26)

(
∂u

∂t
+ 1
ρc

∂p

∂t

)
+ (u+ c)

(
∂u

∂x
+ 1
ρc

∂p

∂x

)
= 0. (3.4.27)
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The second equation corresponds to an entropy advection, and the other two correspond to an acoustic wave propa-
gation. This shows that the entropy is simply convected along a streamline and not affected by the acoustic waves.
In other words, the entropy is constant through the acoustic waves (unless they are strong enough to become shock
waves). For adiabatic (isentropic) flows, the characteristic variables can be integrated:

∂Wc =



∂u− 1
ρc
∂p

∂ρ− 1
c2 ∂p

∂u+ 1
ρc
∂p


=


∂

(
u− 2

γ − 1
c

)
∂s

∂

(
u+ 2

γ − 1
c

)

 , (3.4.28)

where the entropy s has been scaled by −(γ − 1)ρ/(γR). These integrated quantities are called Riemann invariants.
We thus have

∂

∂t

(
u− 2

γ − 1
c

)
+ (u− c) ∂

∂x

(
u− 2

γ − 1
c

)
= 0, (3.4.29)

∂s

∂t
+ u

∂s

∂x
= 0, (3.4.30)

∂

∂t

(
u+ 2

γ − 1
c

)
+ (u+ c) ∂

∂x

(
u+ 2

γ − 1
c

)
= 0. (3.4.31)

This system is often used to implement a characteristic boundary condition in CFD [51]. Now, if we assume γ = 3,
this system reduces to a set of Burgers’ equations.

∂

∂t
(u− c) + (u− c) ∂

∂x
(u− c) = 0, (3.4.32)

∂s

∂t
+ u

∂s

∂x
= 0, (3.4.33)

∂

∂t
(u+ c) + (u+ c) ∂

∂x
(u+ c) = 0. (3.4.34)

On the other hand, if we assume a simple wave, i.e., for example,

u− 2
γ − 1

c = constant, s = constant, (3.4.35)

everywhere (alternatively, u+ 2
γ−1c = constant may be assumed), then it can be shown that the system of Equations

(3.4.29), (3.4.30), and (3.4.31) reduces to the following single Burgers’ equation:

∂

∂t
(u+ c) + (u+ c) ∂

∂x
(u+ c) = 0. (3.4.36)

To show this, let

R−
∞ = u− 2

γ − 1
c = constant, (3.4.37)

and solve for c,

c = γ − 1
2

(u−R−
∞). (3.4.38)

Then, we find

R+ = u+ 2
γ − 1

c = 2u−R−
∞, (3.4.39)

u+ c = γ + 1
2

u− γ − 1
2

R−
∞, (3.4.40)
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and derive the relation,

R+ = 4
γ + 1

[
(u+ c) + γ − 3

4
R−

∞

]
. (3.4.41)

Finally, substitute this into Equation (3.4.31) and multiply the result by γ+1
4 to arrive at Equation (3.4.36).

After all, I like the one-dimensional Euler system because it can be diagonalized completely and thus written as a
set of independent scalar advection equations as shown above. This is very nice but difficult in higher dimensions.

3.4.4 Parameter Vector
I like the parameter vector Z [128],

Z = √
ρ

 1
u
H

 =

 z1
z2
z3

 , (3.4.42)

because every component of conservative variables and fluxes can be expressed as quadratics in the components of Z,

U =

 ρ

ρu

ρE

 =


z2

1

z1z2

z1z3

γ
+ γ − 1

γ

z2
2
2

 , (3.4.43)

F =

 ρu

ρu2 + p

ρuH

 =

 z1z2

z2
2 + p

z2z3

 , (3.4.44)

p = γ − 1
γ

(
z1z3 − z2

2
2

)
. (3.4.45)

This is very useful, for instance, for linearizing the Euler equations [128].

3.5 2D Euler Equations

3.5.1 Conservative Form

Ut + Fx + Gy = 0, (3.5.1)

where

U =


ρ
ρu
ρv
ρE

 , F =


ρu

ρu2 + p
ρuv
ρuH

 , G =


ρv
ρuv

ρv2 + p
ρvH

 . (3.5.2)

Normal Flux

Projection of the flux in the direction of n = [nx, ny]t:

Fn = [F,G] · n = Fnx + Gny =


ρqn

ρqnu+ pnx
ρqnv + pny
ρqnH

 , (3.5.3)

where

qn = unx + vny. (3.5.4)
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Jacobians

A = ∂F
∂U =



0 1 0 0

(γ − 1)q
2

2
− u2 (3 − γ)u (1 − γ)v γ − 1

−uv v u 0(
γ − 1

2
q2 −H

)
u H + (1 − γ)u2 (1 − γ)uv γu


, (3.5.5)

B = ∂G
∂U =



0 0 1 0

−uv v u 0

(γ − 1)q
2

2
− v2 (1 − γ)u (3 − γ)v γ − 1(

γ − 1
2

q2 −H

)
v (1 − γ)uv H + (1 − γ)v2 γv


, (3.5.6)

An = ∂Fn
∂U = Anx + Bny

=



0 nx ny 0

(γ − 1)q
2

2
nx − uqn unx − (γ − 1)unx + qn uny − (γ − 1)vnx (γ − 1)nx

(γ − 1)q
2

2
ny − vqn vnx − (γ − 1)uny vny − (γ − 1)vny + qn (γ − 1)ny(

γ − 1
2

q2 −H

)
qn Hnx − (γ − 1)uqn Hny − (γ − 1)vqn γqn



=


0 nt 0

(γ − 1)q
2

2
n − qnv v⊗n + (1 − γ)n⊗v + qnI (γ − 1)n(

γ − 1
2

q2 −H

)
qn Hnt − (1 − γ)vtqn γqn

 , (3.5.7)

where q2 = u2 + v2, v = [u, v]t, and I is the 2×2 identify matrix. I like An very much because it is very convenient:
simply by taking n = [1, 0]t and [0, 1]t, we obtain A and B respectively.

Eigenstructure

An = RnΛnLn, (3.5.8)

where

Λn =


qn − c 0 0 0

0 qn 0 0
0 0 qn + c 0
0 0 0 qn

 , (3.5.9)

Rn =


1 1 1 0

u− cnx u u+ cnx ℓx
v − cny v v + cny ℓy
H − qnc q2/2 H + qnc qℓ

 , (3.5.10)
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Ln =



1
2

(
γ − 1
2c2 q2 + qn

c

)
−1

2

(
γ − 1
c2 u+ nx

c

)
−1

2

(
γ − 1
c2 v + ny

c

)
γ − 1
2c2

1 − γ − 1
2c2 q2 γ − 1

c2 u
γ − 1
c2 v −γ − 1

c2

1
2

(
γ − 1
2c2 q2 − qn

c

)
−1

2

(
γ − 1
c2 u− nx

c

)
−1

2

(
γ − 1
c2 v − ny

c

)
γ − 1
2c2

−qℓ ℓx ℓy 0


, (3.5.11)

LndU =



dp− ρc dqn
2c2

−dp− c2 dρ

c2

dp+ ρc dqn
2c2

ρ dqℓ


, (3.5.12)

where [ℓx, ℓy]t is a tangent vector (perpendicular to n) such as[
ℓx
ℓy

]
=
[

−ny
nx

]
, (3.5.13)

and qℓ is the velocity component in that direction,

qℓ = uℓx + vℓy. (3.5.14)

I like Rn and Ln very much. Again, they are very convenient: simply by taking n = [1, 0]t and [0, 1]t, we obtain
eigenvectors of A and B. It is also nice that the normal Jacobian An can be diagonalized as

Λn = LnAnRn. (3.5.15)

It would be even nicer if A and B could be diagonalized simultaneously so that the Euler equations could be written as
a set of scalar advection equations. This was easy for the one-dimensional Euler equations, but it seems very difficult
in two (and also three) dimensions. But it is still nice that the steady two-dimensional Euler equations can be fully
diagonalized (see Section 3.17).

3.5.2 Primitive Form

Wt + AwWx + BwWy = 0, (3.5.16)

where

W =


ρ
u
v
p

 , Aw =


u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 ρc2 0 u

 , Bw =


v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 ρc2 v

 . (3.5.17)

Of course, as in Section 3.4.2, I wouldn’t call Aw and Bw the primitive Jacobians because they are not Jacobians.
I do like to call them the coefficient matrices of the primitive form of the Euler equations.

Eigenstructure

Aw
n = Rw

nΛnLwn, (3.5.18)

where

Aw
n =



qn ρnx ρny 0

0 qn 0 nx/ρ

0 0 qn ny/ρ

0 ρc2nx ρc2ny qn

 , (3.5.19)
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Λn =


qn − c 0 0 0

0 qn 0 0
0 0 qn + c 0
0 0 0 qn

 , (3.5.20)

Rw
n =



1 1 1 0

−nxc

ρ
0 nxc

ρ

ℓx
ρ

−nyc

ρ
0 nyc

ρ

ℓy
ρ

c2 0 c2 0


, Lwn =



0 −nxρ

2c
−nyρ

2c
1

2c2

1 0 0 − 1
c2

0 nxρ

2c
nyρ

2c
1

2c2

0 ρℓx ρℓy 0


, (3.5.21)

LwndW =



dp− ρc dqn
2c2

−dp− c2 dρ

c2

dp+ ρc dqn
2c2

ρ dqℓ


. (3.5.22)

Note that the fourth component represents a wave which brings a change in the tangential velocity component. This
is often called a shear wave or a vorticity wave (because such a velocity jump can be represented by a vortex sheet).

Change of Variables

dU = ∂U
∂W dW, dW = ∂W

∂U dU, (3.5.23)

where

∂U
∂W =


1 0 0 0
u ρ 0 0
v 0 ρ 0

q2/2 ρu ρv 1/(γ − 1)

 , (3.5.24)

∂W
∂U =

(
∂U
∂W

)−1

=



1 0 0 0

−u

ρ

1
ρ

0 0

−v

ρ
0 1

ρ
0

(γ − 1)q2/2 −(γ − 1)u −(γ − 1)v γ − 1


, (3.5.25)

Aw
n = ∂W

∂U An
∂U
∂W , Ln = Lwn

∂W
∂U , Rn = ∂U

∂WRw
n. (3.5.26)
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3.5.3 Symmetric Form

I like the symmetric form of the Euler equations because the coefficient matrices become very simple.

Vt + AvVx + BvVy = 0, (3.5.27)

where

dV =


dp

ρc

du

dv

dp− a2dρ

 , Av =


u c 0 0
c u 0 0
0 0 u 0
0 0 0 u

 , Bv =


v 0 c 0
0 v 0 0
c 0 v 0
0 0 0 v

 , (3.5.28)

and dV is called symmetric variables (symmetric variables are not unique; see Refs.[10, 40] for other choices). Look
at the matrices above. They are very sparse and simple. Moreover, I like the fourth equation which clearly shows how
the entropy evolves:

st + usx + vsy = 0, (3.5.29)

where the entropy s has been scaled by (γ − 1)p/R. That is, it is convected along a streamline, thus implying the
isentropic flow.

Change of Variables

The symmetric variables and the conservative variables are transformed into each other as follows:

dU = ∂U
∂V dV, dV = ∂V

∂U dU, (3.5.30)

where the transformation matrices are given by

∂U
∂V =



ρ

c
0 0 − 1

c2

ρu

c
ρ 0 − u

c2

ρv

c
0 ρ − v

c2

ρc

(
q2

2c2 + 1
γ − 1

)
ρu ρv − q2

2c2


, (3.5.31)

∂V
∂U =

(
∂U
∂V

)−1

=



γ − 1
2

q2

ρc
−(γ − 1) u

ρc
−(γ − 1) v

ρc

γ − 1
ρc

−u

ρ

1
ρ

0 0

−v

ρ
0 1

ρ
0

γ − 1
2

q2 − c2 −(γ − 1)u −(γ − 1)v γ − 1


. (3.5.32)

Eigenstructure

Av
n = Rv

nΛnLvn, (3.5.33)
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where

Av
n =


qn c nx c ny 0
c nx qn 0 0
c ny 0 qn 0

0 0 0 qn

 , (3.5.34)

Λvn =


qn 0 0 0
0 qn − c 0 0
0 0 qn + c 0
0 0 0 qn

 , (3.5.35)

Rv
n =


0 1 1 0
0 −nx nx ℓx
0 −ny ny ℓy
1 0 0 0

 , (3.5.36)

Lwn =



0 0 0 1
1
2 − 1

2nx − 1
2ny 0

1
2

1
2nx

1
2ny 0

0 ℓx ℓy 0

 . (3.5.37)

It is interesting to note that the change in the symmetric variables due to the acoustic and shear waves are given by
∂p

ρc

∂u

∂v

∂p− a2∂ρ

 ∝


1

−nx
−ny

0

 ,


1

nx

ny

0

 ,


0

ℓx

ℓy

0

 , (3.5.38)

which shows that the entropy is constant through the acoustic and shear waves. Of course, the entropy may increase
across a shock wave (a strong acoustic wave); this change is given by the Rankine-Hugoniot relation.

Streamline/Natural Coordinates

I like the streamline coordinates, (ξ, η) where ξ taken along streamlines and η perpendicular to streamlines. The
symmetric form (3.5.27) becomes even simpler in this coordinate system:

Ṽt + ÃvṼξ + B̃vṼη = 0, (3.5.39)

where

dṼ =



dp

ρc

dq

dqℓ

dp− c2dρ

 , Ãv =


q c 0 0
c q 0 0
0 0 q 0
0 0 0 q

 , B̃v =


0 0 c 0
0 0 0 0
c 0 0 0
0 0 0 0

 , (3.5.40)

q = u cos θ + v sin θ, (3.5.41)
qℓ = −u sin θ + v cos θ, (3.5.42)

Ãv = Av cos θ + Bv sin θ, (3.5.43)
B̃v = −Av sin θ + Bv cos θ, (3.5.44)

dṼ = ∂Ṽ
∂VdV =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 dV, (3.5.45)
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and θ is a local flow angle defined by θ = tan−1 ( v
u

)
. Look at B̃v. It is extremely simple.

We have obtained this form from Equation (3.5.27) by setting x axis to be a streamline direction and y axis to be
normal to the streamline. Or more formally, we invert this change of coordinates,

∂

∂ξ
= cos θ ∂

∂x
+ sin θ ∂

∂y
, (3.5.46)

∂

∂η
= − sin θ ∂

∂x
+ cos θ ∂

∂y
, (3.5.47)

to get

∂

∂x
= cos θ ∂

∂ξ
− sin θ ∂

∂η
, (3.5.48)

∂

∂y
= sin θ ∂

∂ξ
+ cos θ ∂

∂η
, (3.5.49)

and substitute these into Equation (3.5.27).
Note that we always have qℓ = 0 by definition (zero velocity across streamlines), but its rate of change is not

necessarily zero along the streamlines.

3.5.4 Parameter Vector
The parameter vector is defined by

Z = √
ρ


1
u
v
H

 =


z1
z2
z3
z4

 . (3.5.50)

I like it because every component of conservative variables and fluxes can be expressed as a quadratic in the components
of Z [128].

U =


ρ

ρu

ρv

ρE

 =


z2

1
z1z2

z1z3

z1z4

γ
+ γ − 1

γ

z2
2 + z2

3
2

 , (3.5.51)

F =


ρu

ρu2 + p

ρuv

ρuH

 =


z1z2

z2
2 + p

z2z3

z2z4

 , (3.5.52)

G =


ρv

ρuv

ρv2 + p

ρvH

 =


z1z3

z2z3

z2
3 + p

z3z4

 , (3.5.53)

p = γ − 1
γ

(
z1z4 − z2

2 + z2
3

2

)
. (3.5.54)

We can write the conservative form of the Euler equations in terms of the parameter vector variables:

Ut + AzZx + BzZy = 0, (3.5.55)
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Az = ∂F
∂Z =



z2 z1 0 0

γ − 1
γ

z4
γ + 1
γ

z2 −γ − 1
γ

z3
γ − 1
γ

z1

0 z3 z2 0

0 z4 0 z2


, (3.5.56)

Bz = ∂G
∂Z =



z3 0 z1 0

0 z3 z2 0

γ − 1
γ

z4 −γ − 1
γ

z2
γ + 1
γ

z3
γ − 1
γ

z1

0 0 z4 z3


. (3.5.57)

Note that the Jacobian matrices are linear in the parameter vector variables, which can be useful to linearize the Euler
equations over a computational cell [31].

Perform change of variables as follows:

dZ = ∂Z
∂UdU, dU = ∂U

∂Z dZ, (3.5.58)

where

∂U
∂Z =



2z1 0 0 0

z2 z1 0 0

z3 0 z1 0

z4

γ

γ − 1
γ

z2
γ − 1
γ

z3
z1

γ


, (3.5.59)

∂Z
∂U = 1

z1



1
2

0 0 0

−1
2
z2

z1
1 0 0

−1
2
z3

z1
0 1 0

γ − 1
2

z2
2 + z2

3
z2

1
− 1

2
z4

z1
−(γ − 1)z2

z1
−(γ − 1)z3

z1
γ


,

= 1
√
ρ



1
2

0 0 0

−1
2
u 1 0 0

−1
2
v 0 1 0

γ − 1
2

(
u2 + v2)− 1

2
H −(γ − 1)u −(γ − 1)v γ


, (3.5.60)

from which we find also

Z = 2 ∂Z
∂UU, U = 1

2
∂U
∂Z Z. (3.5.61)

Compare these with Equation (3.5.58). It is very interesting, isn’t it? Moreover, since we have

F = AU, G = BU, (3.5.62)
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for the Euler equations (see Section 3.10), we find from Equation (3.5.61) that

F = AU = 1
2
∂F
∂U

∂U
∂Z Z = 1

2
AzZ, (3.5.63)

G = BU = 1
2
∂G
∂U

∂U
∂Z Z = 1

2
BzZ. (3.5.64)

These show how we can compute the fluxes by the parameter vector. I like these formulas because they would be useful
if we carry the parameter vector as working variables in a CFD code (i.e., we can directly compute the fluxes without
converting the parameter vector into the primitive variables). I like them also because they show that the physical
fluxes are quadratic in Z.

3.6 3D Euler Equations

3.6.1 Conservative Form

Ut + Fx + Gy + Hz = 0, (3.6.1)

where

U =


ρ
ρu
ρv
ρw
ρE

 , F =


ρu

ρu2 + p
ρuv
ρuw
ρuH

 , G =


ρv
ρvu

ρv2 + p
ρvw
ρvH

 , H =


ρw
ρwu
ρwv

ρw2 + p
ρwH

 . (3.6.2)

Normal Flux

Fn = [F,G,H] · n = Fnx + Gny + Hnz =


ρqn

ρqnu+ pnx
ρqnv + pny
ρqnw + pnz

ρqnH

 , (3.6.3)

where n = [nx, ny, nz]t and

qn = unx + vny + wnz. (3.6.4)

Jacobians

A =



0 1 0 0 0

γ − 1
2

q2 − u2 (3 − γ)u (1 − γ)v (1 − γ)w γ − 1

−uv v u 0 0

−uw w 0 u 0(
γ − 1

2
q2 −H

)
u H + (1 − γ)u2 (1 − γ)uv (1 − γ)uw γu


, (3.6.5)
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B =



0 0 1 0 0

−vu v u 0 0

γ − 1
2

q2 − v2 (1 − γ)v (3 − γ)u (1 − γ)w γ − 1

−vw 0 w v 0(
γ − 1

2
q2 −H

)
v (1 − γ)uv H + (1 − γ)v2 (1 − γ)vw γv


, (3.6.6)

C =



0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

γ − 1
2

q2 − w2 (1 − γ)u (1 − γ)v (3 − γ)w γ − 1(
γ − 1

2
q2 −H

)
w (1 − γ)uw (1 − γ)vw H + (1 − γ)w2 γw


, (3.6.7)

where A = ∂F
∂U , B = ∂G

∂U , C = ∂H
∂U , and q2 = u2 + v2 + w2. Also, I like this one:

An = Anx + Bny + Cnz

=



0 nx ny nz 0

K

2
q2nx − uqn unx −Kunx + qn uny −Kvnx unz −Kwnx Knx

K

2
q2ny − vqn vnx −Kuny vny −Kvny + qn vnz −Kwny Kny

K

2
q2nz − wqn wnx −Kunz wny −Kvnz wnz −Kwnz + qn Knz(

K

2
q2 −H

)
qn Hnx −Kuqn Hny −Kvqn Hnz −Kwqn γqn



=



0 nt 0

γ − 1
2

q2n − vqn v⊗n − (γ − 1)n⊗v + qnI (γ − 1)n(
γ − 1

2
q2 −H

)
qn Hnt − (γ − 1)vtqn γqn


, (3.6.8)

where K = γ − 1, v = [u, v, w]t, and I is the 3×3 identity matrix. We may take n = [1, 0, 0]t, [0, 1, 0]t, or [0, 0, 1]t,
to obtain A, B, or C, respectively.

Eigenstructure

An = RnΛnLn, (3.6.9)
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where

Λn =


qn − c 0 0 0 0

0 qn 0 0 0
0 0 qn + c 0 0
0 0 0 qn 0
0 0 0 0 qn

 , (3.6.10)

Rn =


1 1 1 0 0

u− c nx u u+ c nx ℓx mx

v − c ny v v + c ny ℓy my

w − c nz w w + c nz ℓz mz

H − qnc q2/2 H + qnc qℓ qm

 , (3.6.11)

Ln =



Kq2

4c2 + qn
2c

−
(
K

2c2u+ nx
2c

)
−
(
K

2c2 v + ny
2c

)
−
(
K

2c2w + nz
2c

)
K

2c2

1 − Kq2

2c2
Ku

c2
Kv

c2
Kw

c2 −K

c2

Kq2

4c2 − qn
2c

−
(
K

2c2u− nx
2c

)
−
(
K

2c2 v − ny
2c

)
−
(
K

2c2w − nz
2c

)
K

2c2

−qℓ ℓx ℓy ℓz 0

−qm mx my mz 0


, (3.6.12)

LndU =



dp− ρc dqn
2c2

−dp− c2 dρ

c2

dp+ ρc dqn
2c2

ρ dqℓ

ρ dqm


, (3.6.13)

where ℓ = [ℓx, ℓy, ℓz]t, m = [mx,my,mz]t, and n are mutually orthogonal unit vectors, and

qℓ = uℓx + vℓy + wℓz, qm = umx + vmy + wmz. (3.6.14)

See Section 1.3 for formulas and properties of mutually orthogonal unit vectors. Again, it is nice that the normal
Jacobian An can be diagonalized as

Λn = LnAnRn, (3.6.15)

but it is very difficult to diagonalize A, B, and C simultaneously. In three dimensions, even the steady equations
cannot be diagonalized for the same reason that it is hard to diagonalize the two-dimensional time-dependent Euler
system.

Absolute Normal Jacobian

Incidentally, I like to show that the absolute value of the normal Jacobian defined by

|An| ≡ Rn|Λn|Ln, (3.6.16)



3.6. 3D EULER EQUATIONS 79

where

Λn = diag(|λ1|, |λ2|, |λ3|, |λ4|, |λ5|) (3.6.17)

=


|qn − c| 0 0 0 0

0 |qn| 0 0 0
0 0 |qn + c| 0 0
0 0 0 |qn| 0
0 0 0 0 |qn|

 , (3.6.18)

can be expressed without ambiguous tangent vectors, ℓ and m. First, denote the k-th column of Rn by rk and the
k-th row of Ln by ℓtk, so that we can write

|An| ≡ Rn|Λn|Ln

=
5∑
k=1

|λk| rkℓtk. (3.6.19)

(Note that ℓ is a tangent vector and ℓtk is the k-th left eigenvector.) Now, we have

r4ℓt4 =


0 0t 0

−qℓ ℓ ℓ⊗ℓ 0

−q2
ℓ qℓ ℓt 0

 , (3.6.20)

where 0t = [0, 0, 0], and also

r5ℓt5 =


0 0t 0

−qmm m⊗m 0

−q2
m qmmt 0

 . (3.6.21)

Then, we can eliminate the tangent vectors by adding these two and using the results from Section 1.3:

r4ℓt4 + r5ℓt5 =


0 0t 0

qnn − v I − n⊗n 0

q2
n − q2 vt − qnnt 0

 , (3.6.22)

where I is the 3x3 identity matrix. Here, we notice that λ2 = λ4 = λ5 = |qn| and r2ℓt2 does not depend on tangent
vectors. Then, we would want to add r2ℓt2,

r2ℓt2 =



1 − γ − 1
2

M2 γ − 1
c2 vt −γ − 1

c2

−γ − 1
2

M2v γ − 1
c2 v⊗v −γ − 1

c2 v

q2

2

(
1 − γ − 1

2
M2
)

γ − 1
2

M2vt −γ − 1
2

M2


, (3.6.23)

where M2 = q2/c2, to Equation (3.6.22) to get

|λ2| r2ℓt2 +
5∑
k=4

|λk| rkℓtk = |qn|
(
r2ℓt2 + r4ℓt4 + r5ℓt5

)

= |qn|



1 − γ − 1
2

M2 γ − 1
c2 vt −γ − 1

c2

−
(

1 + γ − 1
2

M2
)

v + qnn γ − 1
c2 v⊗v + I − n⊗n −γ − 1

c2 v

q2
n − q2

2

(
1 + γ − 1

2
M2
) (

1 + γ − 1
2

M2
)

vt − qnnt −γ − 1
2

M2


.(3.6.24)
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Next, consider r1ℓt1 and r3ℓt3:

r1ℓt1 =



γ − 1
4

M2 + Mn

2
−γ − 1

2c2 v − n
2c

γ − 1
2c2

(v − cn)
(
γ − 1

4
M2 + Mn

2

)
(v − cn)⊗

(
−γ − 1

2c2 v − n
2c

)
(v − cn) γ − 1

2c2

(H − qnc)
(
γ − 1

4
M2 + Mn

2

)
(H − qnc)

(
−γ − 1

2c2 v − n
2c

)
(H − qnc)

γ − 1
2c2


, (3.6.25)

r3ℓt3 =



γ − 1
4

M2 − Mn

2
−γ − 1

2c2 v + n
2c

γ − 1
2c2

(v + cn)
(
γ − 1

4
M2 − Mn

2

)
(v + cn)⊗

(
−γ − 1

2c2 v + n
2c

)
(v + cn) γ − 1

2c2

(H + qnc)
(
γ − 1

4
M2 − Mn

2

)
(H + qnc)

(
−γ − 1

2c2 v + n
2c

)
(H + qnc)

γ − 1
2c2


, (3.6.26)

where Mn = qn/c. It may be possible to simplify the sum, |λ1| r1ℓt1 +|λ3| r3ℓt3, but I stop here because they are already
independent of the tangent vectors. I like this very much because I can now compute the dissipation term (3.6.19),
using the normal vector n only. This is very useful because tangent vectors are not uniquely defined for a given normal
vector n, especially in three dimensions. By the way, the matrix |An| is required, for example, for implementing a class
of residual-distribution schemes [15, 19, 30, 164].

I also like to show that the product of the absolute normal Jacobian and the differential of the conservative variables,

|An| dU ≡ Rn|Λn|LndU, (3.6.27)

is independent of the tangent vectors. It goes like this:

|An| dU = Rn|Λn|LndU

=
5∑
k=1

|λk| rkℓtkdU

=
3∑
k=1

|λk| rkℓtkdU + |qn|



0
ρ(ℓxdqℓ +mxdqm)

ρ(ℓydqℓ +mydqm)

ρ(ℓzdqℓ +mzdqm)

ρ(qℓdqℓ + qmdqm)



=
3∑
k=1

|λk| rkℓtkdU + |qn|



0
ρ(du− dqnnx)

ρ(dv − dqnny)

ρ(dw − dqnnz)

ρ(udu+ vdv + wdw − qndqn)


, (3.6.28)

where the results in Section 1.3 have been used in the last step. This is very nice. I like it. Basically, the tangent
vectors should not appear at all because obviously |An| depends only on the normal vector. It should always be possible
to eliminate tangent vectors, ℓ and m, from |An| for any equations. By the way, the vector |An| dU is often used, for
example, for implementing Roe’s approximate Riemann solver [128].
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Expanded Form

Sometimes, it is convenient to expand the conservative form of the Euler equations in terms of the derivatives of the
primitive variables:

Fx + Gy + Hz =



(ρu)x + (ρv)y + (ρw)z

(ρu2)x + (ρuv)y + (ρuw)z + px

(ρvu)x + (ρv2)y + (ρvw)z + py

(ρwu)x + (ρwv)y + (ρw2)z + pz

(ρuH)x + (ρvH)y + (ρwH)x



=



ρ(ux + vy + wz) + uρx + vρy + wρz

u {ρ(ux + vy + wz) + uρx + vρy + wρz} + ρuux + ρvuy + ρwuz + px

v {ρ(ux + vy + wz) + uρx + vρy + wρz} + ρuvx + ρvvy + ρwvz + py

w {ρ(ux + vy + wz) + uρx + vρy + wρz} + ρuwx + ρvwy + ρwwz + pz

ρH(ux + vy + wz) + u(ρH)x + v(ρH)y + w(ρH)z


, (3.6.29)

where

(ρH)x = γ

γ − 1
px + 1

2
ρx(u2 + v2 + w2) + ρ(uux + vvx + wwx), (3.6.30)

(ρH)y = γ

γ − 1
py + 1

2
ρy(u2 + v2 + w2) + ρ(uuy + vvy + wwy), (3.6.31)

(ρH)z = γ

γ − 1
pz + 1

2
ρz(u2 + v2 + w2) + ρ(uuz + vvz + wwz). (3.6.32)

I like it because this form can be useful for numerically computing a source term arising from the method of manufactured
solutions where we define simple functions for the primitive variables and substitute them into the Euler equations to
derive a source term, so that the simple functions are the exact solutions for the Euler equations with the source term.

3.6.2 Primitive Form

Wt + AwWx + BwWy + CwWz = 0, (3.6.33)

where

W =



ρ

u

v

w

p


, Aw =



u ρ 0 0 0

0 u 0 0 1/ρ

0 0 u 0 0

0 0 0 u 0

0 ρc2 0 0 u


, (3.6.34)

Bw =



v 0 ρ 0 0

0 v 0 0 0

0 0 v 0 1/ρ

0 0 0 v 0

0 0 ρc2 0 v


, Cw =



w 0 0 ρ 0

0 w 0 0 0

0 0 w 0 0

0 0 0 w 1/ρ

0 0 0 ρc2 w


. (3.6.35)
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Eigenstructure

Aw
n = Rw

nΛnLwn, (3.6.36)

where

Aw
n =



qn ρnx ρny ρnz 0

0 qn 0 0 nx/ρ

0 0 qn 0 ny/ρ

0 0 0 qn nz/ρ

0 ρc2nx ρc2ny ρc2nz qn


, (3.6.37)

Λn =



qn − c 0 0 0 0

0 qn 0 0 0

0 0 qn + c 0 0

0 0 0 qn 0

0 0 0 0 qn


, (3.6.38)

Rw
n =



1 1 1 0 0

−nxc

ρ
0 nxc

ρ

ℓx
ρ

mx

ρ

−nyc

ρ
0 nyc

ρ

ℓy
ρ

my

ρ

−nzc

ρ
0 nzc

ρ

ℓz
ρ

mz

ρ

c2 0 c2 0 0


, (3.6.39)

Lwn =



0 −nxρ

2c
−nyρ

2c
−nzρ

2c
1

2c2

1 0 0 0 − 1
c2

0 nxρ

2c
nyρ

2c
nzρ

2c
1

2c2

0 ρℓx ρℓy ρℓz 0

0 ρmx ρmy ρmz 0


. (3.6.40)

Again, as in Section 3.4.2, there are no such things as primitive Jacobians. Note that we have two shear/vorticity
waves (fourth and fifth components above) in three dimensions.

Derivatives of Conservative Fluxes

We can write the spatial part of the conservative form of the Euler equations in terms of the primitive variables:

Ut + ∂F
∂WWx + ∂G

∂WWy + ∂H
∂WWz = 0, (3.6.41)
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∂F
∂W =



u ρ 0 0 0

u2 2ρu 0 0 1

uv ρv ρu 0 0

uw ρw 0 ρu 0

1
2
uq2 ρH + ρu2 ρuv ρuw

γ

γ − 1
u


, (3.6.42)

∂G
∂W =



v 0 ρ 0 0

vu ρv ρu 0 0

v2 0 2ρv 0 1

vw 0 ρw ρv 0

1
2
vq2 ρvu ρH + ρv2 ρvw

γ

γ − 1
v


, (3.6.43)

∂H
∂W =



w 0 0 ρ 0

wu ρw 0 ρu 0

wv 0 ρw ρv 0

w2 0 0 2ρw 1

1
2
wq2 ρwu ρwv ρH + ρw2 γ

γ − 1
w


. (3.6.44)

I like these derivatives of the conservative fluxes because they can be useful in computing the gradient of the fluxes in
terms of the gradient of the primitive variables:

∂F
∂x

= ∂F
∂W

∂W
∂x

,
∂F
∂y

= ∂F
∂W

∂W
∂y

,
∂F
∂z

= ∂F
∂W

∂W
∂z

, (3.6.45)

and similarly for G and H. Also, it is possible in the same way to compute the gradient of the normal flux:

∂Fn
∂x

= ∂Fn
∂W

∂W
∂x

,
∂Fn
∂y

= ∂Fn
∂W

∂W
∂y

,
∂Fn
∂z

= ∂Fn
∂W

∂W
∂z

, (3.6.46)

where
∂Fn
∂W = ∂F

∂Wnx + ∂G
∂Wny + ∂H

∂Wnz

=



qn ρnx ρny ρnz 0

qnu ρ(qn + unx) ρuny ρunz nx

qnv ρvnx ρ(qn + vny) ρvnz ny

qnw ρwnx ρwny ρ(qn + wnz) nz

1
2
qnq

2 ρHnx + ρqnu ρHny + ρqnv ρHnz + ρqnw
γ

γ − 1
qn


. (3.6.47)

Change of Variables

dU = ∂U
∂W dW, dW = ∂W

∂U dU, (3.6.48)
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where

∂U
∂W =


1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0
w 0 0 ρ 0
q2/2 ρu ρv ρw 1/(γ − 1)

 , (3.6.49)

∂W
∂U =


1 0 0 0 0

−u/ρ 1
ρ 0 0 0

−v/ρ 0 1
ρ 0 0

−w/ρ 0 0 1
ρ 0

(γ − 1)q2/2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1

 , (3.6.50)

∂W
∂U =

(
∂U
∂W

)−1

, Aw
n = ∂W

∂U An
∂U
∂W , Ln = Lwn

∂W
∂U , Rn = ∂U

∂WRw
n. (3.6.51)

3.6.3 Symmetric Form

Vt + AvVx + BvVy + CvVz = 0, (3.6.52)

where

dV =



dp

ρc

du
dv
dw

dp− a2dρ

 , Av =


u c 0 0 0
c u 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u

 , (3.6.53)

Bv =


v 0 c 0 0
0 v 0 0 0
c 0 v 0 0
0 0 0 v 0
0 0 0 0 v

 , Cv =


w 0 0 c 0
0 w 0 0 0
0 0 w 0 0
c 0 0 w 0
0 0 0 0 w

 . (3.6.54)

Note that the fifth equation is an advection equation for the entropy:

st + usx + vsy + wsz = 0, (3.6.55)

where the entropy s has been scaled by (γ − 1)p/R. So, in all dimensions, basically the Euler equations describe
isentropic flows. It is the Rankine-Hugoniot relation (the integral form of the Euler equations) that describes non-
isentropic flows (shock waves).

Change of Variables

dU = ∂U
∂V dV, dV = ∂V

∂U dU, (3.6.56)

where

∂U
∂V =



ρ

c
0 0 0 − 1

c2

ρu

c
ρ 0 0 − u

c2

ρv

c
0 ρ 0 − v

c2

ρw

c
0 0 ρ −w

c2

ρc

(
M2

2
+ 1
γ − 1

)
ρu ρv ρw −M2

2


, (3.6.57)
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∂V
∂U =

(
∂U
∂V

)−1

=



γ − 1
2

q2

ρc
−(γ − 1) u

ρc
−(γ − 1) v

ρc
−(γ − 1) w

ρc

γ − 1
ρc

−u

ρ

1
ρ

0 0 0

−v

ρ
0 1

ρ
0 0

−w

ρ
0 0 1

ρ
0

γ − 1
2

q2 − c2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1


. (3.6.58)

Eigenstructure

Av
n = Rv

nΛnLvn, (3.6.59)

where

Av
n =


qn c nx c ny c nz 0
c nx qn 0 0 0
c ny 0 qn 0 0
c nz 0 0 qn 0

0 0 0 0 qn

 , (3.6.60)

Λvn =


qn 0 0 0 0
0 qn − c 0 0 0
0 0 qn + c 0 0
0 0 0 qn 0
0 0 0 0 qn

 , (3.6.61)

Rv
n =



0 1 1 0 0

0 −nx nx ℓx mx

0 −ny ny ℓy my

0 −nz nz ℓz mz

1 0 0 0 0


, (3.6.62)

Lvn =



0 0 0 0 1
1
2 − 1

2nx − 1
2ny − 1

2nz 0
1
2

1
2nx

1
2ny

1
2nz 0

0 ℓx ℓy ℓz 0

0 mx my mz 0


. (3.6.63)

Again, as in two dimensions, it can be seen from the right eigenvectors that the acoustic and shear waves do not affect
the entropy.

Absolute Normal Jacobian

I like the absolute value of the normal Jacobian very very much for the symmetric form,

|Av
n| ≡ Rv

n|Λvn|Lvn, (3.6.64)
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because it can be much simpler than that of the conservative form (see Section 3.6.1). If we denote the k-th column
of Rv

n by rk and the k-th row of Lvn by ℓtk, then we can write

|Av
n| =

5∑
k=1

|λk| rkℓtk. (3.6.65)

First, consider the following components:

r1ℓt1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , (3.6.66)

r4ℓt4 =

 0 0t 0
0 ℓ⊗ℓ 0
0 0t 0

 , (3.6.67)

r5ℓt5 =

 0 0t 0
0 m⊗m 0
0 0t 0

 , (3.6.68)

where 0t = [0, 0, 0], and so

|λ1| r1ℓt1 + |λ4| r4ℓt4 + |λ5| r5ℓt5 = |qn|

 0 0t 0
0 ℓ⊗ℓ + m⊗m 0
0 0t 1



= |qn|

 0 0t 0
0 I − n⊗n 0
0 0t 1

 , (3.6.69)

where I is the 3x3 identity matrix. Second, consider the other two components:

r2ℓt2 = 1
2

 1 −nt 0
−n n⊗n 0
0 0t 0

 , (3.6.70)

r3ℓt3 = 1
2

 1 nt 0
n n⊗n 0
0 0t 0

 , (3.6.71)

and so,

|λ2| r2ℓt2 + |λ3| r3ℓt3 =


|λ| |̃λ| nt 0

|̃λ| n |λ| n⊗n 0

0 0t 0

 , (3.6.72)

where

|λ| = |λ3| + |λ2|
2

= |qn + c| + |qn − c|
2

, (3.6.73)

|̃λ| = |λ3| − |λ2|
2

= |qn + c| − |qn − c|
2

. (3.6.74)
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Finally, we obtain

|Av
n| =

5∑
k=1

|λk| rkℓtk =


|λ| |̃λ| nt 0

|̃λ| n |qn| I + (|λ| − |qn|) n⊗n 0

0 0t |qn|

 . (3.6.75)

Comparing this with |An| in Section 3.6.1, we immediately see that this is so much simpler. I really like it. Note also
that

|An| = Rn|Λn|Ln = ∂U
∂VRv

n|Λn|Lvn
∂V
∂U = ∂U

∂V |Av
n|∂V
∂U , (3.6.76)

which is possible because the conservative form and the symmetric form are related through a similarity transformation.
Hence, the absolute Jacobian |An| can be calculated via a much simpler matrix (3.6.75). This is very nice.

Streamline Coordinates

Take x-axis as a streamline direction denoted by ξ, and y-axis and z-axis as mutually orthogonal normal directions
denoted by ηℓ and ηm, then I get the following.

Ṽt + ÃvṼξ + B̃vṼηℓ + C̃vṼηm = 0, (3.6.77)

where

dṼ =



dp

ρc

dq

dqℓ

dqm

dp− a2dρ


, Ãv =


q c 0 0 0
c q 0 0 0
0 0 q 0 0
0 0 0 q 0
0 0 0 0 q

 , (3.6.78)

B̃v =


0 0 c 0 0
0 0 0 0 0
c 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , C̃v =


0 0 0 c 0
0 0 0 0 0
0 0 0 0 0
c 0 0 0 0
0 0 0 0 0

 , (3.6.79)

and we have set the unit vector in ξ direction to be n = u/q, and the unit vectors in the other two directions, ηℓ and
ηm, to be ℓ and m, and defined the followings:

q = unx + vny + wnz, (3.6.80)
qℓ = uℓx + vℓy + wℓz, (3.6.81)
qm = umx + vmy + wmz, (3.6.82)
Ãv = Avnx + Bvny + Cvnz, (3.6.83)
B̃v = Avℓx + Bvℓy + Cvℓz, (3.6.84)
C̃v = Avmx + Bvmy + Cvmz, (3.6.85)

dṼ = ∂Ṽ
∂VdV =


1 0 0 0 0
0 nx ny nz 0
0 ℓx ℓy ℓz 0
0 mx my mz 0
0 0 0 0 1

 dV. (3.6.86)
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3.6.4 Parameter Vector

The parameter vector is defined by

Z = √
ρ



1
u

v

w

H


=



z1

z2

z3

z4

z5


. (3.6.87)

I like it as in two dimensions because again every component of conservative variables and fluxes can be expressed as
a quadratic in the components of Z [128].

U =



ρ

ρu

ρv

ρw

ρE


=



z2
1

z1z2

z1z3

z1z4

z1z5

γ
+ γ − 1

γ

z2
2 + z2

3 + z2
4

2


, (3.6.88)

F =



ρu

ρu2 + p

ρuv

ρuw

ρuH


=



z1z2

z2
2 + p

z2z3

z2z4

z2z5


, (3.6.89)

G =



ρv

ρvu

ρv2 + p

ρvw

ρvH


=



z1z3

z3z2

z2
3 + p

z3z4

z3z5


, (3.6.90)

H =



ρw

ρwu

ρwv

ρw2 + p

ρwH


=



z1z4

z4z2

z4z3

z2
4 + p

z4z5


, (3.6.91)

p = γ − 1
γ

(
z1z5 − z2

2 + z2
3 + z2

4
2

)
. (3.6.92)

We can write the conservative form of the Euler equations in terms of the parameter vector variables:

Ut + AzZx + BzZy + CzZz = 0, (3.6.93)
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Az = ∂F
∂Z =



z2 z1 0 0 0

γ − 1
γ

z5
γ + 1
γ

z2 −γ − 1
γ

z3 −γ − 1
γ

z4
γ − 1
γ

z1

0 z3 z2 0 0

0 z4 0 z2 0

0 z5 0 0 z2


, (3.6.94)

Bz = ∂G
∂Z =



z3 0 z1 0 0

0 z3 z2 0 0

γ − 1
γ

z5 −γ − 1
γ

z2
γ + 1
γ

z3 −γ − 1
γ

z4
γ − 1
γ

z1

0 0 z4 z3 0

0 0 z5 0 z3


, (3.6.95)

Cz = ∂H
∂Z =



z4 0 0 z1 0

0 z4 0 z2 0

0 0 z4 z3 0

γ − 1
γ

z5 −γ − 1
γ

z2 −γ − 1
γ

z3
γ + 1
γ

z4
γ − 1
γ

z1

0 0 0 z5 z4


. (3.6.96)

Again, the Jacobian matrices are linear in the parameter vector variables, and this can be useful to linearize the Euler
equations over a computational cell [31]. Of course, I like to perform change of variables:

dZ = ∂Z
∂UdU, dU = ∂U

∂Z dZ, (3.6.97)

where

∂U
∂Z =



2z1 0 0 0 0

z2 z1 0 0 0

z3 0 z1 0 0

z4 0 0 z1 0

z5

γ

γ − 1
γ

z2
γ − 1
γ

z3
γ − 1
γ

z4
z1

γ


, (3.6.98)

∂Z
∂U = 1

z1



1
2

0 0 0 0

−1
2
z2

z1
1 0 0 0

−1
2
z3

z1
0 1 0 0

−1
2
z4

z1
0 0 1 0

γ − 1
2

z2
2 + z2

3 + z2
4

z2
1

− 1
2
z5

z1
− (γ − 1)z2

z1
− (γ − 1)z3

z1
− (γ − 1)z4

z1
γ


(3.6.99)
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= 1
√
ρ



1
2

0 0 0 0

−u

2
1 0 0 0

−v

2
0 1 0 0

−w

2
0 0 1 0

(γ − 1)q2

2
− H

2
−(γ − 1)u −(γ − 1)v −(γ − 1)w γ


, (3.6.100)

from which we find

Z = 2 ∂Z
∂UU, U = 1

2
∂U
∂Z Z. (3.6.101)

As in the two-dimensional case, I find it very interesting. Of course, since we have

F = AU, G = BU, H = CU, (3.6.102)

for the Euler equations even in three dimensions (see Section 3.10), we find from Equation (3.6.101) as in two dimensions
that

F = AU = 1
2
∂F
∂U

∂U
∂Z Z = 1

2
AzZ, (3.6.103)

G = BU = 1
2
∂G
∂U

∂U
∂Z Z = 1

2
BzZ, (3.6.104)

H = CU = 1
2
∂H
∂U

∂U
∂Z Z = 1

2
CzZ. (3.6.105)

Yes, we can directly compute the fluxes by the parameter vector variables without converting them into the primitive
variables. I really like the fact that the physical fluxes are quadratic in Z as seen in the above equations.

3.6.5 Derivatives of Eigenvalues

Sometimes, it is necessary to differentiate a numerical flux function, for example, for constructing implicit schemes.
Then, we would need to differentiate various quantities, e.g., the eigenvalues with respect to the conservative variables.
I have done it before, and I like it. Suppose we wish to compute ∂qn/∂U. It can be computed as follows.

∂qn
∂U = ∂qn

∂W
∂W
∂U

= [0, nx, ny, nz, 0]



1 0 0 0 0

−u

ρ

1
ρ

0 0 0

−v

ρ
0 1

ρ
0 0

−w

ρ
0 0 1

ρ
0

γ − 1
2

q2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1



=
[
−qn
ρ
,
nx
ρ
,
ny
ρ
,
nz
ρ
, 0
]
, (3.6.106)
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which is the derivative of the eigenvalue, qn. How about the speed of sound? In the same way, we obtain

∂c

∂U = ∂c

∂W
∂W
∂U

=
[
− c

2ρ
, 0, 0, 0, γ

2ρc

]



1 0 0 0 0

−u

ρ

1
ρ

0 0 0

−v

ρ
0 1

ρ
0 0

−w

ρ
0 0 1

ρ
0

γ − 1
2

q2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1



=
[
− c

2ρ

(
1 − γ(γ − 1)

2
q2

c2

)
,

−γ(γ − 1)u
2ρc

,
−γ(γ − 1)v

2ρc
,

−γ(γ − 1)w
2ρc

,
γ(γ − 1)

2ρc

]
. (3.6.107)

So, it is now easy to get the derivatives of the remaining eigenvalues, qn − c and qn + c.

∂(qn − c)
∂U = ∂qn

∂U − ∂c

∂U =



−qn
ρ

+ c

2ρ

(
1 − γ(γ − 1)

2
q2

c2

)
nx
ρ

+ γ(γ − 1)u
2ρc

ny
ρ

+ γ(γ − 1)v
2ρc

nz
ρ

+ γ(γ − 1)w
2ρc

−γ(γ − 1)
2ρc



t

, (3.6.108)

∂(qn + c)
∂U = ∂qn

∂U + ∂c

∂U =



−qn
ρ

− c

2ρ

(
1 − γ(γ − 1)

2
q2

c2

)
nx
ρ

− γ(γ − 1)u
2ρc

ny
ρ

− γ(γ − 1)v
2ρc

nz
ρ

− γ(γ − 1)w
2ρc

γ(γ − 1)
2ρc



t

. (3.6.109)
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Some numerical flux functions involve the maximum eigenvalue, |qn| + c. Its derivative can be obtained in the same
way. First compute

∂|qn|
∂U = ∂|qn|

∂W
∂W
∂U

= [0, sign(qn)nx, sign(qn)ny, sign(qn)nz, 0]



1 0 0 0 0

−u

ρ

1
ρ

0 0 0

−v

ρ
0 1

ρ
0 0

−w

ρ
0 0 1

ρ
0

γ − 1
2

q2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1



=
[
−|qn|

ρ
,

sign(qn)nx
ρ

,
sign(qn)ny

ρ
,

sign(qn)nz
ρ

, 0
]
, (3.6.110)

and then we obtain

∂(|qn| + c)
∂U =



−|qn|
ρ

− c

2ρ

(
1 − γ(γ − 1)

2
q2

c2

)
sign(qn)nx

ρ
− γ(γ − 1)u

2ρc

sign(qn)ny
ρ

− γ(γ − 1)v
2ρc

sign(qn)nz
ρ

− γ(γ − 1)w
2ρc

γ(γ − 1)
2ρc



t

. (3.6.111)

If we wish to differentiate Roe’s approximate Riemann solver [128], which is a very popular numerical flux function
for the Euler equations, we need to differentiate the eigenvalues evaluated at the Roe-averaged quantities:

ρ̂ = √
ρLρR, (3.6.112)

û =
√
ρLuL + √

ρRuR√
ρL + √

ρR
, (3.6.113)

v̂ =
√
ρLvL + √

ρRvR√
ρL + √

ρR
, (3.6.114)

ŵ =
√
ρLwL + √

ρRwR√
ρL + √

ρR
, (3.6.115)
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Ĥ =
√
ρLHL + √

ρRHR√
ρL + √

ρR
, (3.6.116)

ĉ =

√
(γ − 1)

(
Ĥ − q̂2

2

)
, (3.6.117)

q̂2 = û2 + v̂2 + ŵ2, (3.6.118)

where the subscripts L and R indicate the two states that are averaged. See Ref.[128] for details and Ref.[109] for the
Roe-averaged density, ρ̂. Here, I’m interested to compute the derivatives of the eigenvalues, q̂n, q̂n + ĉ, and q̂n − ĉ,
where q̂n = ûnx + v̂ny + ŵnz. We can compute the derivative of q̂n as follows.

∂q̂n
∂U = ∂q̂n

∂ŴH

∂ŴH

∂WH

∂WH

∂W
∂W
∂U , (3.6.119)

where

ŴH =
[
ρ̂, û, v̂, ŵ, Ĥ

]t
, WH = [ρ, u, v, w,H]t . (3.6.120)

Note that we are interested in ∂q̂n/∂UL and ∂q̂n/∂UR, but the subscripts L and R have been dropped because the
above expression is valid for both L and R. From now on, the quantities with no subscripts are understood as either
the state L or the state R. The first derivative on the right hand side, i.e., ∂q̂n/∂ŴH , is given by

∂q̂n

∂ŴH
= [0, nx, ny, nz, 0] . (3.6.121)

The transformation matrix ∂ŴH/∂WH is given by

∂ŴH

∂WH
=



ρ̂

2ρ
0 0 0 0

u− û

2(ρ+ ρ̂)
ρ

ρ+ ρ̂
0 0 0

v − v̂

2(ρ+ ρ̂)
0 ρ

ρ+ ρ̂
0 0

w − ŵ

2(ρ+ ρ̂)
0 0 ρ

ρ+ ρ̂
0

H − Ĥ

2(ρ+ ρ̂)
0 0 0 ρ

ρ+ ρ̂



. (3.6.122)

I like this matrix very much because it has been arranged such that it can be used to compute both ∂ŴH/∂WH
L and

∂ŴH/∂WH
R . That is,

∂ŴH

∂WH
L

=



ρ̂

2ρL
0 0 0 0

uL − û

2(ρL + ρ̂)
ρL

ρL + ρ̂
0 0 0

vL − v̂

2(ρL + ρ̂)
0 ρL

ρL + ρ̂
0 0

wL − ŵ

2(ρL + ρ̂)
0 0 ρL

ρL + ρ̂
0

HL − Ĥ

2(ρL + ρ̂)
0 0 0 ρL

ρL + ρ̂



, (3.6.123)
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and

∂ŴH

∂WH
R

=



ρ̂

2ρR
0 0 0 0

uR − û

2(ρR + ρ̂)
ρR

ρR + ρ̂
0 0 0

vR − v̂

2(ρR + ρ̂)
0 ρR

ρR + ρ̂
0 0

wR − ŵ

2(ρR + ρ̂)
0 0 ρR

ρR + ρ̂
0

HR − Ĥ

2(ρR + ρ̂)
0 0 0 ρR

ρR + ρ̂



. (3.6.124)

It is nice. I like it. So, I continue to drop the subscripts below. Next, the matrix ∂WH/∂W is given by

∂WH

∂W =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− a2

ρ(γ − 1)
u v w

γ

ρ(γ − 1)


, (3.6.125)

which also can be used to compute both ∂ŴH
L /∂WH

L and ∂ŴH
R /∂WH

R . We are now ready to compute the derivative.
First compute

∂ŴH

∂W = ∂ŴH

∂WH

∂WH

∂W

=



ρ̂

2ρ
0 0 0 0

u− û

2(ρ+ ρ̂)
ρ

ρ+ ρ̂
0 0 0

v − v̂

2(ρ+ ρ̂)
0 ρ

ρ+ ρ̂
0 0

w − ŵ

2(ρ+ ρ̂)
0 0 ρ

ρ+ ρ̂
0

H − Ĥ

2(ρ+ ρ̂)
0 0 0 ρ

ρ+ ρ̂





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− a2

ρ(γ − 1)
u v w

γ

ρ(γ − 1)



=



ρ̂

2ρ
0 0 0 0

u− û

2(ρ+ ρ̂)
ρ

ρ+ ρ̂
0 0 0

v − v̂

2(ρ+ ρ̂)
0 ρ

ρ+ ρ̂
0 0

w − ŵ

2(ρ+ ρ̂)
0 0 ρ

ρ+ ρ̂
0

H − Ĥ

2(ρ+ ρ̂)
− a2

(γ − 1)(ρ+ ρ̂)
ρu

ρ+ ρ̂

ρv

ρ+ ρ̂

ρw

ρ+ ρ̂

γ

(γ − 1)(ρ+ ρ̂)



, (3.6.126)
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and then

∂ŴH

∂U = ∂ŴH

∂W
∂W
∂U

= 1
ρ+ ρ̂



ρ̂(ρ+ ρ̂)
2ρ

0 0 0 0

u− û

2
ρ 0 0 0

v − v̂

2
0 ρ 0 0

w − ŵ

2
0 0 ρ 0

H − Ĥ

2
− a2

γ − 1
ρu ρv ρw

γ

γ − 1





1 0 0 0 0

−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

(γ − 1)q2

2
(1 − γ)u (1 − γ)v (1 − γ)w γ − 1



= 1
ρ+ ρ̂



ρ̂(ρ+ ρ̂)
2ρ

0 0 0 0

−u+ û

2
1 0 0 0

−v + v̂

2
0 1 0 0

−w + ŵ

2
0 0 1 0

H − Ĥ

2
− a2

γ − 1
+ (γ − 2)q2

2
(1 − γ)u (1 − γ)v (1 − γ)w γ



, (3.6.127)

and we finally obtain

∂q̂n
∂U = ∂q̂n

∂ŴH

∂ŴH

∂WH

∂WH

∂W
∂W
∂U

= ∂q̂n

∂ŴH

∂ŴH

∂W
∂W
∂U

= ∂q̂n

∂ŴH

∂ŴH

∂U

= 1
ρ+ ρ̂

[0, nx, ny, nz, 0]



ρ̂(ρ+ ρ̂)
2ρ

0 0 0 0

−u+ û

2
1 0 0 0

−v + v̂

2
0 1 0 0

−w + ŵ

2
0 0 1 0

H − Ĥ

2
− a2

γ − 1
+ (γ − 2)q2

2
(1 − γ)u (1 − γ)v (1 − γ)w γ


= 1

ρ+ ρ̂

[
−qn + q̂n

2
nx, ny, nz, 0

]
. (3.6.128)

In the same way, we can derive also

∂|q̂n|
∂U = 1

ρ+ ρ̂

[
− sign(q̂n)(qn + q̂n)

2
, sign(q̂n)nx, sign(q̂n)ny, sign(q̂n)nz, 0

]
. (3.6.129)
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Of course, the derivative of the speed of sound can be obtained in the same way. First compute,
∂ĉ

∂ŴH
=
[
0,− (γ − 1)û

2ĉ
,− (γ − 1)v̂

2ĉ
,− (γ − 1)ŵ

2ĉ
,
γ − 1

2ĉ

]
, (3.6.130)

and then

∂ĉ

∂U = ∂ĉ

∂ŴH

∂ŴH

∂U = 1
ρ+ ρ̂



γ − 1
2ĉ

(
v̂2 + v̂ · v

2
+ H − Ĥ

2
− c2

γ − 1
+ (γ − 2)q2

2

)

− (γ − 1)(û+ (γ − 1)u)
2ĉ

− (γ − 1)(v̂ + (γ − 1)v)
2ĉ

− (γ − 1)(ŵ + (γ − 1)w)
2ĉ

γ(γ − 1)
2ĉ



t

, (3.6.131)

where v̂ = [û, v̂, ŵ]t and v = [u, v, w]t. Now we can easily compute the following derivatives.

∂(q̂n − ĉ)
∂U = 1

ρ+ ρ̂



−qn + q̂n
2

− γ − 1
2ĉ

(
v̂2 + v̂ · v

2
+ H − Ĥ

2
− c2

γ − 1
+ (γ − 2)q2

2

)

nx + (γ − 1)(û+ (γ − 1)u)
2ĉ

ny + (γ − 1)(v̂ + (γ − 1)v)
2ĉ

nz + (γ − 1)(ŵ + (γ − 1)w)
2ĉ

−γ(γ − 1)
2ĉ



t

, (3.6.132)

∂(q̂n + ĉ)
∂U = 1

ρ+ ρ̂



−qn + q̂n
2

+ γ − 1
2ĉ

(
v̂2 + v̂ · v

2
+ H − Ĥ

2
− c2

γ − 1
+ (γ − 2)q2

2

)

nx − (γ − 1)(û+ (γ − 1)u)
2ĉ

ny − (γ − 1)(v̂ + (γ − 1)v)
2ĉ

nz − (γ − 1)(ŵ + (γ − 1)w)
2ĉ

γ(γ − 1)
2ĉ



t

, (3.6.133)

∂(|q̂n| + ĉ)
∂U = 1

ρ+ ρ̂



− sign(q̂n)(qn + q̂n)
2

+ γ − 1
2ĉ

(
v̂2 + v̂ · v

2
+ H − Ĥ

2
− c2

γ − 1
+ (γ − 2)q2

2

)

sign(q̂n)nx − (γ − 1)(û+ (γ − 1)u)
2ĉ

sign(q̂n)ny − (γ − 1)(v̂ + (γ − 1)v)
2ĉ

sign(q̂n)nz − (γ − 1)(ŵ + (γ − 1)w)
2ĉ

γ(γ − 1)
2ĉ



t

. (3.6.134)
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Other derivatives can be obtained in the same way. It is so easy because we have ∂ŴH/∂U. That is, we first
differentiate any Roe-averaged quantity with respect to ŴH and then multiply it by the matrix ∂ŴH/∂U from the
right. I like it. I hope you like it, too. Note that we have already obtained the following derivatives from the matrix
(3.6.127):

∂ρ̂

∂U
∂û

∂U
∂v̂

∂U
∂ŵ

∂U

∂Ĥ

∂U



= 1
ρ+ ρ̂



ρ̂(ρ+ ρ̂)
2ρ

0 0 0 0

−u+ û

2
1 0 0 0

−v + v̂

2
0 1 0 0

−w + ŵ

2
0 0 1 0

H − Ĥ

2
− a2

γ − 1
+ (γ − 2)q2

2
(1 − γ)u (1 − γ)v (1 − γ)w γ



. (3.6.135)

It is, of course, possible to make use of these derivatives for differentiating Roe-averaged quantities. For example, we
can express ∂ĉ/∂U as a combination of ∂û/∂U, ∂v̂/∂U, ∂ŵ/∂U, and ∂Ĥ/∂U, and then evaluate each term by the
corresponding row vector in the above matrix. Finally, I say again that all the expressions above are valid for both L
and R.

∂ρ̂

∂UL

∂û

∂UL

∂v̂

∂UL

∂ŵ

∂UL

∂Ĥ

∂UL



= 1
ρL + ρ̂



ρ̂(ρL + ρ̂)
2ρL

0 0 0 0

−uL + û

2
1 0 0 0

−vL + v̂

2
0 1 0 0

−wL + ŵ

2
0 0 1 0

HL − Ĥ

2
− a2

L

γ − 1
+ (γ − 2)q2

L

2
(1 − γ)uL (1 − γ)vL (1 − γ)wL γ



, (3.6.136)



∂ρ̂

∂UR

∂û

∂UR

∂v̂

∂UR

∂ŵ

∂UR

∂Ĥ

∂UR



= 1
ρR + ρ̂



ρ̂(ρR + ρ̂)
2ρR

0 0 0 0

−uR + û

2
1 0 0 0

−vR + v̂

2
0 1 0 0

−wR + ŵ

2
0 0 1 0

HR − Ĥ

2
− a2

R

γ − 1
+ (γ − 2)q2

R

2
(1 − γ)uR (1 − γ)vR (1 − γ)wR γ



. (3.6.137)

To illustrate how these formulas are used in an implicit solver, I wrote a 2D implicit Euler solver and have made it
available at http://www.cfdbooks.com. I hope you like it.

3.7 Axisymmetric Euler Equations

I like the axisymmetric Euler equations very much. These equations formally two-dimensional equations but de-
scribe three-dimensional flows. That is very efficient. In fact, the axisymmetric Euler equations have been often
employed in CFD, e.g., Refs.[145, 173, 179].

http://www.cfdbooks.com
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Consider cylindrical coordinates in Figure 1.5.1, where the velocity is denoted by v = [ur, uθ, uz]t. An axisymmetric
flow is defined as a flow with no variation in θ with the z-axis as the axis of symmetry. Hence, uθ = 0, and one of the
momentum equations drops out. The Euler equations are then given by

∂

∂t



ρ

ρuz

ρur

ρE


+



1
r

∂(rρur)
∂r

+ ∂ρuz
∂z

1
r

∂(rρuzur)
∂r

+ ∂(ρu2
z)

∂z
+ ∂p

∂z

1
r

∂(rρu2
r)

∂r
+ ∂(ρuruz)

∂z
+ ∂p

∂r

1
r

∂(rρurH)
∂r

+ ∂ρuzH

∂z


= 0. (3.7.1)

Note that the continuity equation comes from Equation (3.3.1) with Equation (1.5.23), the momentum equations from
Equations (3.3.2) with Equation (1.5.45), and the energy equation from Equation (3.3.3) with Equation (1.5.23). The
system can be written in the conservative form (multiply the both sides by r):

∂

∂t



rρ

rρuz

rρur

rρE


+



∂(rρur)
∂r

+ ∂(rρuz)
∂z

∂(rρuzur)
∂r

+ ∂(rρu2
z)

∂z
+ ∂(rp)

∂z

∂(rρu2
r)

∂r
+ ∂(rρuruz)

∂z
+ ∂(rp)

∂r

∂(rρurH)
∂r

+ ∂(rρuzH)
∂z


=



0

0

p

0


. (3.7.2)

The system is very similar to the two-dimensional Euler system. To see this more clearly, let us replace (z, r) by (x, y)
and (uz, ur) by (u, v) to get

∂

∂t



yρ

yρu

yρv

yρE


+



∂(yρu)
∂x

+ ∂(yρv)
∂y

∂(yρu2)
∂x

+ ∂(yρuv)
∂y

+ ∂(yp)
∂x

∂(yρuv)
∂x

+ ∂(yρv2)
∂y

+ ∂(yp)
∂y

∂(yρuH)
∂x

+ ∂(yρvH)
∂y


=



0

0

p

0


. (3.7.3)

In the vector form, it can be written as

(yU)t + (yF)x + (yG)y = S, (3.7.4)

where

U =


ρ
ρu
ρv
ρE

 , F =


ρu

ρu2 + p
ρuv
ρuH

 , G =


ρv
ρuv

ρv2 + p
ρvH

 , S =


0
0
p
0

 . (3.7.5)

It is clear now that the system differs from the two-dimensional Euler system only by the factor y multiplied by the
conservative variables and the flux vectors, and the pressure source term. In Ref.[173], the axisymmetric form and the
two-dimensional form are expressed in a single form with a logical switch, ω = 0 for the two-dimensional form and
ω = 1 for the axisymmetric form:

(ωaU)t + (ωaF)x + (ωaG)y = ω S, (3.7.6)

where

ωa = (1 − ω) + ω y. (3.7.7)

This is nice. If you have a two-dimensional Euler code, you almost have an axisymmetric Euler code, which is exciting
because the axisymmetric code is essentially a three-dimensional CFD code. I like it very much.
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3.8 Rotational Invariance

The Euler equations have the rotational invariance property (see Section 1.20)

Fn = nxF + nyG + nzH = T−1F(TU), (3.8.1)

where

T =


1 0 0 0 0
0 nx ny nz 0
0 ℓx ℓy ℓz 0
0 mx my mz 0
0 0 0 0 1

 , (3.8.2)

T−1 = Tt =


1 0 0 0 0
0 nx ℓx mx 0
0 ny ℓy my 0
0 nz ℓz mz 0
0 0 0 0 1

 , (3.8.3)

and n, ℓ, m are three orthogonal unit vectors (see Section 1.3). So, we can do the following. First compute TU,

TU =


ρ
ρqn
ρqℓ
ρqm
ρE

 , (3.8.4)

and evaluate F(TU),

F(TU) =


ρqn

ρq2
n + p
ρqnqℓ
ρqnqm
ρqnH

 , (3.8.5)

and then rotate it back to obtain a flux vector projected in an arbitrary direction n,

Fn = T−1F(TU) =


ρqn

ρqnu+ pnx
ρqnv + pny
ρqnw + pnz

ρqnH

 , (3.8.6)

where the relation (1.3.21) has been used to get u, v, and w.
So, basically, we need only F and don’t really need G and H. In fact, some people take advantage of this property

when they write a finite-volume code: set up one subroutine to evaluate the finite-volume interface flux based on F
only, and then perform the rotation as described above to get a numerical flux in arbitrary directions. I like this way
of computing a numerical flux, but I also like to use the form (3.8.6) directly to implement a numerical flux since it
seems more intuitive.

3.9 Convenient Ordering

I like to order the components as follows:

U =


ρ
ρE
ρu
ρv
ρw

 , F =


ρu
ρuH
ρu2 + p
ρuv
ρuw

 , G =


ρv
ρvH
ρvu

ρv2 + p
ρvw

 , H =


ρw
ρwH
ρwu
ρwv

ρw2 + p

 . (3.9.1)
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Then, simply by ignoring the fifth row and H, we obtain the two-dimensional Euler equations, and by ignoring further
the fourth row and G, we obtain the one-dimensional Euler equations. The same is true for the flux, Jacobians, and
eigenvectors:

Normal Flux

Fn = Fnx + Gny + Hnz =


ρqn
ρqnH

ρqnu+ pnx
ρqnv + pny
ρqnw + pnz

 . (3.9.2)

Jacobians

An =


0 0 nt(

γ−1
2 q2 −H

)
qn γqn Hnt − (γ − 1)vtqn

(γ − 1) q
2

2 n − vqn (γ − 1)n v⊗n − (γ − 1)n⊗v + qnI

 . (3.9.3)

Note that by taking n = [1, 0, 0]t, [0, 1, 0]t, or [0, 0, 1]t, we obtain A , B , or C.

Right-Eigenvector Matrix

Rn =


1 1 1 0 0

H − qnc q2/2 H + qnc qℓ qm
u− c nx u u+ c nx ℓx mx

v − c ny v v + c ny ℓy my

w − c nz w w + c nz ℓz mz

 . (3.9.4)

This is convenient in the case that we want to perform one- or two-dimensional calculations with a 3D code (simply
limit the size of arrays). I like this technique. It’s really simple and useful. The CFD code called EulFS [15] actually
takes advantage of this ordering. Of course, alternatively, if we have a 3D code, we can perform one-dimensional
calculations by using a string of 3D cells aligned in x-axis. You can also do two-dimensional calculations by using a
two-dimensional grid with a unit width added in the third direction (this creates a 3D grid of prismatic cells). But I
think that the ordering technique is still useful for other purposes also. For example, it can be used also for extended
systems such as magnetohydrodynamic equations: add magnetic field components to the end of the hydrodynamic
state vector so that one can run purely hydrodynamic cases with an MHD code simply by limiting the size of the
solution array.

3.10 Homogeneity Property of the Euler Fluxes

If we assume that p/ρ is a function of e only (i.e., if p = ρf(e)), then the Euler fluxes are homogeneous of de-
gree 1 in terms of the conservative variables. That is, for any scalar λ, we have

F(λU) = λF(U), G(λU) = λG(U), H(λU) = λH(U). (3.10.1)

Differentiating both sides with respect to λ, and then setting λ = 1, we obtain

∂F
∂UU = AU = F, ∂G

∂UU = BU = G,
∂H
∂UU = CU = H. (3.10.2)

Therefore, the conservative form,

Ut + Fx + Gy + Hz = 0, (3.10.3)

can be written not only as

Ut + AUx + BUy + CUz = 0, (3.10.4)
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but also as

Ut + (AU)x + (BU)y + (CU)z = 0. (3.10.5)

I like this because the Jacobian matrices look like as if they are constant even though they are actually not. In fact,
this can be useful. The Steger-Warming flux vector splitting [149] takes advantage of this property.

Also, note that we have

dF = d(AU) = AdU + dA U, (3.10.6)
dF = AdU, (3.10.7)

from which we find

dA U = 0. (3.10.8)

I think that I like it. I’m not sure, but it must be useful.

3.11 Nondimensionalization

3.11.1 Nondimensionalized Euler Equations
Nondimensionalized quantities are nice. No matter how large the actual free stream speed is (which depends on units
also), we can set it equal to 1 by scaling the velocity by the free stream speed. So, a CFD code does not have to deal
with too large (or too small) numbers. To be even nicer, the Euler equations stay in exactly the same form for various
nondimensionalizations. Consider the following nondimensionalization:

ρ∗ = ρ

ρr
, p∗ = p

pr
, v∗ = v

Vr
, x∗ = x

L
, t∗ = t

tr
, (3.11.1)

where L is a reference length, the variables with ∗ are the nondimensional variables, and those with the subscript r are
some reference values. Substituting these into the continuity equation (3.3.1), we obtain

∂ρ∗

∂t∗
+ trVr

L
div∗(ρ∗v∗) = 0, (3.11.2)

where div∗ is the divergence operator based on the nondimensionalized coordinates. So, by setting

tr = L

Vr
, (3.11.3)

we find that the nondimensional variables satisfy exactly the same continuity equation as that for the dimensional
variables:

∂ρ∗

∂t∗
+ div∗(ρ∗v∗) = 0. (3.11.4)

For the momentum equations (3.3.2), we find

∂ (ρ∗v∗)
∂t∗

+ div∗(ρ∗v∗⊗v∗) + pr
ρrV 2

r

grad∗ p∗ = 0, (3.11.5)

which suggests that we set

pr = ρrV
2
r , (3.11.6)

and therefore the momentum equations are also identical to those for dimensional variables:

∂ (ρ∗v∗)
∂t∗

+ div∗(ρ∗v∗⊗v∗) + grad∗ p∗ = 0. (3.11.7)
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For the energy equation (3.3.3), we first nondimensionalize the internal energy by V 2
r :

e∗ = e

V 2
r

, (3.11.8)

so that we have

E∗ = E

V 2
r

= e∗ + v∗2

2
, (3.11.9)

and also

H∗ = H

V 2
r

= e∗ + v∗2

2
+ p∗

ρ∗ . (3.11.10)

Hence, the total specific energy and enthalpy can be calculated in the same forms for the nondimensional variables.
Furthermore, it follows that the equation of state for a calorically perfect gas (3.1.21) also holds for the nondimensional
variables:

p∗ = (γ − 1)ρ∗e∗. (3.11.11)

Finally, with the above nondimensionalization, the energy equation (3.3.3) becomes
∂ (ρ∗E∗)
∂t∗

+ div∗(ρ∗v∗H∗) = 0, (3.11.12)

which is again the same form as that for the dimensional variables. So, all equations are invariant for the nondimen-
sionalization. This is very nice. So, I’m happy to summarize the result below.

Euler Equations for Nondimensionalized Variables

∂ρ∗

∂t∗
+ div∗(ρ∗v∗) = 0, (3.11.13)

∂ (ρ∗v∗)
∂t∗

+ div∗(ρ∗v∗⊗v∗) + grad∗ p∗ = 0, (3.11.14)

∂ (ρ∗E∗)
∂t∗

+ div∗(ρ∗v∗H∗) = 0, (3.11.15)

where E∗ = e∗ + v∗2

2 , H∗ = E∗ + p∗

ρ∗ , and

ρ∗ = ρ

ρr
, p∗ = p

ρrV 2
r

, e∗ = e

V 2
r

, v∗ = v
Vr
, x∗ = x

L
, t∗ = t

L/Vr
. (3.11.16)

The reference length can be taken as anything you like. For example, if the diameter of a cylinder is chosen as the
reference length, you generate a computational grid around the cylinder with the diameter 1. If you are given a grid,
whatever having the length 1 can be thought of as the part chosen as the reference length. Then, it is now a matter
of what values to choose for the reference density and velocity. There can be various choices. I especially like those I
describe below.

3.11.2 Free Stream Values
We may use the free stream values (indicated by the subscript ∞) as reference, i.e., set ρr = ρ∞ and Vr = V∞, which
give the following nondimensionalization:

ρ∗ = ρ

ρ∞
, p∗ = p

ρ∞V 2
∞
, e∗ = e

V 2
∞
, v∗ = v

V∞
, x∗ = x

L
, t∗ = t

L/V∞
. (3.11.17)

Then, we can set the free stream values as follows:

ρ∗
∞ = 1, p∗

∞ = 1
γM2

∞
, e∗ = p∗

∞
ρ∗

∞(γ − 1)
= 1
γ(γ − 1)M2

∞
, v∗

∞ = v∞

V∞
= n∞, (3.11.18)

where n∞ is a unit vector in the direction of the free stream. This means that the free stream speed is 1 and only
the direction, i.e., n∞, needs to be specified at a free stream inflow. Yes, also the free stream Mach number M∞
needs to be given, in order to set the free stream pressure. Note that the pressure is inversely proportional to M2

∞ and
therefore it will become extremely large for flows with a very small Mach number. In fact, this is not a popular choice
for compressible flow simulations (popular for incompressible flow simulations, though).
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3.11.3 Speed of Sound
We may use the free stream speed of sound a∞ in place of the free stream velocity V∞. This set of quantities is widely
used in compressible flow simulations:

ρ∗ = ρ

ρ∞
, p∗ = p

ρ∞a2
∞
, e∗ = e

a2
∞
, v∗ = v

a∞
, x∗ = x

L
, t∗ = t

L/a∞
. (3.11.19)

Then, we can set the free stream values as follows:

ρ∗
∞ = 1, p∗

∞ = 1
γ
, e∗ = 1

γ(γ − 1)
, v∗

∞ = v∞

a∞
= M∞n∞. (3.11.20)

Again, we only need to specify the Mach number and its direction at the free stream inflow. I like this nondimension-
alization particularly because the velocity becomes equivalent to the Mach number at the free stream inflow and also
that the free stream pressure is constant (independent of M∞). This is a very popular choice for compressible flow
simulations.

3.11.4 Stagnation Values
We can also use the stagnation values:

ρ∗ = ρ

ρ0
=
[
1 + γ − 1

2
M2
]− 1

γ−1

, p∗ = p

ρ0a2
0

= p

γp0
= 1
γ

[
1 + γ − 1

2
M2
]− γ

γ−1

, (3.11.21)

(you can derive these relations from Bernoulli’s equation for compressible flows in Section 3.18), and

e∗ = e

a2
0
, v∗ = v

a0
= v
a

a

a0
= v
a

√
γ
p∗

ρ∗ = v
a
a∗, x∗ = x

L
, t∗ = t

L/a0
. (3.11.22)

Then, we can set the free stream values as follows:

ρ∗
∞ =

[
1 + γ − 1

2
M2

∞

]− 1
γ−1

, p∗
∞ = 1

γ

[
1 + γ − 1

2
M2

∞

]− γ
γ−1

, (3.11.23)

e∗ = p∗
∞

ρ∗
∞(γ − 1)

, v∗
∞ = v∞

a∞
a∗

∞ = M∞n∞

√
γ
p∗

∞
ρ∗

∞
. (3.11.24)

Again, only the Mach number and the free stream direction need to be specified at the free stream inflow. This will
be convenient when you want to compare a computed pressure at a stagnation point with a known value. See Section
7.13.7 for example.

3.12 Change of Variables

I like converting variables, from conservative to primitive, for example. In particular, I like those I describe in this
section since these are valid for any set of nondimensionalized variables discussed in Section 3.11.

3.12.1 One Dimension
Let U = [ρ, ρu, ρE]t = [u1, u2, u3]t, W = [ρ, u, p]t = [w1, w2, w3]t, and Z = √

ρ [1, u,H]t = [z1, z2, z3]t. Then we
have the following relations.

From conservative variables to others

ρ = u1, (3.12.1)
u = u2/u1, (3.12.2)

p = (γ − 1)
[
u3 − 1

2
u2

2
u1

]
, (3.12.3)
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z1 =
√
u1, (3.12.4)

z2 = u2/
√
u1, (3.12.5)

z3 =
√
u1

[
γ
u3

u1
− γ − 1

2

(
u2

u1

)2
]
, (3.12.6)

H = γ
u3

u1
− γ − 1

2

(
u2

u1

)2

. (3.12.7)

From primitive variables to others

ρ = w1, (3.12.8)
ρu = w1w2, (3.12.9)

ρE = w3

γ − 1
+ w1

2
w2

2, (3.12.10)

z1 =
√
w1, (3.12.11)

z2 =
√
w1w2, (3.12.12)

z3 = γ

γ − 1
w3√
w1

+
√
w1

2
w2

2, (3.12.13)

H = γ

γ − 1
w3

w1
+ 1

2
w2

2. (3.12.14)

From parameter vector variables to others

ρ = z2
1 , (3.12.15)

u = z2/z1, (3.12.16)

p = γ − 1
γ

(
z1z3 − z2

2
2

)
, (3.12.17)

ρu = z1z2, (3.12.18)

ρE = z1z3

γ
+ γ − 1

2γ
z2

2 , (3.12.19)

H = z3/z1. (3.12.20)

3.12.2 Two Dimensions

Let U = [ρ, ρu, ρv, ρE]t = [u1, u2, u3, u4]t, W = [ρ, u, v, p]t = [w1, w2, w3, w4]t, and Z = √
ρ [1, u, v,H]t =

[z1, z2, z3, z4]t. Then we have the following relations.

From conservative variables to others

ρ = u1, (3.12.21)
u = u2/u1, (3.12.22)
v = u3/u1, (3.12.23)

p = (γ − 1)
[
u4 − 1

2
u2

2 + u2
3

u1

]
, (3.12.24)
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z1 =
√
u1, (3.12.25)

z2 = u2/
√
u1, (3.12.26)

z3 = u3/
√
u1, (3.12.27)

z4 =
√
u1

[
γ
u4

u1
− γ − 1

2
u2

2 + u2
3

u2
1

]
, (3.12.28)

H = γ
u4

u1
− γ − 1

2
u2

2 + u2
3

u2
1

. (3.12.29)

From primitive variables to others

ρ = w1, (3.12.30)
ρu = w1w2, (3.12.31)
ρv = w1w3, (3.12.32)

ρE = w4

γ − 1
+ w1

2
(
w2

2 + w2
3
)
, (3.12.33)

z1 =
√
w1, (3.12.34)

z2 =
√
w1w2, (3.12.35)

z3 =
√
w1w3, (3.12.36)

z4 = γ

γ − 1
w4√
w1

+
√
w1

2
(
w2

2 + w2
3
)
, (3.12.37)

H = γ

γ − 1
w4

w1
+ 1

2
(w2

2 + w2
3). (3.12.38)

From parameter vector variables to others

ρ = z2
1 , (3.12.39)

u = z2/z1, (3.12.40)
v = z3/z1, (3.12.41)

p = γ − 1
γ

(
z1z4 − z2

2 + z2
3

2

)
, (3.12.42)

ρu = z1z2, (3.12.43)
ρv = z1z3, (3.12.44)

ρE = z1z4

γ
+ γ − 1

2γ
(
z2

2 + z2
3
)
, (3.12.45)

H = z4/z1. (3.12.46)

3.12.3 Three Dimensions
Let U = [ρ, ρu, ρv, ρw, ρE]t = [u1, u2, u3, u4, u5]t, W = [ρ, u, v, w, p]t = [w1, w2, w3, w4, w5]t, and Z = √

ρ [1, u, v, w,H]t =
[z1, z2, z3, z4, z5]t. Then we have the following relations.

From conservative variables to others

ρ = u1, (3.12.47)
u = u2/u1, (3.12.48)
v = u3/u1, (3.12.49)
w = u4/u1, (3.12.50)
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p = (γ − 1)
[
u5 − 1

2
u2

2 + u2
3 + u2

4
u1

]
, (3.12.51)

z1 =
√
u1, (3.12.52)

z2 = u2/
√
u1, (3.12.53)

z3 = u3/
√
u1, (3.12.54)

z4 = u4/
√
u1, (3.12.55)

z5 =
√
u1

[
γ
u5

u1
− γ − 1

2
u2

2 + u2
3 + u2

4
u2

1

]
, (3.12.56)

H = γ
u5

u1
− γ − 1

2
u2

2 + u2
3 + u2

4
u2

1
. (3.12.57)

From primitive variables to others

ρ = w1, (3.12.58)
ρu = w1w2, (3.12.59)
ρv = w1w3, (3.12.60)
ρw = w1w4, (3.12.61)

ρE = w5

γ − 1
+ w1

2
(
w2

2 + w2
3 + w2

4
)
, (3.12.62)

z1 =
√
w1, (3.12.63)

z2 =
√
w1w2, (3.12.64)

z3 =
√
w1w3, (3.12.65)

z4 =
√
w1w4, (3.12.66)

z5 = γ

γ − 1
w5√
w1

+
√
w1

2
(
w2

2 + w2
3 + w2

4
)
, (3.12.67)

H = γ

γ − 1
w5

w1
+ 1

2
(w2

2 + w2
3 + w2

4). (3.12.68)

From parameter vector variables to others

ρ = z2
1 , (3.12.69)

u = z2/z1, (3.12.70)
v = z3/z1, (3.12.71)
w = z4/z1, (3.12.72)

p = γ − 1
γ

(
z1z5 − z2

2 + z2
3 + z2

4
2

)
, (3.12.73)

ρu = z1z2, (3.12.74)
ρv = z1z3, (3.12.75)
ρw = z1z4, (3.12.76)

ρE = z1z5

γ
+ γ − 1

2γ
(
z2

2 + z2
3 + z2

4
)
, (3.12.77)

H = z5/z1. (3.12.78)
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3.13 Incompressible/Pseudo-Compressible Euler Equations

Incompressible fluids are defined as fluids with negligible density variation (e.g., water). This is equivalent to negligible
Mach number, and in fact, a flow with a Mach number below 0.3 may be considered as incompressible. If we simplify
the Euler equations by using the constant density assumption, ρ = constant, the results will be called the incompressible
Euler equations.

Conservative Form of the Incompressible Euler Equations:

div (ρv) = 0, (3.13.1)

∂t(ρv) + div(ρv⊗v) + grad p = 0. (3.13.2)

Primitive Form of the Incompressible Euler Equations:

div v = 0, (3.13.3)

ρ
Dv
Dt

+ grad p = 0. (3.13.4)

I like these incompressible Euler equations because they are closed without the energy equation (which may be solved
a posteriori) and also because there is no time derivative in the continuity equation even for unsteady flows (because
the density is constant). But in fact the latter can be a disadvantage: a simple time-marching method is not applicable
because the whole system cannot be written as a time-dependent system. Now, Chorin proposed a pseudo-compressible
method [21], in which a constant artificial speed of sound a∗ is introduced to define an artificial density variable ρ∗,

ρ∗ = p/a∗2, (3.13.5)

and a time derivative is brought back to the continuity equation in the form,

∂ρ∗

∂t∗
+ div (ρv) = 0, (3.13.6)

i.e.,
∂P

∂t∗
+ div (a∗2v) = 0, (3.13.7)

where t∗ is an artificial time and P = p/ρ which is called the kinematic pressure. This helps the incompressible Euler
equations recover the hyperbolic character, so that a time-marching method is now directly applicable. The resulting
equations are called the pseudo-compressible Euler equations. This is very interesting. I like it. Note however that
only when ρ∗ reaches a steady state in the artificial time, is the original continuity equation (div v = 0) satisfied. That
is, the solution will be accurate only at a steady state. The value of the artificial speed of sound a∗ depends on the
problem and it is usually assigned a value between 0.1 and 10.0. See Refs.[21, 75, 97, 131, 132] for details. Note that
some people formulate the pseudo-compressible equation with a slightly different notation for the artificial parameter,
e.g., with β = ρa∗2 [97, 131, 132]. I like both notations, but in this book I will use a∗ throughout.

The pseudo-compressible Euler equations:

∂P

∂t∗
+ div (a∗2v) = 0, (3.13.8)

∂v
∂t∗

+ div(v⊗v + P I) = 0. (3.13.9)

In Cartesian coordinates:

Ut∗ + Fx + Gy + Hz = 0, (3.13.10)

U =


P
u
v
w

 , F =


a∗2u
u2 + P
uv
uw

 , G =


a∗2v
vu

v2 + P
vw

 , H =


a∗2w
wu
wv

w2 + P

 . (3.13.11)
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The normal flux:

Fn = Fnx + Gny + Hnz =


a∗2qn

qnu+ Pnx
qnv + Pny
qnw + Pnz

 . (3.13.12)

The Jacobians:

A = ∂F
∂U =


0 a∗2 0 0
1 2u 0 0
0 v u 0
0 w 0 u

 , (3.13.13)

B = ∂G
∂U =


0 0 a∗2 0
0 v u 0
1 0 2v 0
0 0 w v

 , (3.13.14)

C = ∂H
∂U =


0 0 0 a∗2

0 w 0 u
0 0 w v
1 0 0 2w

 , (3.13.15)

An = Anx + Bny + Cnz =


0 a∗2nx a∗2ny a∗2nz
nx qn + unx uny unz
ny vnx qn + vny vnz
ny wnx wny qn + wnz

 . (3.13.16)

The eigenstructure of the Jacobian matrix An:

An = RnΛnLn, (3.13.17)

where

Λn =


qn − c 0 0 0

0 qn 0 0
0 0 qn 0
0 0 0 qn + c

 , (3.13.18)

c =
√
q2
n + a∗2, (3.13.19)

Rn =


(qn + c)c 0 0 −(qn − c)c

u− (qn + c)nx ℓx mx u− (qn − c)nx

v − (qn + c)ny ℓy my v − (qn − c)ny

w − (qn + c)nz ℓz mz w − (qn − c)nz

 , (3.13.20)

Ln =



1
2c2

(qn − c)nx
2c2

(qn − c)ny
2c2

(qn − c)nz
2c2

− qℓ
c2 ℓx − qnqℓ

c2 nx ℓy − qnqℓ
c2 ny ℓz − qnqℓ

c2 nz

−qm
c2 mx − qnqm

c2 nx my − qnqm
c2 ny mz − qnqm

c2 nz

1
2c2

(qn + c)nx
2c2

(qn + c)ny
2c2

(qn + c)nz
2c2


, (3.13.21)
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ℓ = [ℓx, ℓy, ℓz]t, m = [mx,my,mz]t, n are mutually orthogonal unit vectors, and

qℓ = uℓx + vℓy + wℓz, qm = umx + vmy + wmz. (3.13.22)

The characteristic variables (amplitudes of the waves) are given by

LndU =



dP + (qn − c)dqn
2c2

dqℓ − qℓ(dP + qndqn)
c2

dqm − qm(dP + qndqn)
c2

dP + (qn + c)dqn
2c2


. (3.13.23)

The product of the absolute normal Jacobian and the differential of the variables,

|An| dU ≡ Rn|Λn|LndU, (3.13.24)

which can be used to construct the upwind flux, is, of course, independent of the tangent vectors as it should:

|An| dU = Rn|Λn|LndU

=
4∑
k=1

|λk| rkℓtkdU

= |λ1| r1ℓt1dU + |λ4| r4ℓt4dU + |qn|



0

(ℓxdqℓ +mxdqm) − (qℓℓx + qmmx)(dP + qndqn)
c2

(ℓydqℓ +mydqm) − (qℓℓy + qmmy)(dP + qndqn)
c2

(ℓzdqℓ +mzdqm) − (qℓℓz + qmmz)(dP + qndqn)
c2



= |λ1| r1ℓt1dU + |λ4| r4ℓt4dU + |qn|



0

(du− dqnnx) − (u− qnnx)(dP + qndqn)
c2

(dv − dqnny) − (v − qnny)(dP + qndqn)
c2

(dw − dqnnz) − (w − qnnz)(dP + qndqn)
c2


, (3.13.25)

where the k-th column of Rn is denoted by rk, the k-th row of Ln is denoted by ℓtk, and the identities in Section 1.3
have been used in the last step.

Note that this system is in conservative form and it is equivalent to the primitive form only in the steady state since
the continuity equation will be satisfied only in the steady state. Note also that the time derivative in the momentum
equation is actually real but has been written as artificial in the above. This is because it is meaningless to be real if
the momentum equation is solved simultaneously with the pseudo-compressible continuity equation.

3.14 Homentropic/Isothermal Euler Equations

As we have seen in the previous sections, in all dimensions, the Euler equations involve a scalar advection equa-
tion for the entropy s:

st + usx + vsy + wsz = 0, (3.14.1)
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where (u, v, w) is a local flow velocity. This means that the entropy is constant along a streamline. But at the same
time, it means also that the entropy is not necessarily uniform for the entire flow field and can differ from one streamline
to another. Such a flow is called an isentropic flow. So, the Euler equations basically describe isentropic flows, with
a capability of accounting for non-isentropic features such as shocks by the Rankine-Hugoniot relation (the integral
form). A typical example of the isentropic flow is a flow behind a curved shock where the entropy is constant along
each streamline, but not uniform because its increase across the shock depends on the shock intensity which varies in
space. On the other hand, it would be very nice if the entropy were constant everywhere. It would be the case, for
example, when the entropy is initially constant everywhere and no shock waves are created anywhere. Such a flow is
called a homentropic flow (a special case of an isentropic flow). What is nice about a homentropic flow is that the
Euler equations close without the energy equation. For homentropic flows, the adiabatic relation,

p/ργ = K, (3.14.2)

is valid everywhere, i.e., K is a global constant (not only along a streamline), say K = p∞/ρ
γ
∞. Hence, it follows from

the equation of state,

ρE = p

γ − 1
+ 1

2
ρv2 = Kργ

γ − 1
+ 1

2
ρv2, (3.14.3)

that the total energy can be explicitly computed everywhere once the density and the velocity are determined by the
continuity and momentum equations, and therefore the energy equation is no longer required. This implies also that
more generally, if the pressure is a function of the density only, i.e., p = p(ρ) (such a flow or a process is called
barotropic [18]), the Euler equations will close without the energy equation. Then, the speed of sound c is given by

c =
√
p′(ρ), (3.14.4)

which becomes, in homentropic flows,

c =
√
γKργ−1. (3.14.5)

On the other hand, a flow with γ = 1 is called an isothermal flow. Here, by Equation (3.1.11), this is equivalent
to a gas with infinite degrees of freedom. Also, from Equations (3.1.9) and (3.1.10), we see that the specific heats
become infinite. This means that it is extremely difficult to change the temperature of the gas, thus leading to the term
‘isothermal’. I like isothermal flows because in this case also the Euler equations close without the energy equation. In
particular, the speed of sound is given by

c2 = RT = p/ρ, (3.14.6)

which is now a constant. Isothermal flows are mysterious because γ = 1 is artificial. There are no such gases in reality.
In either homentropic or isothermal flow, the Euler equations close without the energy equation, and the pressure

and the speed of sound are given by p = Kργ , c =
√
γKργ−1, for homentropic flows,

p = c2ρ, c =
√
RT = constant, for isothermal flows.

(3.14.7)

In what follows, I write the Euler equations without the energy equation. Note that p and c in these equations are
given by the above formulas, depending on the type of flows.

3.14.1 1D Homentropic/Isothermal Euler Equations

Ut + Fx = 0, (3.14.8)

where

U =
[

ρ
ρu

]
, F =

[
ρu

p+ ρu2

]
. (3.14.9)

Jacobian

A = ∂F
∂U =

[
0 1

c2 − u2 2u

]
. (3.14.10)
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Eigenstructure

A = RΛL, (3.14.11)

where

Λ =

[
u− c 0

0 u+ c

]
, (3.14.12)

R =

[ 1 1

u− c u+ c

]
, L =


u+ c

2c
− 1

2c

−u− c

2c
1
2c

 , LdU =


1
2
dρ− ρ

2c
du

1
2
dρ+ ρ

2c
du

 . (3.14.13)

Of course, this system is hyperbolic only if c is real, which is true if p′(ρ) > 0. Hence, it then follows from Equation
(3.14.7) that it is hyperbolic for both homentropic and isothermal flows.

3.14.2 2D Homentropic/Isothermal Euler Equations

Ut + Fx + Gy = 0, (3.14.14)

where

U =

 ρ
ρu
ρv

 , F =

 ρu
p+ ρu2

ρuv

 , G =

 ρv
ρuv

p+ ρv2

 . (3.14.15)

Jacobians

A = ∂F
∂U =

 0 1 0
c2 − u2 2u 0

−uv v u

 , B = ∂G
∂U =

 0 0 1
−uv v u
c2 − v2 0 2v

 , (3.14.16)

An = Anx + Bny =


0 nx ny

c2nx − uqn qn + unx uny

c2ny − vqn vnx qn + vny

 , (3.14.17)

where

qn = unx + vny. (3.14.18)

Eigenstructure

An = RnΛnLn, (3.14.19)

where

Λn =

 qn − c 0 0
0 qn 0
0 0 qn + c

 , (3.14.20)

Rn =


1 0 1

u− c nx −ny u+ c nx

v − c ny nx v + c ny

 , Ln =


c+ qn

2c
−nx

2c
−ny

2c
−qℓ −ny nx

c− qn
2c

nx
2c

ny
2c

 , (3.14.21)

and

qℓ = −uny + vnx. (3.14.22)
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3.14.3 3D Homentropic/Isothermal Euler Equations

Ut + Fx + Gy + Hz = 0, (3.14.23)

where

U =


ρ
ρu
ρv
ρw

 , F =


ρu

p+ ρu2

ρuv
ρuw

 , G =


ρv
ρvu

p+ ρv2

ρvw

 , H =


ρw
ρwu
ρwv

p+ ρw2

 . (3.14.24)

Jacobians

A = ∂F
∂U =


0 1 0 0

c2 − u2 2u 0 0
−uv v u 0
−uw w 0 u

 , (3.14.25)

B = ∂G
∂U =


0 0 1 0

−vu v u 0
c2 − v2 0 2v 0
−vw 0 w v

 , (3.14.26)

C = ∂H
∂U =


0 0 0 1

−wu w 0 u
−wv 0 w v
c2 − w2 0 0 2w

 , (3.14.27)

An = Anx + Bny + Cnz =


0 nx ny nz

c2nx − uqn unx + qn uny unz

c2ny − vqn vnx vny + qn vnz

c2nz − wqn wnx wny wnz + qn

 . (3.14.28)

Eigenstructure

An = RnΛnLn, (3.14.29)

where

Λn =


qn − c 0 0 0

0 qn 0 0
0 0 qn 0
0 0 0 qn + c

 , (3.14.30)

Rn =


1 0 0 1

u− c nx ℓx mx u+ c nx

v − c ny ℓy my v + c nx

w − c nz ℓz mz w + c ny

 , Ln =



c+ qn
2c

−nx
2c

−ny
2c

−nz
2c

−qℓ ℓx ℓy ℓz

−qm mx my mz

c− qn
2c

nx
2c

ny
2c

nz
2c


, (3.14.31)

ℓ = [ℓx, ℓy, ℓz]t, m = [mx,my,mz]t, n are mutually orthogonal unit vectors, and

qℓ = uℓx + vℓy + wℓz, qm = umx + vmy + wmz. (3.14.32)



3.15. LINEAR ACOUSTICS EQUATIONS (LINEARIZED EULER EQUATIONS) 113

3.15 Linear Acoustics Equations (Linearized Euler Equations)

Decompose variables as follows:

ρ = ρ0 + ρ′, (3.15.1)
p = p0 + p′, (3.15.2)

(u, v, w) = (u0, v0, w0) + (u′, v′, w′), (3.15.3)

where the variables with the subscript 0 are uniform stream values and those with a prime are small perturbations.
Substitute these into the Euler equations, and make approximations (ignoring products of perturbations), then we
obtain the so-called linear acoustics equations.

Flows with small perturbations can be considered as homentropic (because shock waves will not appear). Then,
the equation of state can be written as

p = P (ρ), (3.15.4)

e.g., p = Kργ , from which we get

p′ =
(
dP

dρ

)∣∣∣∣
ρ=ρ0

ρ′ = c2
0ρ

′, (3.15.5)

where c0 is the speed of sound which is a constant. This will close the linear acoustics equations. Note that

c0 =

√(
dP

dρ

)∣∣∣∣
ρ=ρ0

, (3.15.6)

and therefore dP
dρ must be positive. Don’t worry. It is positive in homentropic flows:

c0 =
√
γKργ−1

0 =

√
γ

(
p0

ργ0

)
ργ−1

0 =
√
γ
p0

ρ0
> 0, (3.15.7)

for physically realistic pressure and density.
So, basically, the linear acoustics equations are valid only for flows with small perturbations, such as a sound wave

propagation or a flow over a slender body. The governing equations are now linear, and therefore nonlinear waves such
as shocks or expansions all reduce to linear waves. Also, simple wave solutions can be superposed to produce more
general solutions. This can be very useful. I like it.

3.15.1 1D Linear Acoustics Equations

W′
t + Aw′

W′
x = 0, (3.15.8)

where

W′ =
[
p′

u′

]
, Aw′

=
[

u0 ρ0c
2
0

1/ρ0 u0

]
. (3.15.9)

Eigenstructure

Aw′
= Rw′

ΛLw
′
, (3.15.10)

where

Λw
′

=
[
u0 − c 0

0 u0 + c

]
, Rw′

=

 ρ0c
2
0 ρ0c

2
0

−c0 c0

 , Lw
′

=


1

2ρ0c2
0

− 1
2c0

1
2ρ0c2

0

1
2c0

 . (3.15.11)
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3.15.2 2D Linear Acoustics Equations

W′
t + Aw′

W′
x + Bw′

W′
y = 0, (3.15.12)

where

W′ =

 p′

u′

v′

 , Aw′
=

 u0 ρ0c
2
0 0

1/ρ0 u0 0
0 0 u0

 , Bw =

 v0 0 ρ0c
2
0

0 v0 0
1/ρ0 0 v0

 . (3.15.13)

Of course, these matrices are not Jacobians (see Section 3.4.2).

Eigenstructure

Aw′

n = Rw′

n ΛnLw
′

n , (3.15.14)

where

Aw′

n =


qn0 ρ0c

2
0nx ρ0c

2
0ny

nx/ρ0 qn0 0

ny/ρ0 0 qn0

 , Λw
′

n =


qn0 − c 0 0

0 qn0 0

0 0 qn0 + c

 , (3.15.15)

Rw′

n =


ρ0c

2
0 0 ρ0c

2
0

−c0nx ℓx c0nx

−c0ny ℓy c0ny

 , Lw
′

n =



1
2ρ0c2

0
− nx

2c0
− ny

2c0

0 ℓx ℓy

1
2ρ0c2

0

nx
2c0

ny
2c0


, (3.15.16)

and (ℓx, ℓy) = (−ny, nx).

3.15.3 3D Linear Acoustics Equations

W′
t + Aw′

W′
x + Bw′

W′
y + Cw′

W′
z = 0, (3.15.17)

where

W′ =


p′

u′

v′

w′

 , Aw′
=


u0 ρ0c

2
0 0 0

1/ρ0 u0 0 0
0 0 u0 0
0 0 0 u0

 , (3.15.18)

Bw =


v0 0 ρ0c

2
0 0

0 v0 0 0
1/ρ0 0 v0 0

0 0 0 v0

 , Cw =


w0 0 0 ρ0c

2
0

0 w0 0 0
0 0 w0 0

1/ρ0 0 0 w0

 . (3.15.19)

Eigenstructure

Aw′

n = Rw′

n ΛnLw
′

n , (3.15.20)
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where

Aw′

n =



qn0 ρ0c
2
0nx ρ0c

2
0ny ρ0c

2
0nz

nx/ρ0 qn0 0 0

ny/ρ0 0 qn0 0

nz/ρ0 0 0 qn0

 , (3.15.21)

Λw
′

n =


qn0 − c 0 0 0

0 qn0 0 0
0 0 qn0 0
0 0 0 qn0 + c

 , (3.15.22)

Rw′

n =


ρ0c

2
0 0 0 ρ0c

2
0

−c0nx ℓx mx c0nx

−c0ny ℓy my c0ny

−c0nz ℓz mz c0nz

 , (3.15.23)

Lw
′

n =



1
2ρ0c2

0
− nx

2c0
− ny

2c0
− nz

2c0

0 ℓx ℓy ℓz

0 mx my mz

1
2ρ0c2

0

nx
2c0

ny
2c0

nz
2c0


, (3.15.24)

ℓ = [ℓx, ℓy, ℓz]t, m = [mx,my,mz]t, n are mutually orthogonal unit vectors, and

qℓ = uℓx + vℓy + wℓz, qm = umx + vmy + wmz. (3.15.25)

3.16 Quasi-1D Euler Equations

The quasi-1D Euler system is a model for a nozzle flow. The nozzle itself is two-dimensional, i.e., its section area A(x)
varies along the axial direction x, but flow variables are assumed to depend only on x. Here is the quasi-1D Euler
system:

∂U
∂t

+ ∂F
∂x

= S, (3.16.1)

where

U =

 ρA
ρuA
ρEA

 , F =

 ρuA
ρu2A

ρu(E + p/ρ)A

 , S =

 0
−A ∂p

∂x
0

 , (3.16.2)

and E = e+ u2/2. I like this system because it can be written in the following form (A(x) only in the source term),

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p

ρu(E + p/ρ)

 , S = − 1
A

DA

Dt

 ρ
ρu

ρE + p

 , (3.16.3)

and also in the following form (no pressure gradient in the source term),

U =

 ρA
ρuA
ρEA

 , F =

 ρuA
(ρu2 + p)A

ρu(E + p/ρ)A

 , S =

 0
p∂A∂x

0

 . (3.16.4)
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See Ref.[57] for derivation, and Ref.[159] for the case that A changes in time. A really nice thing about the quasi-1D
Euler system is that if I set ρA → ρ, then it is in the same form as the 1D Euler system (except for the source term),
and therefore the eigenstructure is the same as the 1D Euler system (which we already know). This is very nice.

On the other hand, if I set A(x) = 2πx, then I obtain the Euler equations for cylindrically symmetric wave motion,
i.e., the Euler equations in cylindrical coordinates (r, θ, z) with no variations in the z direction. For example, I obtain
from Equation (3.16.3),

∂U
∂t

+ ∂F
∂r

= S, (3.16.5)

where

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p

ρu(E + p/ρ)

 , S = −u

r

 ρ
ρu

ρE + p

 , (3.16.6)

and u is now the velocity in the radial direction. Note also that I have replaced x by r to emphasize the cylindrical
symmetry. Similarly, if I set A(x) = 4πx2, then I obtain the Euler equations for spherically symmetric wave motion:

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p

ρu(E + p/ρ)

 , S = −2u
r

 ρ
ρu

ρE + p

 . (3.16.7)

This is very interesting, isn’t it?

3.17 2D Steady Euler Equations

The 2D steady Euler equations are obtained by removing the time derivative from the 2D Euler equations (3.5.16),

AwWx + BwWy = 0, (3.17.1)

where W = [ρ, u, v, p]t. Since Aw is invertible (for u2 ̸= c2), we can write this as

Wx + (Aw)−1BwWy = 0, (3.17.2)

where

(Aw)−1Bw = 1
u2 − c2



v
u (u2 − c2) −ρv ρu

v

u

0 uv −c2 −v

ρ

0 0 v

u
(u2 − c2) u2 − c2

ρu

0 −ρvc2 ρuc2 uv


. (3.17.3)

Therefore, x-axis may be time-like (depending on flow directions). The eigenvalues and eigenvectors of (Aw)−1Bw are
given by

λ1,2 = v

u
, (3.17.4)

λ3 = uv − c
√
q2 − c2

u2 − c2 = vβ − u

uβ + v
, (3.17.5)

λ4 = uv + c
√
q2 − c2

u2 − c2 = u+ vβ

uβ − v
, (3.17.6)
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Rw =



1 0 − ρ

uβ + v

ρ

uβ − v

0 u

ρq2 − vβ − u

M2(uβ + v)
− vβ + u

M2(uβ − v)

0 v

ρq2
1
M2

1
M2

0 0 −ρc2

uβ + v

ρc2

uβ − v


, (3.17.7)

Lw =



1 0 0 − 1
c2

0 ρu ρv 1

0 − v

2c2β
(uβ + v) u

2c2β
(uβ + v) − 1

2ρc2 (uβ + v)

0 − v

2c2β
(uβ − v) u

2c2β
(uβ − v) 1

2ρc2 (uβ − v)


, (3.17.8)

where β =
√
M2 − 1 =

√
q2/c2 − 1 =

√
(u2 + v2)/c2 − 1 and c =

√
γp/ρ. Clearly, the character of the 2D Steady

Euler Equations depends on the Mach number:

Supersonic M > 1 → Real eigenvalues → Hyperbolic,
Subsonic M < 1 → Complex eigenvalues → Elliptic. (3.17.9)

Of course, it can be mixed: hyperbolic (supersonic) in some region while elliptic (subsonic) in other regions. In
particular, I like supersonic flows because then the system (3.17.2) can be fully diagonalized, with the characteristic
variables defined by ∂V = Lw∂W:

∂v1

∂x
+ u

v

∂v1

∂y
= 0, (3.17.10)

∂v2

∂x
+ u

v

∂v2

∂y
= 0, (3.17.11)

∂v3

∂x
+ vβ − u

uβ + v

∂v3

∂y
= 0, (3.17.12)

∂v4

∂x
+ u+ vβ

uβ − v

∂v4

∂y
= 0, (3.17.13)

where

∂V =



∂v1

∂v2

∂v3

∂v4


=



∂ρ− ∂p

c2

ρ(u∂u+ v∂v) + ∂p

uβ + v

2ρc2β
{ρ (u∂v − v∂u) − β∂p}

uβ − v

2ρc2β
{ρ (u∂v − v∂u) + β∂p}


. (3.17.14)

Note that the eigenvalues represent the slope dy/dx of the characteristics. Therefore, they can be expressed as vectors:

λ⃗1,2 = [u, v]t, λ⃗3 = [uβ + v, vβ − u]t, λ⃗4 = [uβ − v, vβ + u]t. (3.17.15)

Then, we find

div λ⃗3 = div(βv) + ζ, div λ⃗4 = div(βv) − ζ, (3.17.16)

where ζ = vx − uy. The left hand side (the divergence of the characteristic speed vector) represents the diver-
gence/convergence of characteristics, implying the existence of expansion/shock waves. I like these relations very
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much because they indicate connections between the existence of the nonlinear waves and the physical quantities such
as the vorticity and divergence of the velocity field. Interestingly, it is not just the vorticity or the divergence but their
combinations (the sum or the difference) that tell us whether a shock or expansion wave exists (and also of which
family it is). So, if the sum div(βv) + ζ is negative/positive, there is a shock/expansion from 3-family; if the difference
div(βv) − ζ is negative/positive, there is a shock/expansion from 4-family. Or you might want to combine them into
one, (

div λ⃗3

)2
+
(

div λ⃗4

)2
= {div(βv)}2 + ζ2. (3.17.17)

This can also be a useful scalar (non-negative) quantity for detecting nonlinear waves (a shocks and/or expansions of
any family). Actually, these relations were successfully used for adaptive Euler schemes in Ref.[100].

I like the steady Euler equations because they are of mixed type. There have been attempts to construct optimal
discretization schemes for the Euler equations, i.e., central scheme for the elliptic part and upwind scheme for the
hyperbolic part, (see Refs.[94, 113] and references therein). That sounds like an optimal strategy, but typically in
most cases numerical schemes for the Euler equations are constructed based on the unsteady character, i.e., hyperbolic
character. Yes, the Euler equations are hyperbolic in time, and can never be elliptic in time, which in fact makes it
easier to construct a numerical scheme. So, I actually like both approaches.

3.18 Bernoulli’s Equation

Bernoulli’s equation is basically an integral of the Euler equation (the momentum equation),

ρ
∂v
∂t

+ ρ(gradv)v + grad p = 0, (3.18.1)

which can be written, by Equation (1.7.7), as

ρ
∂v
∂t

+ ρ grad
(

v2

2

)
− ρv × curlv + grad p = 0. (3.18.2)

This can be integrated for various flows; thus there are various forms of Bernoulli’s equation.

Unsteady, Incompressible, Irrotational Flows

For incompressible irrotational flows, we have ρ = constant and curlv = 0. The latter implies the existence of the
velocity potential ϕ: v = gradϕ. Then, the Euler equations (3.18.2) can be written as

ρ grad
(
∂ϕ

∂t
+ v2

2
+ p

ρ

)
= 0. (3.18.3)

This means that the quantity in the parenthesis is spatially constant but may change in time. We therefore obtain

∂ϕ

∂t
+ v2

2
+ p

ρ
= f(t), (3.18.4)

where f(t) is an arbitrary function of time. This is called the unsteady Bernoulli’s equation and its steady version,
v2/2 + p/ρ = constant, is the famous Bernoulli’s equation obtained by Daniel Bernoulli.

Steady, Incompressible, Rotational Flows

For steady incompressible rotational flows, the Euler equations (3.18.2) becomes

ρ grad
(

v2

2
+ p

ρ

)
− ρv × curlv = 0. (3.18.5)

Because of the second term, there can be no spatially constant quantities. However, noting that the vector (v × curlv)
is perpendicular to the velocity vector v, we take the dot product of this equation and the velocity,

ρv · grad
(

v2

2
+ p

ρ

)
− ρv · (v × curlv) = 0, (3.18.6)
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so that the second term vanishes and we obtain

ρv · grad
(

v2

2
+ p

ρ

)
= 0. (3.18.7)

This shows that we do not have a global constant quantity but a streamwise constant quantity:

v2

2
+ p

ρ
= constant, (3.18.8)

along a streamline, i.e., the stagnation pressure p0 = ρv2/2+p takes different constant values for different streamlines.
To see how it changes across streamlines, we take the dot product of Equation (3.18.5) and a unit vector n in the
direction normal to the streamline,

ρn · grad
(

v2

2
+ p

ρ

)
− ρn · (v × curlv) = 0, (3.18.9)

which gives the spatial rate of change of the stagnation pressure normal to the streamline,

∂p0

∂n
= ∂

∂n

(
p+ ρv2

2

)
= ρn · (v × curlv) . (3.18.10)

This shows that the vorticity (curlv) is the source of the spatial variation of p0. However, it is also clear that in order
for p0 to be constant everywhere, the vorticity does not have to be zero, or equivalently the flow does not have to be
irrotational. If the flow satisfies

v × curlv = 0, (3.18.11)

everywhere, meaning that it is a Beltrami flow (see Section 1.5), p0 will be a global constant. This is nice. I also like
two-dimensional flows in which we always have v ⊥ curlv, and so by choosing n in the same direction as (v × curlv),
we can write

∂

∂n

(
p+ ρv2

2

)
= ρqω, (3.18.12)

q is the flow speed and ω is the magnitude of the vorticity.

Unsteady, Compressible, Irrotational Flows

For compressible flows, the density is not constant. This makes it non-trivial to integrate the pressure gradient term
1
ρgrad p in the Euler equation. But it can still be integrated if we can express it as a gradient of some quantity. This
is possible for an adiabatic flow of a calorically perfect gas:

dp

ρ
= dh− Tds = dh = γR

γ − 1
dT = 1

γ − 1
d(a2), (3.18.13)

where s is the entropy which is uniform for adiabatic flows and a is the speed of sound. This gives

1
ρ

grad p = 1
γ − 1

grad (a2). (3.18.14)

Now, introducing the velocity potential ϕ, we can write the the Euler equations (3.18.2) as

ρ grad
(
∂ϕ

∂t
+ v2

2
+ a2

γ − 1

)
= 0. (3.18.15)

Therefore we obtain the Bernoulli’s equation for unsteady compressible irrotational flows:

∂ϕ

∂t
+ v2

2
+ a2

γ − 1
= g(t), (3.18.16)

where g(t) is an arbitrary function of time.
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Steady, Compressible, Rotational Flows

In the same way as in the previous case, we can derive Bernoulli’s equations for steady compressible rotational flows.
Basically, we just need to replace p/ρ by a2

γ−1 . Along a streamline, we have

v2

2
+ a2

γ − 1
= constant. (3.18.17)

Normal to the streamline, we have

∂

∂n

(
v2

2
+ a2

γ − 1

)
= n · (v × curlv) , (3.18.18)

where n is a unit vector normal to the streamline.

3.19 Gas Dynamics Equation (Nonlinear Potential Equation)

Assume that the vorticity is everywhere zero: curl v = 0. Then, we can define the velocity potential ϕ as

v = gradϕ, (3.19.1)

and substitute this into the continuity equation to get the so-called potential equation:

div (ρ gradϕ) = 0. (3.19.2)

In Cartesian coordinates, the potential is defined as

u = ϕx, v = ϕy, w = ϕz, (3.19.3)

and the potential equation becomes

(ρϕx)x + (ρϕy)y + (ρϕz)z = 0. (3.19.4)

This nonlinear equation requires an additional equation for the density which can be obtained from the energy equation
(Bernoulli’s equation) for an adiabatic flow of a calorically perfect gas (see Section 3.18):

a2

γ − 1
+ u2 + v2 + w2

2
= H = constant, (3.19.5)

where a =
√
γp/ρ. The density equation is then derived from

a2

γ − 1
+ u2 + v2 + w2

2
= a2

∞
γ − 1

+ u2
∞ + v2

∞ + w2
∞

2
, (3.19.6)

and the adiabatic relation, p/ργ = constant, as

ρ

ρ∞
=
[
1 − γ − 1

2
M2

∞

(
u2 + v2 + w2

u2
∞ + v2

∞ + w2
∞

− 1
)]1/(γ−1)

. (3.19.7)

This formulation is valid for a steady adiabatic irrotational flow. It is also worth noting that in a steady adiabatic
irrotational flow the entropy is constant everywhere, i.e., the flow is homentropic (see Section 3.23). It follows then
that it is not valid for flows with shocks. But this conservative form is still approximately valid if the Mach number is
close to 1; it has actually been used successfully for various such flows. See Refs.[51, 155] for more details.

In two dimensions, the nonlinear potential flow can be described by the following Cauchy-Riemann type system:

∂(ρu)
∂x

+ ∂(ρv)
∂y

= 0, (3.19.8)

∂v

∂x
− ∂u

∂y
= 0. (3.19.9)
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See Ref.[134] for numerical methods for solving this system. I like the Cauchy-Riemann system, but in this case I like
the scalar potential equation (3.19.14) better simply because it is a scalar equation. It is so much easier to develop a
numerical scheme for a scalar equation than for a system.

I also like the potential equation written in a nonconservative form. To derive it, expand the continuity equation,

ρ div v + v · gradρ = 0, (3.19.10)

and take a dot product of the velocity vector and the momentum equation,

v · [(gradv)v] + a2

ρ
v · gradρ = 0, (3.19.11)

where the pressure gradient has been replaced by the density gradient by using the relation, grad p = a2 grad ρ. Now
it is clear that this and the continuity equation can be combined to give

div v − 1
a2 v · [(gradv)v] = 0. (3.19.12)

This equation is known as the gas dynamics equation. I like it very much, especially the name, ‘Gas Dynamics Equation’.
It sounds exciting. In Cartesian coordinates, the gas dynamics equation is written as(

1 − u2

a2

)
ux +

(
1 − v2

a2

)
vy +

(
1 − w2

a2

)
wz − uv

a2 (uy + vx) − vw

a2 (vz + wy) − wu

a2 (wx + uz) = 0. (3.19.13)

Of course, this cannot be solved for the three velocity components (u, v, w) because it is a scalar equation. But if the
flow is irrotational and thus the velocity is given by the velocity potential ϕ: u = ϕx, v = ϕy, w = ϕz, then we can
write the gas dynamics equation in terms of ϕ:(

1 − ϕ2
x

a2

)
ϕxx +

(
1 −

ϕ2
y

a2

)
ϕyy +

(
1 − ϕ2

z

a2

)
ϕzz − 2ϕxϕy

a2 ϕxy − 2ϕyϕz
a2 ϕyz − 2ϕzϕx

a2 ϕzx = 0. (3.19.14)

This is a scalar equation for ϕ, and so can be solved for ϕ with Equation (3.19.7). This equation is perhaps more
widely known as the full potential equation rather than as the gas dynamics equation.

Incidentally, the velocity potential exists even in viscous flows as long as the vorticity is zero. The viscous terms
actually vanish from the governing equations for irrotational flows (curl v = 0), but the viscous stresses do not
necessarily vanish and can be expressed in terms of the velocity potential. See Ref.[65] for an interesting theory of
viscous potential flows. Also, the potential formulation can be extended to rotational flows by decomposing the velocity
into the irrotational (potential) part and the rotational part. See Refs.[43, 44, 96] for details.

3.20 Linear Potential Equation

In general, I like to linearize nonlinear equations. I would linearize the nonlinear potential equation as follows.
In two dimensions, a flow over a slender body with the free stream velocity U∞ in x direction generates perturbations
u′, v′ ( u′, v′ << U∞):

u = U∞ + u′, v = v′. (3.20.1)

Then, introducing the velocity potential and its perturbation as

u = ϕx = U∞ + ϕ′
x, v = ϕy = ϕ′

y, (3.20.2)

we find from Equation (3.19.14) that, for two-dimensional flows,

(1 −M2
∞)ϕ′

xx + ϕ′
yy = M2

∞(γ + 1)ϕ
′
xϕ

′
xx

U∞
. (3.20.3)

Note that the right hand side must be retained for transonic flows M∞ ≈ 1 to keep the equation two-dimensional:
the x-derivative term (1 − M2

∞)ϕ′
xx will be very small for transonic flows and the equation will become nearly one-

dimensional without the right hand side. However, the right hand side can be ignored for subsonic and supersonic
flows, resulting in

(1 −M2
∞)ϕ′

xx + ϕ′
yy = 0. (3.20.4)
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This is the two-dimensional linear potential equation. In three dimensions, we introduce a perturbation velocity w′ in
z direction as

w = w′ = ϕz = ϕ′
z << U∞, (3.20.5)

and obtain, from Equation (3.19.14), the following three-dimensional linear potential equation:

(1 −M2
∞)ϕ′

xx + ϕ′
yy + ϕ′

zz = 0. (3.20.6)

In either two or three dimensions, once the perturbation potential ϕ′ is determined, the pressure can be computed by

Cp = p− p∞
1
2ρU

2
∞

= 2
γM2

∞
(p/p∞ − 1) = −

[
2u′

U∞
+ (1 −M2

∞) u
′2

U2
∞

+ v′2 + w′2

U2
∞

]
. (3.20.7)

I like the linear potential equation because it can be solved easily for small Mach number (it is almost the Laplace
equation), but not so much for a large Mach number (it is now hyperbolic. See Section 1.17 for classification). See
Refs.[53, 84] for more details on the linearized potential equations, and Refs.[51, 155] for numerical methods for solving
them.

3.21 Small Perturbation Equations

We can write the linear potential equation in terms of the velocity components, which are called the small per-
turbation equations (or the Prandtl-Glauert equations). For supersonic flows (M∞ > 1), these equations are written
as

β2 ux − vy = 0, (3.21.1)
vx − uy = 0, (3.21.2)

where β2 = M2
∞ − 1 > 0. It can be written as a vector form:

wx + Awy = 0, (3.21.3)

where

w =
[
u
v

]
, A =

 0 − 1
β2

−1 0

 . (3.21.4)

Eigenstructure

A = RΛL, (3.21.5)

where

Λ =


1
β

0

0 − 1
β

 , R =


1

2β
1

2β

−1
2

1
2

 , L =

 β −1

β 1

 . (3.21.6)

Characteristic Form

Lwx + LAwy = 0, (3.21.7)

(Lw)x + Λ(Lw)y = 0, (3.21.8)

that is,
∂

∂x
(βu− v) + 1

β

∂

∂y
(βu− v) = 0, (3.21.9)

∂

∂x
(βu+ v) − 1

β

∂

∂y
(βu+ v) = 0. (3.21.10)
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This shows that βu− v is constant along dy/dx = 1/β while βu+ v is constant along dy/dx = −1/β. Note that this
diagonalization is valid only for supersonic flows (M∞ > 1). In particular, I like a flow with M∞ =

√
2 because then

β = 1 and everything looks very simple.
For subsonic flows (M∞ < 1), we have

(1 −M2
∞)ux + vy = 0, (3.21.11)

vx − uy = 0. (3.21.12)

Then, the eigenvalues become complex, and therefore the system is elliptic. As for the Mach number, I like to set
M∞ = 0 (incompressible flows) because the system reduces to the Cauchy-Riemann system. As a matter of fact, I
would use the Prandtl-Glauert transformation:

ξ = x, η = y
√

1 −M2
∞, U =

√
1 −M2

∞ u, V = v, (3.21.13)

so that the system, (3.21.11) and (3.21.12), becomes the Cauchy-Riemann system,

Uξ + Vη = 0, (3.21.14)
Vξ − Uη = 0, (3.21.15)

for any Mach number (|M∞| < 1). This is very nice. Any subsonic small perturbation flow can be transformed into
an incompressible flow. See Refs.[74, 84] for more details on the Prandtl-Glauert transformation.

3.22 Incompressible Potential Equation

As we have seen in the previous sections, the velocity potential ϕ is very useful in computing steady compressible
irrotational flows. Here, we consider steady incompressible flows. For steady incompressible flows, the continuity
equation is div v = 0. Therefore, by substituting the velocity potential (3.19.1) into the continuity equation, we obtain

div gradϕ = 0. (3.22.1)

That is, the velocity potential satisfies the Laplace Equation in all dimensions. I like it because various exact solutions
are available for the Laplace equation. Two-dimensional flows are even nicer because a potential flow can be described
by the velocity potential and the stream function as described in Section 2.9. It is nice especially because the velocity
potential and the stream function satisfy the Cauchy-Riemann equations (see Section 2.9.2), and we can generate
various exact solutions by the theory of complex variables. Note that the applicability of the theory of complex
variables is limited to two-dimensional flows; it doesn’t apply to general three-dimensional flows including axisymmetric
flows because the stream function does not satisfy the Laplace equation. See Section 4.24 for the governing equation
of the stream function.

3.23 Crocco’s Equation

Crocco’s equation (or Crocco’s theorem) is a modified form of the momentum equation. Consider the momentum
equation written in the primitive form,

∂v
∂t

+ (gradv)v + 1
ρ

grad p = 0. (3.23.1)

Using the following relations,

(gradv)v = grad
(

v2

2

)
− v × curl v, (3.23.2)

Tds = dh− 1
ρ

grad p, (3.23.3)

H = h+ v2

2
, (3.23.4)
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the momentum equation can be written as

∂v
∂t

− v × ω = Tgrad s− gradH, (3.23.5)

where ω = curl v. This is Crocco’s equation. It is a quite interesting equation. For example, we can use it to show
that the entropy is constant along a streamline for a steady adiabatic flow. To do so, first, note that for a steady
adiabatic flow, the equation for the total enthalpy (3.3.7)

DH

Dt
= 1
ρ

∂p

∂t
, (3.23.6)

reduces to

v · gradH = 0, (3.23.7)

which implies, incidentally, that the total enthalpy is preserved along a streamline. Now, take a dot product of the
velocity and Crocco’s equation to get

v · (v × ω) = v · gradH − Tv · grad s. (3.23.8)

Observe that the left hand side vanishes because v ⊥ (v × ω), and also that the first term on the right vanishes by
Equation (3.23.7). Then, we are left with

0 = v · grad s. (3.23.9)

This indicates that the entropy is constant along a streamline. This completes the proof for constant entropy along a
streamline in a steady adiabatic flow. On the other hand, if we assume that ω = 0 and H is uniform, then it follows
immediately from Equation (3.23.5) that the entropy is constant everywhere, i.e., the flow is homentropic. That is, zero
vorticity implies uniform entropy if H is uniform. Basically, Crocco’s equation is another form of the Euler equation
(i.e., the momentum equation). So, it is perfectly possible to replace the momentum equation by Crocco’s equation
in the Euler system (then we would have to call it the Crocco system). I like Crocco’s equation. It is a quite insightful
equation.

3.24 Kelvin’s Circulation Theorem

The circulation Γ is defined for a closed curve C by

Γ =
∮

C
v · dl, (3.24.1)

where dl is an element taken counterclockwise along C, and it is related to the vorticity ω = curl v by

Γ =
∮

C
v · dl =

∫∫
S

curl v · n dS =
∫∫
S

ω · n dS, (3.24.2)

i.e., the circulation around C is equal to the in/out-flow of the vorticity across any surface S whose boundary is C.
The rate of change of the circulation of a closed curve C (moving with the fluid) can be obtained easily from the

primitive form of the Euler equations:

DΓ
Dt

= −
∮

C

grad p
ρ

· dl. (3.24.3)

If derived from the Navier-Stokes equations, by the way, it will have a contribution from the viscous term on the right
hand side:

DΓ
Dt

=
∮

C

1
ρ

div τdl −
∮

C

grad p
ρ

· dl, (3.24.4)

where τ is the viscous stress tensor (4.2.1). For inviscid incompressible flows, ρ is constant and the right hand side of
Equation (3.24.3) vanishes: ∮

C

grad p
ρ

· dl = 1
ρ

∮
C

grad p · dl = 1
ρ

∮
C
dp = 0. (3.24.5)
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Therefore, we have from Equation (3.24.3)

DΓ
Dt

= 0, (3.24.6)

i.e., the circulation is conserved. This is interesting. Even for compressible flows, where Equation (3.24.3) can be
written as

DΓ
Dt

= −
∮

C

grad p
ρ

· dl = −
∮

C
(gradh− T grad s) · dl =

∮
C
T grad s · dl, (3.24.7)

if the entropy is constant, then again the circulation is conserved:

DΓ
Dt

= 0. (3.24.8)

This shows that the circulation around a closed curve remains constant at all times as the curve moves with the fluid.
This is called Kelvin’s circulation theorem. I like it because it gives interesting and important explanations about
vortical flows. The vorticity defines a vector field, and thus integral curves (i.e., the curves tangent to the vorticity
vector) may be defined. These curves are generally called the vortex lines. The surface formed by the vortex lines
passing through a closed curve is called a vortex tube (or filaments). The strength of the vortex tube is defined as the
integral of the vorticity over a cross-section of a tube, which is equivalent to the line integral of the velocity around the
closed curve, i.e., the circulation Γ. Now I begin to see the connection between the vortex tube and Kelvin’s circulation
theorem. Below are the theorems, known as Helmholz’s theorems, obtained as direct consequences of the circulation
theorem:

1. A flow that is initially irrotational remains irrotational if no rotational forces exist.

2. The strength of a vortex tube is constant along its length.

3. A vortex tube cannot end in the flow, and must extend to the boundary or form a closed loop.

One of the most interesting behaviors that I like, which is implied by the second theorem, is that the vortex strength
increases/decreases as the cross-section of the vortex tube shrinks/expands. This is called the vortex stretching
mechanism as the cross-sectional changes are associated with the stretching of the tube.

3.25 Vorticity Equation

Evolution of the vorticity is described by the vorticity equation, which can be derived by taking the curl of the
momentum equations. Consider the primitive form of the momentum equations:

∂v
∂t

+ (grad v)v + grad p
ρ

= 0, (3.25.1)

which can be written by Equation (1.7.7) as

∂v
∂t

+ grad v · v
2

− v × curl v + grad p
ρ

= 0. (3.25.2)

Taking the curl, we get

∂ω

∂t
+
��������
curl

(
grad v · v

2

)
− curl(v × ω) + curl

(
grad p
ρ

)
= 0, (3.25.3)

where ω = curl v is the vorticity, which can be written by Equations (1.7.19) and (1.7.20) as

∂ω

∂t
− v���div ω − (grad v)ω + (div v)ω + (grad ω)v + 1

ρ�
����curl grad p+ grad

(
1
ρ

)
× grad p = 0. (3.25.4)

Therefore, we have

Dω

Dt
= ∂ω

∂t
+ (grad ω)v = (grad v)ω − (div v)ω + grad ρ× grad p

ρ2 . (3.25.5)
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The left hand side is the rate of change of the vorticity along the streamlines. The first terms on the right hand
side describes the vortex stretching and twisting (or tilting), and the second term describes stretching due to the
compressibility. The third term is called the baroclinic term, describing the change in the vorticity by the misalignment
of the gradient of the density and the gradient the pressure. The baloclinic term vanishes for barotropic gases, i.e., if
the pressure is a function of the density only, because then the density and pressure gradients become parallel to each
other and the cross product vanishes. An example of such flows is the homentropic flow discussed in Section 3.14. Of
course, the barocliic term vanishes also for incompressible flows because the density gradient vanishes.

The vorticity equation can be arranged further by using the following relations:

∂

∂t

(
ω

ρ

)
= 1
ρ

∂ω

∂t
− ω

ρ2
∂ρ

∂t
= 1
ρ

∂ω

∂t
+
(

ω

ρ

)
div v + ω

ρ2 (grad ρ) · v, (3.25.6)

where the continuity equation (3.3.1) has been substituted, and[
grad

(
ω

ρ

)]
v =

[
ω⊗grad

(
1
ρ

)
+ 1
ρ

(grad ω)
]

v

= − 1
ρ2 (ω⊗grad ρ) v + 1

ρ
(grad ω)v

= − ω

ρ2 (grad ρ) · v + 1
ρ

(grad ω)v, (3.25.7)

which yields

D

Dt

(
ω

ρ

)
= ∂

∂t

(
ω

ρ

)
+
[
grad

(
ω

ρ

)]
v = 1

ρ

∂ω

∂t
+
(

ω

ρ

)
div v + 1

ρ
(grad ω)v. (3.25.8)

Finally, dividing Equation(3.25.5) by the density and substituting Equation (3.25.8), we obtain

D

Dt

(
ω

ρ

)
= (grad v)

(
ω

ρ

)
+ grad ρ× grad p

ρ3 . (3.25.9)

Comparing this form with Equation (3.25.5), we see that the stretching term due to compressibility is gone. In fact,
I like this form very much because the compressibility effect is incorporated into the stretching-twisting term and it
shows that it is the quantity ω/ρ, not ω, that behaves like the vorticity in the same way as in incompressible flows.
That is, ω/ρ satisfies the equation that ω satisfies in incompressible flows.

I like the vorticity equation because it describes very interestingly how the vorticity evolves in a flow and it is one
of the basic tools to understand turbulence as well as the basic equation for vortex methods [29].

3.26 Shallow-Water (or Saint Venant) Equations

Like a smooth water surface, when the vertical (z-direction) velocity and the vertical displacement of the surface
is sufficiently small (compared with the frequency of water waves; see Figure 3.26.1), the water depth h and the
velocity v = [u, v]t are governed by the following shallow-water equations (also called the Saint Venant equations):

∂th+ div(hv) = 0, (3.26.1)
∂t(hv) + div(hv⊗v) + grad(gh2/2) = −gh grad z0(x, y), (3.26.2)

where g = 9.8m/s2 and z0(x, y) is a function that defines the shape of the bottom. Note that all quantities are
independent of z. It is interesting that the shallow-water equations can be derived from the Euler equations: add
a gravitational force term in the z-component, ignore the z-velocity and any variation in z, and then integrate all
equations in z from the bottom to the water surface. In doing so, we obtain from the z-momentum equation,

pz = −ρg −→ p = p0 + ρg(h+ z0 − z). (3.26.3)

This is a familiar relationship, called the hydrostatic pressure relation. Conversely, if we write p = 1
2gh

2, rewrite h as
ρ, and assume z0 = constant, then, the shallow-water equations become

∂tρ+ div(ρv) = 0, (3.26.4)
∂t(ρv) + div(ρv⊗v) + gradp = 0, (3.26.5)
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Figure 3.26.1: One-dimensional free surface flow.

which are nothing but the Euler equations without the energy equation. In fact, if we look at the eigenstructure, we
find that the quantity

√
gh corresponds to the speed of sound:√

gh =
√

2p/h =
√

2p/ρ. (3.26.6)

This implies that we have γ = 2. Therefore, the Euler equations above are in the form of the homentropic/isothermal
Euler equations with γ = 2. Basically, the shallow-water equations are a subset of the Euler equations. This is very
interesting. I like it.

Incidentally, it is easy to derive a conservation form for ϕ = gh, but it requires differentiations and therefore it is
not really valid for flows with shocks. See Ref.[81] for details.

3.26.1 1D Shallow-Water Equations

ht + (hu)x = 0, (3.26.7)

(hu)t +
(
hu2 + 1

2
gh2
)
x

= −gh(z0)x, (3.26.8)

or in the vector form

Ut + Fx = S, (3.26.9)

where

U =
[

h
hu

]
, F =

[
hu

hu2 + 1
2gh

2

]
, S =

[
0

−gh(z0)x

]
. (3.26.10)

Jacobian

A = ∂F
∂U =

[
0 1

gh− u2 2u

]
. (3.26.11)
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Eigenstructure

A = RΛL, (3.26.12)

where

Λ =
[
u−

√
gh 0

0 u+
√
gh

]
, R =

 1 1

u−
√
gh u+

√
gh

 , (3.26.13)

L =


u+

√
gh

2
√
gh

− 1
2
√
gh

−u−
√
gh

2
√
gh

1
2
√
gh

 , LdU =


1
2
dh− h

2
√
gh
du

1
2
dh+ h

2
√
gh
du

 . (3.26.14)

3.26.2 2D Shallow-Water Equations

ht + (hu)x + (hv)y = 0, (3.26.15)

(hu)t +
(
hu2 + 1

2
gh2
)
x

+ (huv)y = −gh(z0)x, (3.26.16)

(hv)t + (huv)x +
(
hv2 + 1

2
gh2
)
y

= −gh(z0)y, (3.26.17)

or in the vector form

Ut + Fx + Gy = S, (3.26.18)

where

U =

 h
hu
hv

 , F =

 hu
p+ hu2

huv

 , G =

 hv
huv

p+ hv2

 , S =

 0
−gh(z0)x
−gh(z0)y

 . (3.26.19)

Jacobians

A = ∂F
∂U =

 0 1 0
gh− u2 2u 0

−uv v u

 , B = ∂G
∂U =

 0 0 1
−uv v u

gh− v2 0 2v

 , (3.26.20)

An = Anx + Bny =


0 nx ny

ghnx − uqn qn + unx uny

ghny − vqn vnx qn + vny

 , (3.26.21)

where

qn = unx + vny. (3.26.22)

Eigenstructure

An = RnΛnLn, (3.26.23)
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where

Λn =

 qn −
√
gh 0 0

0 qn 0
0 0 qn +

√
gh

 , (3.26.24)

Rn =


1 0 1

u−
√
ghnx ℓx u+

√
ghnx

v −
√
ghny ℓy v +

√
ghny

 , (3.26.25)

Ln =



√
gh+ qn

2
√
gh

− nx

2
√
gh

− ny

2
√
gh

−qℓ ℓx ℓy
√
gh− qn

2
√
gh

nx

2
√
gh

ny

2
√
gh

 , (3.26.26)

and

qℓ = uℓx + vℓy, (3.26.27)
[ℓx, ℓy] = [−ny, nx]. (3.26.28)

3.26.3 3D Shallow-Water Equations
Unfortunately, I cannot write them because I don’t know them. I would definitely like them if the shallow-water
equations existed in three dimensions.

http://www.cradle-cfd.com
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Chapter 4

Navier-Stokes Equations

4.1 Navier-Stokes Equations

I like a little bit more realistic model for describing a fluid flow than the Euler equations. So, I will add some missing
pieces to the Euler equations: the viscous stress tensor τ and the heat flux vector q. Yes, these are the Navier-Stokes
equations.

Conservative form of the Navier-Stokes equations

∂tρ+ div(ρv) = 0, (4.1.1)

∂t(ρv) + div(ρv⊗v) = div σ, (4.1.2)

∂t(ρE) + div(ρvH) = div (τv) − div q, (4.1.3)

where σ is the total surface stress tensor which consists of the static pressure p and the viscous stress tensor τ ,

σ = −pI + τ , (4.1.4)

where I is the identity matrix.

Primitive form of the Navier-Stokes equations

Dρ

Dt
+ ρ div v = 0, (4.1.5)

ρ
Dv
Dt

+ grad p = div τ , (4.1.6)

Dp

Dt
+ γp div v = (γ − 1) [τ : grad v − div q] . (4.1.7)

The continuity equation (4.1.5) can be derived from the conservative form (4.1.1) simply by expanding the divergence
term. The momentum equation (4.1.6) can be derived from the conservative form (4.1.2) by expanding the left hand
side and substituting the continuity equation (4.1.5). Note also that

div σ = −div (pI) + div τ = −grad p+ div τ . (4.1.8)

To derive the pressure equation (4.1.7), first derive the kinetic energy equation by taking the dot product of the velocity
vector and the momentum equation (4.1.6),

ρ
D

Dt

(
v2

2

)
+ (grad p) · v = −τ : grad v + div (τv), (4.1.9)
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then subtract the kinetic equation from the energy equation (4.1.3), and finally use the equation of state for a perfect
gas, i.e., p = (γ − 1)ρe, and the continuity equation to convert the time derivative of the internal energy into that of
the pressure.

Which form do you like? I think I like the conservative form better because conservation is a very important property
(to ensure a correct shock speed in particular), and it is easier to develop a conservative scheme by directly discretizing
the conservative form.

4.2 Viscous Stresses and Heat Fluxes

In Newtonian fluids (e.g., the sea-level air or water), the viscous stress tensor τ depends linearly on the strain and it
is given by

τ = λ(div v)I + µ
[
grad v + (grad v)t

]
, (4.2.1)

where grad v + (grad v)t is the rate of strain tensor (also called the deformation tensor), µ is the viscosity coefficient,
and λ is the second viscosity coefficient. The bulk viscosity µB defined by

µB = λ+ 2
3
µ, (4.2.2)

is usually very small, and therefore we may set µB = 0, i.e.,

λ = −2
3
µ. (4.2.3)

This is called Stokes’ hypothesis. I like this because it is a reasonable assumption. Consider the average normal stress
P (also called the mean pressure),

P ≡ −σii
3

= p−
(

1
3
λ× 3 div v + 2

3
µ div v

)
= p−

(
λ+ 2

3
µ

)
div v

= p− µB div v, (4.2.4)

where it has been defined as negative because σii is negative when acting onto the fluid element. Basically, this gives,
independent of coordinates, an average normal force acting on a fluid element; such a quantity is generally considered
as the thermodynamic pressure. Then, it is a state variable. That is, under the assumption of the thermodynamic
equilibrium, it should not depend on the rate of the volume change, div v. So, it would be reasonable to accept Stokes’
hypothesis µB = 0, so that we have a reasonable relation, P = p. Of course, this is only a hypothesis, but it works very
well for a wide range of conditions. See Refs.[136, 169] for more details. Note that the viscosity coefficient generally
depends on the temperature. On the other hand, the heat flux is given by Fourier’s law,

q = −κ gradT, (4.2.5)

where κ is the heat conductivity which is a function of the temperature. The negative sign is put to define q as positive
when the temperature gradient is negative. That is, the heat flows from higher to lower temperature. In fact, this is
the basic assumption (or observation) of this empirical law. I think that it is indeed very reasonable.

I like both Newtonian fluids and Fourier’s law for the same reason: both the viscous stress and heat flux depend
linearly on the derivatives of the primitive variables. This is nice.

4.3 Artificial Bulk Viscosity

As mentioned in the previous section, the bulk viscosity µB is typically set to be zero, but there are methods in
CFD that bring it back in the governing equations as an artificial viscosity to improve numerical algorithms:

τ =
(
µartificial
B − 2

3
µ

)
(div v)I + µ

[
grad v + (grad v)t

]
, (4.3.1)
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where µartificial
B (> 0) is the artificial bulk viscosity. In Ref.[124], the artificial bulk viscosity is introduced to accelerate

the convergence of an incompressible Navier-Stokes solver. The solver is based on the pseudo-compressible formulation
[21]. This formulation generates pseudo-acoustic-waves (see Section 3.13), and the numerical convergence towards
the steady state depends on how quickly the pseudo-acoustic-waves are eliminated via propagation and damping. The
artificial bulk viscosity is then introduced to enhance the damping effect. I like the idea very much, especially the fact
that the bulk viscosity term has no effect on the steady solution because it is proportional to the divergence of the
velocity div v that vanishes in the steady state for incompressible flows. Therefore, it only affects the convergence of
the numerical method. The idea has been extended to the compressible Euler [90] and Navier-Stokes equations [3],
where the artificial bulk viscosity term is formulated by div (ρv) so that it vanishes in the steady state for compressible
flows. Of course, these methods are designed for steady problems, but time-accurate computations are possible by
implicit time-integration schemes where the fast steady solver can be employed to solve the implicit-residual equations
over each physical time step.

Another example is the localized artificial diffusivity method [27], where the artificial bulk viscosity is introduced as
a means to effectively capture shock waves without deteriorating the resolution of turbulence structure. To effectively
accomplish the task, the artificial bulk viscosity is designed to get activated locally at shocks, thus the term "localized".
The localized artificial diffusivity method has been applied to compressible shock-turbulent simulations with very high-
order numerical schemes. See Ref.[69] and references therein for details.

It is interesting to observe the impact of the artificial bulk viscosity term on the divergence δ = div v and the
vorticity ω = curl v:

∂δ

∂t
+ · · · = div

[
1
ρ

grad (µartificial
B δ)

]
+ · · · , (4.3.2)

∂ω

∂t
+ · · · = − 1

ρ2 grad ρ× grad (µartificial
B δ) + · · · , (4.3.3)

which have been obtained by taking the divergence and the curl of the momentum equations (4.1.6) divided by the
density. It is clear that the artificial bulk viscosity plays a role of diffusion for the divergence and is expected to provide
damping for faster convergence and for shock capturing. On the other hand, the second equation shows apparently
that the artificial bulk viscosity can actually generate the vorticity. In the convergence acceleration methods mentioned
above, it actually does not affect the vorticity at all because it vanishes in the steady state. In the localized artificial
diffusivity method, it is expected to be small at numerically captured shocks because the cross product of the density
gradient and the gradient of the artificial bulk viscosity is expected to be small (they are both dominant locally in the
direction normal to a shock front) [70]. It is nice to be small because accurate prediction of vorticity production across
a shock can be very important in turbulent simulations [78].

I like these ideas in that they attempt to improve numerical methods by improving the governing equations rather
than the discretization. In a way, it makes the construction of numerical schemes easier: given such improved governing
equations (with desired features built in), you just have to discretize them accurately.

4.4 Viscosity and Heat Conductivity

The heat conductivity κ can be evaluated through the viscosity coefficient µ by utilizing the definition of the Prandtl
number Pr,

Pr = cpµ

κ
= γRµ

κ(γ − 1)
−→ κ = γRµ

Pr(γ − 1)
. (4.4.1)

This is very nice because the heat flux vector can then be expressed in any of the following forms:

q = −κ gradT = − µ

Pr(γ − 1)
grad (a2) = −µγ

Pr
grad e = − µ

Pr
gradh, (4.4.2)

where the relations, a2 = γp/ρ = γRT , e = R
γ−1T , and h = γR

γ−1T have been used. It is nice to know then that
the Prandtl number for the sea-level air is nearly constant for a wide range of temperature; Pr = 0.72 is a valid
approximation for the temperature between 200K and 1000K. In general, it is known that the Prandtl number is
related to γ by

Pr = 4γ
9γ − 5

. (4.4.3)
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This can be useful for non-ideal gases. See Ref.[159] for more details. Therefore all we need to evaluate the heat flux
is the viscosity coefficient µ. The viscosity coefficient can be computed by Sutherland’s law,

µ = µ0
T0 + C

T + C

(
T

T0

) 3
2

, C = 110.5 [K], T0 = 273.1 [K], µ0 = 1.716 × 10−5 [Pa · s], (4.4.4)

for air. This is also a good approximation for a wide range of temperature, between 170K and 1900K. See Ref.[169]
for more details.

4.5 Other Energy Equations

We obtain the equation for the internal energy e by subtracting the kinetic energy equation (4.1.9) from the total
energy equation (4.1.3):

ρ
De

Dt
= −p div v − div q + Φ, (4.5.1)

where Φ is the dissipation term given by

Φ = τ : grad v = µ
[
grad v + (grad v)t

]
: grad v + λ(div v)2. (4.5.2)

It can be shown that the dissipation term can be written as

Φ = µ

2

[
grad v + (grad v)t − 2

3
(div v)I

]
:
[
grad v + (grad v)t − 2

3
(div v)I

]
+
(
λ+ 2

3
µ

)
(div v)2

= µ

2

[(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]2

+
(
λ+ 2

3
µ

)(
∂uk
∂xk

)2

. (4.5.3)

It follows immediately from this that the dissipation term is positive if

µ ≥ 0, λ+ 2
3
µ ≥ 0. (4.5.4)

This is very nice. It shows that Stokes’ hypothesis (λ = − 2
3µ) guarantees the positivity of the dissipation term. If you

are interested to derive Equation (4.5.3) from Equation (4.5.2), first you need to understand these identities,[
grad v + (grad v)t

]
:
[
grad v − (grad v)t

]
= 0, (4.5.5)

(div v)I :
[
grad v − (grad v)t

]
= 0. (4.5.6)

Then, you write

Φ = τ : grad v

= τ :
[

1
2
(
grad v + (grad v)t

)
+ 1

2
(
grad v − (grad v)t

)]
, (4.5.7)

and expand this with τ = λ(div v)I + µ [grad v + (grad v)t] and the identities above to get

Φ = µ

2
[
grad v + (grad v)t

]
:
[
grad v + (grad v)t

]
+ λ

2
(div v)I :

[
grad v + (grad v)t

]
= µ

2
[
grad v + (grad v)t

]
:
[
grad v + (grad v)t

]
+ λ(div v)2. (4.5.8)

Finally, you somehow arrange this into the final form (4.5.3), e.g., by adding
[ 2

3µ(div v)2 − 2
3µ(div v)2] and refactoring.
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Basically, the energy equation in the Navier-Stokes equations can be replaced by any of the followings:

∂(ρH)
∂t

− ∂p

∂t
+ div(ρvH) = div (τv) − div q, (4.5.9)

ρ
DH

Dt
− ∂p

∂t
= div (τv) − div q, (4.5.10)

ρ
DE

Dt
+ div (pv) = div (τv) − div q, (4.5.11)

ρ
De

Dt
+ p div v = Φ − div q, (4.5.12)

ρ
Dh

Dt
− Dp

Dt
= Φ − div q. (4.5.13)

It is very nice that we have so many options for the energy equation. Naturally, the entropy equation/inequality can
also be used:

ρ
Ds

Dt
+ div

(q
T

)
= Φ

T
+ κ

T 2 (gradT ) · (gradT ) ≥ 0. (4.5.14)

4.6 Total Pressure Equation

I find it interesting that the governing equation for the total pressure, pt = p + ρv2/2, can be derived quite eas-
ily for steady incompressible flows. Take the dot product of the velocity and the steady version of the momentum
equation (4.1.2) to get

v · div(ρv⊗v) = −v · grad p+ v · div τ , (4.6.1)

which becomes by the vector identities (1.7.15) and (1.7.11), and the continuity equation

div
(
ρv v · v

2

)
+ v · v

2 ����div(ρv) = −div(pv) + p���div v + v · div τ . (4.6.2)

We thus obtain

div(ptv) = div (τv) − Φ, (4.6.3)

which can be written, by the continuity equation, as

(grad pt)v = div (τv) − Φ. (4.6.4)

where Φ is the dissipation term (4.5.2). This is the governing equation for the total pressure pt of steady incompressible
flows. I like it very much because it tells us some interesting physical behaviors of the total pressure in inviscid and
viscous flows. For inviscid flows, the right hand side vanishes, and the equation shows that the total pressure is
constant along the streamline. For viscous flows, the second term on the right hand side acts as dissipation, and it
only decreases the total pressure. On the other hand, the first term on the right hand side can be locally positive and
therefore can increase the total pressure although the global effect is zero provided no external forces are applied at
the domain boundary. This is an interesting observation, first made in Ref.[55]. In Ref.[55], a local rise in the total
pressure is actually demonstrated for a two-dimensional viscous stagnation flow and a three-dimensional viscous flow
over a sphere.

4.7 Zero Divergence and Viscous Force on Solid Body

Consider the continuity equation for steady compressible flows:

div(ρv) = 0, (4.7.1)
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which can be written by Equation (1.7.11) as

ρ div v + gradρ · v = 0. (4.7.2)

Now, suppose we apply the no-slip condition on a solid body, i.e., v = 0. Then, we obtain

div v = 0. (4.7.3)

This is interesting. It says that the velocity divergence vanishes on a solid body in steady compressible flows. I like it
because it means that compressibility has no impact on the viscous force acting on a solid body:

τ |body = λ����(div v)I + µ
[
grad v + (grad v)t

]
= µ

[
grad v + (grad v)t

]
, (4.7.4)

which may be integrated over the body to calculate the viscous force. It is even more interesting to attempt to calculate
the viscous force. Consider the viscous force acting on an infinitesimal surface element on the body:

τ |body n dS = µ
[
grad v + (grad v)t

]
n dS, (4.7.5)

where dS is the infinitesimal surface element and n is the unit outward normal vector. We write it as

τ |body n dS = µ
[
grad v − (grad v)t

]
n dS + 2µ(grad v)t n dS. (4.7.6)

Then, we can show that the last term vanishes on the body. First, I can easily show that

(grad v)t n dS = grad qn dS, (4.7.7)

where qn = v · n. The gradient of the normal velocity can be decomposed into three orthogonal directions: the normal
direction and two tangential directions.

grad qn = ∂qn
∂n

n + ∂qn
∂ℓ

ℓ + ∂qn
∂m

m, (4.7.8)

where the tangential directions are denoted by ℓ and m, and their unit vectors are denoted by ℓ and m, respectively.
We then immediately find that the tangential derivatives vanish by the no-slip condition (i.e., no suction or injection):

(grad v)t n dS = ∂qn
∂n

n dS. (4.7.9)

Does this vanish also? Yes, it does. Recall that the velocity divergence vanishes on the body, which can be expressed
in the orthogonal coordinates taken with respect to the normal direction:

div v = ∂qn
∂n

+ ∂qℓ
∂ℓ

+ ∂qm
∂m

= 0. (4.7.10)

The no-slip condition implies that the tangential velocities are uniformly zero in the tangential directions on the body.
Therefore, their derivatives vanish, and we are left with

∂qn
∂n

= 0, (4.7.11)

on the body, and thus we do have

(grad v)t n dS = 0. (4.7.12)

We therefore conclude that

τ |body n dS = µ
[
grad v − (grad v)t

]
n dS. (4.7.13)

I like it because it can be written by Equation (1.7.6) as

τ |body n dS = µ (curl v × n) dS = µ (ω × n) dS. (4.7.14)

This is interesting. The viscous force can be calculated by integrating the vorticity over the body. The result is, of
course, valid also for incompressible flows [11, 122]. So, if your CFD code produces accurate vorticity on the body, the
viscous force can be calculated by integrating it over the body for steady incompressible/compressible flows.
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4.8 1D Navier-Stokes Equations

The 1D Navier-Stokes equations in conservative form:

∂U
∂t

+ ∂F
∂x

= 0, (4.8.1)

where

U =

 ρ

ρu

ρE

 , F =

 ρu

ρu2 + p− τxx

ρuH − τxxu+ qx

 , (4.8.2)

τxx = (2µ+ λ)∂u
∂x
, (4.8.3)

qx = −k ∂T
∂x

= − µ

Pr(γ − 1)
∂a2

∂x
= − γµ

Pr(γ − 1)
∂

∂x

(
p

ρ

)
. (4.8.4)

I like that Stokes’ hypothesis (λ = − 2
3µ) simplifies the viscous stress to

τxx = 4
3
µ
∂u

∂x
. (4.8.5)

Incidentally, the dissipation term (4.5.2) becomes

Φ = 2µ
(
∂u

∂x

)2

+ λ

(
∂u

∂x

)2

, (4.8.6)

which is always positive, of course. I like this dissipation term, but it is not needed in the conservative form (4.8.1).

4.9 2D Navier-Stokes Equations

The 2D Navier-Stokes equations in conservative form:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= 0, (4.9.1)

where

U =


ρ

ρu

ρv

ρE

 , (4.9.2)

F =


ρu

ρu2 + p− τxx

ρuv − τyx

ρuH − τxxu− τxyv + qx

 , (4.9.3)

G =


ρv

ρuv − τxy

ρv2 + p− τyy

ρvH − τyxu− τyyv + qy

 , (4.9.4)
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τxx = 2µ∂u
∂x

+ λ

(
∂u

∂x
+ ∂v

∂y

)
, (4.9.5)

τyy = 2µ∂v
∂y

+ λ

(
∂u

∂x
+ ∂v

∂y

)
, (4.9.6)

τxy = τyx = µ

(
∂u

∂y
+ ∂v

∂x

)
, (4.9.7)

qx = −k ∂T
∂x

= − µ

Pr(γ − 1)
∂a2

∂x
= − γµ

Pr(γ − 1)
∂

∂x

(
p

ρ

)
, (4.9.8)

qy = −k ∂T
∂y

= − µ

Pr(γ − 1)
∂a2

∂y
= − γµ

Pr(γ − 1)
∂

∂y

(
p

ρ

)
. (4.9.9)

I like again that Stokes’ hypothesis (λ = − 2
3µ) simplifies the viscous stresses to

τxx = 2
3
µ

(
2∂u
∂x

− ∂v

∂y

)
, (4.9.10)

τyy = 2
3
µ

(
2∂v
∂y

− ∂u

∂x

)
. (4.9.11)

Again, the dissipation term (4.5.2) is always positive:

Φ = µ

[
2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+
(
∂v

∂x
+ ∂u

∂y

)2
]

+ λ

(
∂u

∂x
+ ∂v

∂y

)2

. (4.9.12)

I like this dissipation term, but again it has nothing to do with the conservative form (4.9.1).

4.10 3D Navier-Stokes Equations

The 3D Navier-Stokes equations in conservative form:
∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0, (4.10.1)

where

U =



ρ

ρu

ρv

ρw

ρE


, (4.10.2)

F =



ρu

ρu2 + p− τxx

ρuv − τyx

ρuw − τzx

ρuH − τxxu− τxyv − τxzw + qx


, (4.10.3)

G =



ρv

ρvu− τxy

ρv2 + p− τyy

ρvw − τzy

ρvH − τyxu− τyyv − τyzw + qy


, (4.10.4)
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H =



ρw

ρwu− τxz

ρwv − τyz

ρw2 + p− τzz

ρwH − τzxu− τzyv − τzzw + qz


, (4.10.5)

τxx = 2µ∂u
∂x

+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (4.10.6)

τyy = 2µ∂v
∂y

+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (4.10.7)

τzz = 2µ∂w
∂z

+ λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (4.10.8)

τxy = τyx = µ

(
∂u

∂y
+ ∂v

∂x

)
, (4.10.9)

τxz = τzx = µ

(
∂w

∂x
+ ∂u

∂z

)
, (4.10.10)

τyz = τzy = µ

(
∂v

∂z
+ ∂w

∂y

)
, (4.10.11)

qx = −k ∂T
∂x

= − µ

Pr(γ − 1)
∂a2

∂x
= − γµ

Pr(γ − 1)
∂

∂x

(
p

ρ

)
, (4.10.12)

qy = −k ∂T
∂y

= − µ

Pr(γ − 1)
∂a2

∂y
= − γµ

Pr(γ − 1)
∂

∂y

(
p

ρ

)
, (4.10.13)

qz = −k ∂T
∂z

= − µ

Pr(γ − 1)
∂a2

∂z
= − γµ

Pr(γ − 1)
∂

∂z

(
p

ρ

)
. (4.10.14)

Of course, I like Stokes’ hypothesis (λ = − 2
3µ) which simplifies the viscous stresses to

τxx = 2
3
µ

(
2∂u
∂x

− ∂v

∂y
− ∂w

∂z

)
, (4.10.15)

τyy = 2
3
µ

(
2∂v
∂y

− ∂u

∂x
− ∂w

∂z

)
, (4.10.16)

τzz = 2
3
µ

(
2∂w
∂z

− ∂u

∂x
− ∂v

∂y

)
. (4.10.17)

Yes, I like the dissipation term (4.5.2) that is always positive:

Φ = µ

[
2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+ 2
(
∂w

∂z

)2

+
(
∂v

∂x
+ ∂u

∂y

)2

+
(
∂w

∂y
+ ∂v

∂z

)2

+
(
∂u

∂z
+ ∂w

∂x

)2
]

+λ
(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2

, (4.10.18)

which is again irrelevant to the conservative form (4.10.1).

4.11 Axisymmetric Navier-Stokes Equations
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I like the axisymmetric Navier-Stokes equations as much as the axisymmetric Euler equations in Section 3.7. Again,
these equations describe a three-dimensional flow but formally two-dimensional equations. Since the inviscid part is
already described in Section 3.7, here we focus on the viscous terms.

Consider cylindrical coordinates in Figure 1.5.1, where the velocity is denoted by v = [ur, uθ, uz]t and the heat flux
is denoted by q = [qr, qθ, qz]t. By taking the z-axis as the axis of symmetry, we assume an axisymmetric flow with
uθ = 0 and ∂/∂θ = 0. First, the divergence of the heat flux can be written by Equation (1.5.23) as

−div q = −1
r

∂(rqr)
∂r

−
�

�
�1

r

∂qθ
∂θ

− ∂qz
∂z

. (4.11.1)

Next, the divergence of the viscous stresses in the momentum equations is given by (see Equation (1.5.45))

div τ = div


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 =



1
r

∂(rτrr)
∂r

+
�
�

��1
r

∂τrθ
∂θ

+ ∂τrz
∂z

− τθθ
r

�����1
r

∂(rτθr)
∂r

+
�

�
��1

r

∂τθθ
∂θ

+
�

��∂τθz
∂z

+
�
�τrθ
r

1
r

∂(rτzr)
∂r

+
�
�

��1
r

∂τzθ
∂θ

+ ∂τzz
∂z


. (4.11.2)

where the viscous stress tensor is given by

τ = λ(div v)I + µ
[
grad v + (grad v)t

]

= λ

(
1
r

∂(rur)
∂r

+
�
�
�1

r

∂uθ
∂θ

+ ∂uz
∂z

)
I + µ


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��∂uθ
∂r

∂uz
∂r

�
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r
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−
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�
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= λ

(
∂ur
∂r

+ ∂uz
∂z

+ ur
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)
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0 ∂ur
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0 0 0
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+ ∂ur
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
0 0 0

0 2µur
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0

0 0 0

 . (4.11.3)

Therefore, we have

div τ = div τ ′ + s, (4.11.4)

where

div τ ′ = div


τ ′
rr τ ′

rθ τ ′
rz

τ ′
θr τ ′

θθ τ ′
θz

τ ′
zr τ ′

zθ τ ′
zz

 =



1
r

∂(rτ ′
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+ ∂τ ′
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1
r

∂(rτ ′
zr)

∂r
+ ∂τ ′
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∂z


, s =


−2µur

r2 − λ

r

(
∂ur
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+ ∂uz
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r
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0

0

 , (4.11.5)

τ ′ = λ

(
∂ur
∂r

+ ∂uz
∂z

+ ur
r

)
I + µ


2∂ur
∂r

0 ∂ur
∂z

+ ∂uz
∂r

0 0 0

∂uz
∂r

+ ∂ur
∂z

0 2∂uz
∂z

 . (4.11.6)
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It is clear that the θ-component is zero. Hence, we have only two equations: r- and z-components. Finally, the viscous
work term in the energy equation can be written as

τv = λ

(
∂ur
∂r

+ ∂uz
∂z

+ ur
r

)
I


ur

��uθ

uz

+ µ
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∂r

0 ∂ur
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+ ∂uz
∂r
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∂r

+ ∂ur
∂z

0 2∂uz
∂z
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
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 .

(4.11.7)

Clearly, the θ-component is zero, and we have τv = τ ′v, and thus

div(τv) = div(τ ′v). (4.11.8)

We are now ready to write the viscous terms in the two-dimensional form. Switch the z-equation and the r-equation
just for convenience, and replace (z, r) by (x, y), (qz, qr) by (qx, qy), and (uz, ur) by (u, v) to write

−div q = −1
y

(
∂(yqx)
∂x

+ ∂(yqy)
∂y

)
, (4.11.9)

div τ = 1
y


∂(yτxx)
∂x

+ ∂(yτxy)
∂y

∂(yτyx)
∂x

+ ∂(yτyy)
∂y

+


0

−2µv
y2 − λ

y

(
∂u

∂x
+ ∂v

∂y
+ v

y

)
 , (4.11.10)

τ =
[
τxx τxy
τyx τyy

]
= λ

(
∂u

∂x
+ ∂v

∂y
+ v

y

)
I + µ


2∂u
∂x

∂u

∂y
+ ∂v

∂x

∂v

∂x
+ ∂u

∂y
2∂v
∂y

 , (4.11.11)

div(τv) = 1
y


∂(yτxxu)

∂x
+ ∂(yτxyv)

∂y

∂(yτyxu)
∂x

+ ∂(yτyyv)
∂y

 , (4.11.12)

where v and q are now two-dimensional vectors, and τ is a two-dimensional tensor. It is important to note that the
velocity divergence in the viscous stress tensor (4.11.11) has an extra term v/y, and the same for the second component
of the source term in the viscous-stress divergence (4.11.10). Finally, the axisymmetric Navier-Stokes equations can
be written as

(yU)t + (yF)x + (yG)y = (yFv)x + (yGv)y + S, (4.11.13)

where

U =


ρ
ρu
ρv
ρE

 , F =


ρu

ρu2 + p
ρuv
ρuH

 , G =


ρv
ρuv

ρv2 + p
ρvH

 , (4.11.14)

Fv =
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τxx

τyx

τxxu+ τxyv − qx
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τxy

τyy

τyxu+ τyyv − qy

 ,S =



0

0

p− 2µv
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(
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+ v

y

)
0


.(4.11.15)
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As in the inviscid case, following Ref.[173], we can express the axisymmetric form and the two-dimensional form in a
single form with a logical switch, ω = 0 for the two-dimensional form and ω = 1 for the axisymmetric form:

(ωaU)t + (ωaF)x + (ωaG)y = (ωaFv)x + (ωaGv)y + ω S, (4.11.16)

where

ωa = (1 − ω) + ω y. (4.11.17)

This is really nice. If you have a two-dimensional Navier-Stokes code, you almost have an axisymmetric Navier-Stokes
code, which is essentially a three-dimensional CFD code. I really like it very much.

4.12 3D Normal Viscous Flux and Jacobian

Often, we consider the inviscid and viscous fluxes separately. The viscous flux of the Navier-Stokes equations,
denoted by Fv, Gv, Hv, are given by

Fv =



0
−τxx
−τyx
−τzx

−τvx + qx


, Gv =



0
−τxy
−τyy
−τzy

−τvy + qy


, Hv =



0
−τxz
−τyz
−τzz

−τvz + qz


, (4.12.1)

where

τvx = τxxu+ τxyv + τxzw, (4.12.2)
τvy = τyxu+ τyyv + τyzw, (4.12.3)
τvz = τzxu+ τzyv + τzzw. (4.12.4)

It is so much simpler than the inviscid flux. I like it very much. In CFD, we often deal with the flux projected along
a particular direction, e.g., normal to a control volume boundary. Let n = [nx, ny, nz]t be a unit vector. Then, the
viscous flux along n, denoted by Fn, is given by

Fvn = Fvnx + Gv
ny + Hv

nz =



0
−τnx
−τny
−τnz

−τnv + qn


, (4.12.5)

where

τnx = τxxnx + τxyny + τxznz, (4.12.6)
τny = τyxnx + τyyny + τyznz, (4.12.7)
τnz = τzxnx + τzyny + τzznz, (4.12.8)
τnv = τnxu+ τnyv + τnzw, (4.12.9)
qn = qxnx + qyny + qznz. (4.12.10)

All quantities above have been assumed to have been evaluated at some average state, which is indicated by the over
bar. For example, in finite-volume methods, the normal viscous flux Fvn needs to be computed at control-volume
boundary faces, and n denotes the normal vector. I like the normal viscous flux because all we need for the heat flux
is the normal gradient:

qn = −κn · gradT = − µ

Pr(γ − 1)
n · grad(a2) = − γµ

Pr(γ − 1)
n · grad

(
p

ρ

)
, (4.12.11)
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which we may write simply as

qn = −κ ∂T
∂n

= − µ

Pr(γ − 1)
∂a2

∂n
= − γµ

Pr(γ − 1)
∂

∂n

(
p

ρ

)
= − γµ

Pr(γ − 1)ρ

(
∂p

∂n
− p

ρ

∂ρ

∂n

)
, (4.12.12)

where ∂/∂n denotes the derivative along n, i.e., ∂/∂n = nx ∂/∂x + ny ∂/∂y + nz ∂/∂z. So, we need only one
derivative, i.e., the one along n. This is nice. I like it. On the other hand, the viscous stresses require the derivatives
in the other directions. To see this, recall that the viscous stress tensor is given by

τ = λ(div v)I + µ
[
grad v + (grad v)t

]
. (4.12.13)

Then, the viscous stress tensor projected along n is given by

τn =

 τnx

τny

τnz

 = λ(div v)n + µ
[
(grad v)n + (grad v)tn

]
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]
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(
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∂z

)


, (4.12.14)

where un = unx + v ny + wnz. It is clear from the above that it cannot be written in terms of only ∂/∂n, and
therefore we need all derivatives of the velocity components.

It is often necessary to differentiate the viscous flux, for example, when implicit schemes are constructed. Consider
the normal viscous Jacobian:

∂Fvn
∂U = ∂Fvn

∂W
∂W
∂U =


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1
ρ

0 0 0
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0 1
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0 0 1

ρ
0
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2

q2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1


,(4.12.15)

where U = [ρ, ρu, ρv, ρw, ρE]t and W = [ρ, u, v, w, p]t. Let us assume Stokes’ hypothesis and write the viscous
stresses as

τnx = µ snx, τny = µ sny, τnz = µ snz, τnv = µ snv, (4.12.16)

where snv = snxu+ snyv + snzw, and

snx = sxxnx + sxyny + sxznz, sny = syxnx + syyny + syznz, snz = szxnx + szyny + szznz, (4.12.17)

sxx = 2
3

(
2∂u
∂x

− ∂v

∂y
− ∂w

∂z

)
, syy = 2

3
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2∂v
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)
, szz = 2

3

(
2∂w
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− ∂u

∂x
− ∂v

∂y

)
, (4.12.18)

sxy = syx = ∂u

∂y
+ ∂v

∂x
, sxz = szx = ∂w

∂x
+ ∂u

∂z
, syz = szy = ∂v

∂z
+ ∂w

∂y
. (4.12.19)
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The derivative of τnx can be obtained as follows.
∂τnx
∂W = ∂µ
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∂w

,
∂µ
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. (4.12.20)

Similarly, we have

∂τny
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, (4.12.21)

∂τnv
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∂τny
∂v

,
∂w

∂w
τnz + w

∂τnz
∂w

,
∂µ

∂p
snv

]

=



∂µ

∂T

∂T

∂ρ
snv

µ snx
∂u

∂u
+ µ

(
unx − 2

3
un

)
∂

∂u

∂u

∂x
+ µu

∂

∂u

∂u

∂n

µ sny
∂v

∂v
+ µ

(
vny − 2

3
un

)
∂

∂v

∂v

∂y
+ µ v

∂

∂v

∂v

∂n

µ snz
∂w

∂w
+ µ

(
wnz − 2

3
un

)
∂

∂w

∂w

∂z
+ µw

∂

∂w

∂w

∂n

∂µ

∂T

∂T

∂p
snv



t

. (4.12.22)
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On the other hand, the heat flux can be differentiated as follows.

∂qn
∂W = − 1

Pr(γ − 1)

[
∂µ

∂ρ

∂T

∂n
+ µ

∂

∂ρ

∂T

∂n
, 0, 0, 0, ∂µ

∂p

∂T

∂n
+ µ

∂

∂p

∂T

∂n

]

= − 1
Pr(γ − 1)

[
∂µ

∂T

∂T

∂ρ

∂T

∂n
+ µ

∂

∂ρ

∂T

∂n
, 0, 0, 0, ∂µ

∂T

∂T

∂p

∂T

∂n
+ µ

∂

∂p

∂T

∂n

]
. (4.12.23)

For Sutherland’s law (4.4.4), the derivative ∂µ/∂T is given by

∂µ

∂T
= ∂

∂T

(
µ0
T0 + C

T + C

(
T

T0

) 3
2
)
∂T

∂T
= µ0µ

2(T + C/T0)

(
1 + 3 C

T0
T

)
∂T

∂T
. (4.12.24)

That is all we need to compute the viscous Jacobian (4.12.15). I like it because it is a general expression; the specific
form depends on how the interface values, i.e., the quantities and derivatives with the over bar, are defined. For
example, if the temperature T is evaluated as the average of two states, TL and TR, and the Jacobian is sought with
respect to the left state, then

∂T

∂TL
= ∂

∂TL

(
TL + TR

2

)
= 1

2
. (4.12.25)

Also, if the normal derivative is evaluated by the difference between the two states,

∂u

∂n
= uR − uL

∆s
, (4.12.26)

where ∆s is the distance between the two states, then the derivative with respect to the left state is given by

∂

∂uL

∂u

∂n
= −1

∆s
. (4.12.27)

It really depends on the discretization method, but the derivatives not in the normal direction such as ∂
∂u

∂u
∂x can often

become a source of difficulty. For example, on unstructured grids, these derivatives (as well as a part of the normal
gradient) lead to a non-compact stencil [49] and the Jacobian matrix can become prohibitively large. In such a case,
these derivatives are often ignored in the construction of the Jacobian matrix. The corresponding discretization is then
not consistent, but it is perhaps OK for the Jacobian matrix as it acts only as a driver in implicit solvers. As long as
the residual (i.e., the right hand side of the implicit formulation) is constructed by a consistent scheme, accuracy is
obtained at convergence although the convergence may not be optimal [111, 157].

4.13 Expanded Form of Viscous Terms

Sometimes, it is convenient to expand the Navier-Stokes equations in terms of the derivatives of the primitive
variables. As we have shown the expanded form already for the Euler equations in Section 3.6.1, we here focus on the
viscous part only:

∂Fv

∂x
+ ∂Gv

∂y
+ ∂Hv

∂z
=



−∂τxx
∂x

− ∂τxy
∂y

− ∂τxz
∂z

−∂τyx
∂x

− ∂τyy
∂y

− ∂τyz
∂z

−∂τzx
∂x

− ∂τzy
∂y

− ∂τzz
∂z

−∂τvx
∂x

− ∂τvy
∂y

− ∂τvz
∂z

+ ∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z


, (4.13.1)
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where

∂τxx
∂x

= 2∂µ
∂x

∂u

∂x
+ 2µ∂

2u

∂x2 + ∂λ

∂x

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ λ

∂

∂x

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (4.13.2)

∂τyy
∂y

= 2∂µ
∂y

∂v

∂y
+ 2µ∂

2v

∂y2 + ∂λ

∂y

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ λ

∂

∂y

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (4.13.3)

∂τzz
∂z

= 2∂µ
∂z

∂w

∂z
+ 2µ∂

2w

∂z2 + ∂λ

∂z

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ λ

∂

∂z

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (4.13.4)

∂τxy
∂x

= ∂τyx
∂x

= ∂µ

∂x

(
∂u

∂y
+ ∂v

∂x

)
+ µ

∂

∂x

(
∂u

∂y
+ ∂v

∂x

)
, (4.13.5)

∂τxy
∂y

= ∂τyx
∂y

= ∂µ

∂y

(
∂u

∂y
+ ∂v

∂x

)
+ µ

∂

∂y

(
∂u

∂y
+ ∂v

∂x

)
, (4.13.6)

∂τxz
∂x

= ∂τzx
∂x

= ∂µ

∂x

(
∂w

∂x
+ ∂u

∂z

)
+ µ

∂

∂x

(
∂w

∂x
+ ∂u

∂z

)
, (4.13.7)

∂τxz
∂z

= ∂τzx
∂z

= ∂µ

∂z

(
∂w

∂x
+ ∂u

∂z

)
+ µ

∂

∂z

(
∂w

∂x
+ ∂u

∂z

)
, (4.13.8)

∂τyz
∂y

= ∂τzy
∂y

= ∂µ

∂y

(
∂v

∂z
+ ∂w

∂y

)
+ µ

∂

∂y

(
∂v

∂z
+ ∂w

∂y

)
, (4.13.9)

∂τyz
∂z

= ∂τzy
∂z

= ∂µ

∂z

(
∂v

∂z
+ ∂w

∂y

)
+ µ

∂

∂z

(
∂v

∂z
+ ∂w

∂y

)
, (4.13.10)

∂τvx
∂x

= u
∂τxx
∂x

+ v
∂τxy
∂x

+ w
∂τxz
∂x

+ τxx
∂u

∂x
+ τxy

∂v

∂x
+ τxz

∂w

∂x
, (4.13.11)

∂τvy
∂y

= u
∂τyx
∂y

+ v
∂τyy
∂y

+ w
∂τyz
∂y

+ τyx
∂u

∂y
+ τyy

∂v

∂y
+ τyz

∂w

∂y
, (4.13.12)

∂τvz
∂z

= u
∂τzx
∂z

+ v
∂τzy
∂z

+ w
∂τzz
∂z

+ τzx
∂u

∂z
+ τzy

∂v

∂z
+ τzz

∂w

∂z
, (4.13.13)

∂qx
∂x

= −γ
Pr(γ − 1)

[
∂µ

∂x

(
1
ρ

∂p

∂x
− p

ρ2
∂ρ

∂x

)
+ µ

(
− 2
ρ2
∂ρ

∂x

∂p

∂x
+ 1
ρ

∂2p

∂x2 + p

ρ3
∂ρ

∂x

∂ρ

∂x
− p

ρ2
∂2ρ

∂x2

)]
, (4.13.14)

∂qy
∂y

= −γ
Pr(γ − 1)

[
∂µ

∂y

(
1
ρ

∂p

∂y
− p

ρ2
∂ρ

∂y

)
+ µ

(
− 2
ρ2
∂ρ

∂y

∂p

∂y
+ 1
ρ

∂2p

∂y2 + p

ρ3
∂ρ

∂y

∂ρ

∂y
− p

ρ2
∂2ρ

∂y2

)]
, (4.13.15)

∂qz
∂z

= −γ
Pr(γ − 1)

[
∂µ

∂z

(
1
ρ

∂p

∂z
− p

ρ2
∂ρ

∂z

)
+ µ

(
− 2
ρ2
∂ρ

∂z

∂p

∂z
+ 1
ρ

∂2p

∂z2 + p

ρ3
∂ρ

∂z

∂ρ

∂z
− p

ρ2
∂2ρ

∂z2

)]
. (4.13.16)
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The derivatives of the viscosity can be computed for Sutherland’s law (4.4.4) by

∂µ

∂x
= ∂

∂T

(
µ0
T0 + C

T + C

(
T

T0

) 3
2
)
∂T

∂x
= µ0µ

2(T + C/T0)

(
1 + 3 C

T0
T

)
∂T

∂x
, (4.13.17)

∂µ

∂y
= ∂

∂T

(
µ0
T0 + C

T + C

(
T

T0

) 3
2
)
∂T

∂y
= µ0µ

2(T + C/T0)

(
1 + 3 C

T0
T

)
∂T

∂y
, (4.13.18)

∂µ

∂z
= ∂

∂T

(
µ0
T0 + C

T + C

(
T

T0

) 3
2
)
∂T

∂z
= µ0µ

2(T + C/T0)

(
1 + 3 C

T0
T

)
∂T

∂z
. (4.13.19)

The derivatives of λ can be easily computed from the above by Stokes’ hypothesis, λ = − 2
3µ. The derivatives of the

temperature can be computed from the derivatives of the density and the pressure. Again, I like this expanded form
because it can be useful in numerically computing the source term arising from the method of manufactured solutions.
Note that the form of the derivatives depends on the nondimensionalization for the viscosity and the temperature,
which is the subject of the next section.

4.14 Nondimensionalization

4.14.1 Nondimensionalized Navier-Stokes Equations
It is always nice to nondimensionalize the governing equations. For the Navier-Stokes equations, in addition to the
quantities introduced for the Euler equations in Section 3.11:

ρ∗ = ρ

ρr
, p∗ = p

ρrV 2
r

, e∗ = e

V 2
r

, v∗ = v
Vr
, x∗ = x

L
, t∗ = t

L/Vr
, (4.14.1)

we need to introduce nondimensionalized the temperature and the viscosity,

T ∗ = T

Tr
, µ∗ = µ

µr
. (4.14.2)

Substituting these quantities into the Navier-Stokes equations, (4.1.1), (4.1.2), (4.1.3), we obtain

∂ρ∗

∂t∗
+ div∗(ρ∗v∗) = 0, (4.14.3)

∂ (ρ∗v∗)
∂t∗

+ div∗(ρ∗v∗⊗v∗) + grad∗ p∗ = div∗ τ ∗, (4.14.4)

∂ (ρ∗E∗)
∂t∗

+ div∗(ρ∗v∗H∗) = div∗ (τ ∗v∗) − div∗ q∗, (4.14.5)

where E∗ = e∗ + v∗2

2 , H∗ = E∗ + p∗

ρ∗ . These are exactly the same as in the dimensional version, but the viscous stress
tensor and the heat flux vector have some dimensionless parameters,

τ ∗ = µr
ρrVrL

µ∗
[
−2

3
(div∗ v∗)I + grad∗ v∗ + (grad∗ v∗)t

]
, (4.14.6)

q∗ = − γRTrµr
ρrV 3

r L(γ − 1)Pr
µ∗grad∗ T ∗. (4.14.7)

Also, note that the equation of state (3.1.1) is now written as

p∗ =
(
RTr
V 2
r

)
ρ∗T ∗. (4.14.8)
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Therefore, a specific form of the equation of state as well as the viscous and heat fluxes depend on the choice of the
reference values: ρr, Vr, Tr, and µr. Note that because of the forms of the nondimensional pressure and specific
internal energy, the equation of state for the calorically perfect gas holds exactly as in the dimensional form:

p∗ = (γ − 1)ρ∗e∗, (4.14.9)

for any choice of the reference states (see Section 3.11), but the one with the temperature, i.e., p = ρRT , depends on
the reference states. Note that the governing equations are virtually in the same form as the dimensional form for an
appropriately defined scaled viscosity as shown below.

4.14.2 Free Stream Values
We may use the free stream values for the reference quantities, ρr = ρ∞, Vr = V∞, Tr = T∞, µr = µ∞:

ρ∗ = ρ

ρ∞
, p∗ = p

ρ∞V 2
∞
, e∗ = e

V 2
∞
, v∗ = v

V∞
, x∗ = x

L
, t∗ = t

L/V∞
, T ∗ = T

T∞
, µ∗ = µ

µ∞
. (4.14.10)

Then, the equation of state is given by

p∗ = ρ∗T ∗

γM2
∞
, (4.14.11)

and the viscous stress and the heat flux are given by,

τ ∗ = µ̂∗
[
−2

3
(div∗ v∗)I + grad∗ v∗ + (grad∗ v∗)t

]
, (4.14.12)

q∗ = − µ̂∗

(γ − 1)M2
∞Pr

grad∗ T ∗ = − γµ̂∗

(γ − 1)Pr
grad∗

(
p∗

ρ∗

)
, (4.14.13)

where the scaled viscosity µ̂∗ is defined by

µ̂∗ = µ∗

Re∞
, Re∞ = ρ∞V∞L

µ∞
. (4.14.14)

The free stream values are set as follows:

ρ∗
∞ = 1, p∗

∞ = 1
γM2

∞
, v∗

∞ = v∞

V∞
= n∞, e∗

∞ = 1
γ(γ − 1)M2

∞
, T ∗

∞ = 1, µ∗
∞ = 1. (4.14.15)

The nondimensionalized viscosity coefficient µ∗ is given by

µ∗ = µ

µ∞
= µ0

T0 + C

T + C

(
T

T0

) 3
2
[
µ0

T0 + C

T∞ + C

(
T∞

T0

) 3
2
]−1

= 1 + C/T∞

T ∗ + C/T∞
(T ∗)

3
2 , (4.14.16)

with C = 110.5 [K] for air. The derivative of the nondimensionalized viscosity coefficient is given by

∂µ∗

∂T ∗ = 1
2

µ∗

T ∗ + C/T∞

(
1 + 3C/T∞

T ∗

)
. (4.14.17)

Note that in order to set a free stream inflow condition, we need to specify not only the Mach number M∞ and the
free stream flow direction n∞, which are required for the Euler equations (see Section 3.11), but also the free stream
temperature T∞, e.g., T∞ = 293.15[K] for the sea-level condition. Of course, the free stream Reynolds number Re∞
must be specified, and also the Prandtl number Pr needs to be given (Pr = 0.72 for the sea-level air).

The Reynolds number Re∞ must be set carefully in relation to the reference length scale L because it is defined
based on L as in Equation (4.14.14). It is important to note that if you solve the nondimensionalized system on a
computational grid, then Re∞ is the Reynolds number based on the part having the length of 1 in the grid (i.e., in
the nondimensionalized coordinates, x∗). So, for example, if you want to simulate a flow around a cylinder where the
Reynolds number based on the diameter of the cylinder is 100, then you generate a grid around the cylinder with the
diameter 1 and set Re∞ = 100. On the other hand, if you are given a grid where the diameter of the cylinder is 2 in
the grid, then Re∞ is the Reynolds number based on the radius of the cylinder (which is 1 in the grid). Then, you
need to set Re∞ = 50 to simulate a flow with the Reynolds number 100 based on the diameter. Or if the diameter is
0.1 in the grid, then you need to set Re∞ = 1000 to simulate the desired flow.
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4.14.3 Speed of Sound
Instead of the free stream velocity V∞, we may use the free stream speed of sound for the reference velocity, Vr = a∞:

ρ∗ = ρ

ρ∞
, p∗ = p

ρ∞a2
∞
, e∗ = e

a2
∞
, v∗ = v

a∞
, x∗ = x

L
, t∗ = t

L/a∞
, (4.14.18)

T ∗ = T

T∞
, µ∗ = µ

µ∞
. (4.14.19)

Then, the equation of state is given by

p∗ = ρ∗T ∗

γ
, (4.14.20)

and the viscous stress and the heat flux are given by,

τ ∗ = µ̂∗
[
−2

3
(div∗ v∗)I + grad∗ v∗ + (grad∗ v∗)t

]
, (4.14.21)

q∗ = − µ̂∗

(γ − 1)Pr
grad∗ T ∗ = − γµ̂∗

(γ − 1)Pr
grad∗

(
p∗

ρ∗

)
, (4.14.22)

where the scaled viscosity µ̂∗ is defined by

µ̂∗ = M∞µ
∗

Re∞
. (4.14.23)

The free stream values are set as follows:

ρ∗
∞ = 1, p∗

∞ = 1
γ
, v∗

∞ = v∞

a∞
= M∞n∞, e∗

∞ = 1
γ(γ − 1)

, T ∗
∞ = 1, µ∗

∞ = 1. (4.14.24)

The nondimensionalized viscosity coefficient µ∗ is again given by Equation (4.14.16) as in the previous case. Therefore,
at a free stream inflow, again, we need to specify not only the Mach number M∞ and the free stream flow direction
n∞, but also the free stream temperature T∞ (not to mention Re∞ and Pr). I like this one, again, because the free
stream pressure is independent of M∞. In fact, this one is very widely used for compressible flow computations.

4.14.4 Stagnation Values
Instead of the free stream values, we may use the stagnation values for the reference quantities:

ρ∗ = ρ

ρ0
=
[
1 + γ − 1

2
M2
]− 1

γ−1

, p∗ = p

ρ0a2
0

= 1
γ

[
1 + γ − 1

2
M2
]− γ

γ−1

, (4.14.25)

e∗ = e

a2
0
, v∗ = v

a0
, x∗ = x

L
, t∗ = t

L/a0
, (4.14.26)

T ∗ = T

T0
=
[
1 + γ − 1

2
M2
]−1

, µ∗ = µ

µ∞
. (4.14.27)

Then, the equation of state is given by

p∗ = ρ∗T ∗

γ
, (4.14.28)

and the viscous stress and the heat flux are given by,

τ ∗ = µ̂∗
[
−2

3
(div∗ v∗)I + grad∗ v∗ + (grad∗ v∗)t

]
, (4.14.29)

q∗ = − µ̂∗

(γ − 1)Pr
grad∗ T ∗ = − γµ̂∗

(γ − 1)Pr
grad∗

(
p∗

ρ∗

)
, (4.14.30)



150 CHAPTER 4. NAVIER-STOKES EQUATIONS

where the scaled viscosity µ̂∗ is defined by

µ̂∗ = m∞µ
∗

Re∞
, m∞ = ρ∗

∞a
∗
∞ =

√
γρ∗

∞p
∗
∞ =

[
1 + γ − 1

2
M2

∞

]− γ+1
2(γ−1)

. (4.14.31)

In this case, the free stream values are set as follows:

ρ∗
∞ =

[
1 + γ − 1

2
M2

∞

]− 1
γ−1

, p∗
∞ = 1

γ

[
1 + γ − 1

2
M2

∞

]− γ
γ−1

, (4.14.32)

e∗ = T ∗
∞

γ(γ − 1)
, v∗

∞ = v∞

a∞

a∞

a0
= v∞

a∞
a∗

∞ = M∞n∞

√
γ
p∗

∞
ρ∗

∞
, (4.14.33)

T ∗
∞ =

[
1 + γ − 1

2
M2

∞

]−1

, µ∗
∞ = 1. (4.14.34)

The nondimensionalized viscosity coefficient µ∗ is again given by Equation (4.14.16) as in the previous case. Therefore,
in this case also, at a free stream inflow, we need to specify the Mach number M∞, the free stream flow direction n∞,
and the free stream temperature T∞, in addition to Re∞ and Pr.

4.15 Reduced Navier-Stokes Equations

I like reduced Navier-Stokes equations such as thin-layer, parabolized, or conical Navier-Stokes equations. They are ap-
proximated forms of the full Navier-Stokes equations and hence simpler and cheaper to solve than the full Navier-Stokes
equations. If you like them too, see Refs.[51, 155].

4.16 Quasi-Linear Form of the Navier-Stokes Equations

Often for various purposes (e.g., analysis, scheme development, etc.), it is nice to write the Navier-Stokes equa-
tions in the quasi-linear form,

Vt + AvVx + BvVy + CvVz = DvVxx + EvVyy + FvVzz + GvVxy + HvVyz + IvVzx, (4.16.1)

for some set of variables V, where the superscript v merely indicates that the coefficient matrices are associated with
V. To be able to do so, it is necessary to assume that the viscosity µ and the heat conductivity κ are constant. Also,
it is necessary to ignore non-linear terms which involve a product of derivatives. It will be, therefore, no longer the
full Navier-Stokes system. However, recall that not all terms are necessary to identify the type of partial differential
equations as discussed in Section 1.17. In fact, the quasi-linear form of the Navier-Stokes system retains the essential
feature of the full Navier-Stokes system; this is the form modeled by the scalar advection-diffusion or the viscous
Burgers equation. For example, a symmetric form of the quasi-linear Navier-Stokes system has been successfully used
in the development of convergence acceleration techniques [1, 72, 77, 167].

Consider the primitive form of the Navier-Stokes equations,

Dρ

Dt
+ ρ div v = 0, (4.16.2)

ρ
Dv
Dt

+ grad p = div τ , (4.16.3)

Dp

Dt
+ γp div v = (γ − 1) [τ : grad v − div q] . (4.16.4)

Obviously, the dissipation term (τ · grad v) involves products of derivatives and needs to be ignored. Also, a part of
the heat transfer term needs to be ignored as well. To see this, we first express T in terms of p and ρ,

T = 1
R

p

ρ
= γ

(γ − 1)cp
p

ρ
= 1
κ

µγ

(µcp/κ)(γ − 1)
p

ρ
, (4.16.5)
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thus

κT = µγ

Pr(γ − 1)
p

ρ
. (4.16.6)

Then, the heat transfer term can be written as

div q = −div (κ gradT )

= − µγ

Pr(γ − 1)
div grad

(
p

ρ

)
= − µγ

Pr(γ − 1)
div
(

1
ρ

gradp− p

ρ2 gradρ
)

= − µγ

Pr(γ − 1)

[
− 1
ρ2 gradρ · gradp+ 1

ρ
div gradp− grad

(
p

ρ2

)
· gradρ− p

ρ2 div gradρ
]
. (4.16.7)

Hence, the first and the third terms involve products of derivatives and need to be ignored. The pressure equation
then becomes

Dp

Dt
+ γp div v = µγ

ρPr

[
div gradp− p

ρ
div gradρ

]
. (4.16.8)

In this sense, therefore, the quasi-linear Navier-Stokes equations may be called linearized Navier-Stokes equations, or to
be precise the Navier-Stokes equations with the linearized energy equation. Clearly, the continuity equation is already in
the quasi-linear form. The momentum equation is also in the quasi-linear form, which can be clearly seen by expanding
the viscous term as follows,

div τ = div
[
λ(div v)I + µ grad v + µ (grad v)t

]
= λ grad (div v) + µ div grad v + µ div (grad v)t

= −2
3
µ grad (div v) + µ div (grad v)t + µ div grad v

= −2
3
µ grad (div v) + µ grad (div v) + µ div grad v

= 1
3
µ grad (div v) + µ div grad v, (4.16.9)

where we have assumed constant viscosity and Stokes’ hypothesis. This involves second-derivatives of the velocity
components only, and therefore it can be written in the form (4.16.1).

Linearized Navier-Stokes Equations

The linearized Navier-Stokes equations, with ν = µ/ρ and a2 = γp/ρ,

Dρ

Dt
+ ρ div v = 0, (4.16.10)

Dv
Dt

+ 1
ρ

grad p = 1
3
ν grad (div v) + ν div grad v, (4.16.11)

Dp

Dt
+ γp div v = νγ

Pr
div gradp− νa2

Pr
div gradρ, (4.16.12)

are now ready to be written out in the quasi-linear form (4.16.1) in one, two, and three dimensions.



152 CHAPTER 4. NAVIER-STOKES EQUATIONS

4.16.1 1D Quasi-Linear Navier-Stokes Equations
Primitive Form

The primitive form in one dimension is given by

ρt + uρx + ρux = 0, (4.16.13)

ut + uux + 1
ρ
px = 4ν

3
uxx, (4.16.14)

pt + upx + γpux = νγ

Pr
pxx − νa2

Pr
ρxx. (4.16.15)

This can be written in the form:

Wt + AwWx = DwWxx, (4.16.16)

where

W =

 ρ

u

p

 , Aw =

 u ρ 0
0 u 1/ρ
0 γp u

 , Dw =

 0 0 0
0 4ν/3 0

−a2ν/Pr 0 νγ/Pr

 . (4.16.17)

Symmetric Form

I like the following variables,

dV =

[
a dρ

ρ
√
γ
, du,

a dT

T
√
γ(γ − 1)

]t
, (4.16.18)

where a =
√
γ pρ , since the quasi-linear Navier-Stokes system is symmetrized by these variables [1]. Naturally, these

variables are called symmetrizing variables, and often called parabolic symmetrizing variables to distinguish them
from the symmetrizing variables for the Euler equations (3.5.28) which are in contrast called hyperbolic symmetrizing
variables.

The primitive variables W and the symmetrizing variables V are transformed into each other as follows.

dV = ∂V
∂W dW, dW = ∂W

∂V dV, (4.16.19)

where

∂V
∂W =



a

ρ
√
γ

0 0

0 1 0

− a

ρ
√
γ(γ − 1)

0 a

p
√
γ(γ − 1)

 , (4.16.20)

∂W
∂V =

(
∂V
∂W

)−1

=



ρ
√
γ

a
0 0

0 1 0

ρa
√
γ

0 ρa
√
γ − 1

√
γ


. (4.16.21)

The primitive form is now transformed, with ∂V
∂W multiplied from the left, into the symmetric form:

Vt + AvVx = DvVxx, (4.16.22)
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where

Av = ∂V
∂W Aw ∂W

∂V =


u

a
√
γ

0

a
√
γ

u
a
√
γ − 1
√
γ

0 a
√
γ − 1
√
γ

u

 , Dv = ∂V
∂W Dw ∂W

∂V =


0 0 0

0 4
3
ν 0

0 0 νγ

Pr

 . (4.16.23)

It is clear from these matrices that the system is indeed symmetric. Note that in transforming the viscous term we
have ignored again non-linear terms involving products of derivatives:

∂V
∂W DwWxx =

(
∂V
∂W Dw ∂W

∂V

)
∂V
∂W Wxx

= Dv

[
∂

∂x

(
∂V
∂WWx

)
− ∂

∂x

(
∂V
∂W

)
Wx

]
≈ Dv Vxx. (4.16.24)

Or equivalently, it can be thought of as the transformation matrix ∂V
∂W being frozen at a certain constant state (so

that its derivative is zero).

4.16.2 2D Quasi-Linear Navier-Stokes Equations
Primitive Form

The primitive form in two dimensions is given by

ρt + uρx + ρux + vρy + ρvy = 0, (4.16.25)

ut + uux + vuy + 1
ρ
px = 4ν

3
uxx + ν

3
vyx + νuyy, (4.16.26)

vt + uvx + vvy + 1
ρ
py = νvxx + ν

3
uxy + 4ν

3
vyy, (4.16.27)

pt + upx + vpy + γpux + γpvy = νγ

Pr
(pxx + pyy) − νa2

Pr
(ρxx + ρyy). (4.16.28)

This can be written in the form:

Wt + AwWx + BwWy = DwWxx + GwWxy + EwWyy, (4.16.29)

where W = [ρ, u, v, p]t,

Aw =


u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 γp 0 u

 , Bw =


v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 γp v

 , (4.16.30)

Dw =


0 0 0 0
0 4ν/3 0 0
0 0 ν 0

−a2ν/Pr 0 0 νγ/Pr

 , Gw =


0 0 0 0
0 0 ν/3 0
0 ν/3 0 0
0 0 0 0

 , (4.16.31)

Ew =


0 0 0 0
0 ν 0 0
0 0 4ν/3 0

−a2ν/Pr 0 0 νγ/Pr

 . (4.16.32)
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Symmetric Form

The symmetrizing variables,

dV =

[
a dρ

ρ
√
γ
, du, dv,

a dT

T
√
γ(γ − 1)

]t
, (4.16.33)

and the primitive variables W = [ρ, u, v, p]t are transformed to each other by the following matrices:

∂V
∂W =



a

ρ
√
γ

0 0 0

0 1 0 0

0 0 1 0

− a

ρ
√
γ(γ − 1)

0 0 a

p
√
γ(γ − 1)


, (4.16.34)

∂W
∂V =



ρ
√
γ

a
0 0 0

0 1 0 0

0 0 1 0

aρ
√
γ

0 0 aρ
√
γ − 1

√
γ


. (4.16.35)

The primitive form is now transformed, with ∂V
∂W multiplied from the left, into the symmetric form:

Vt + AvVx + BvVy = DvVxx + GvVxy + EvVyy, (4.16.36)

where

Av =



u
a

√
γ

0 0

a
√
γ

u 0 a

√
γ − 1
γ

0 0 u 0

0 a

√
γ − 1
γ

0 u


, Bv =



v 0 a
√
γ

0

0 v 0 0

a
√
γ

0 v a

√
γ − 1
γ

0 0 a

√
γ − 1
γ

v


, (4.16.37)

Dv =



0 0 0 0

0 4
3
ν 0 0

0 0 ν 0

0 0 0 νγ

Pr


, Gv =



0 0 0 0

0 0 ν

3
0

0 ν

3
0 0

0 0 0 0


, (4.16.38)

Ev =



0 0 0 0

0 ν 0 0

0 0 4
3
ν 0

0 0 0 νγ

Pr


. (4.16.39)



4.16. QUASI-LINEAR FORM OF THE NAVIER-STOKES EQUATIONS 155

4.16.3 3D Quasi-Linear Navier-Stokes Equations
Primitive Form

The primitive form in three dimensions is given by

ρt + uρx + ρux + vρy + ρvy + wρz + ρwz = 0, (4.16.40)

ut + uux + vuy + wuz + 1
ρ
px = 4ν

3
uxx + ν

3
vyx + ν

3
wzx + νuyy + νuzz, (4.16.41)

vt + uvx + vvy + wvz + 1
ρ
py = νvxx + ν

3
uxy + ν

3
wzy + 4ν

3
vyy + νvzz, (4.16.42)

wt + uwx + vwy + wwz + 1
ρ
pz = νwxx + ν

3
uxz + ν

3
vyz + νwyy + 4ν

3
wzz, (4.16.43)

pt + upx + vpy + wpz + γpux + γpvy + γpwz = νγ

Pr
(pxx + pyy + pzz) − νa2

Pr
(ρxx + ρyy + ρzz).(4.16.44)

This can be written in the form:

Wt + AwWx + BwWy + CwWz = DwWxx + EwWyy + FwWzz + GwWxy + HwWyz + IwWzx, (4.16.45)

where W = [ρ, u, v, w, p]t,

Aw =



u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 γp 0 0 u


, Bw =



v 0 ρ 0 0
0 v 0 0 0
0 0 v 0 1/ρ
0 0 0 v 0
0 0 γp 0 v


, Cw =



w 0 0 ρ 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1/ρ
0 0 0 γp w


, (4.16.46)

Dw =



0 0 0 0 0
0 4ν/3 0 0 0
0 0 ν 0 0
0 0 0 ν 0

−a2ν/Pr 0 0 0 νγ/Pr


, Ew =



0 0 0 0 0
0 ν 0 0 0
0 0 4ν/3 0 0
0 0 0 ν 0

−a2ν/Pr 0 0 0 νγ/Pr


, (4.16.47)

Fw =



0 0 0 0 0
0 ν 0 0 0
0 0 ν 0 0
0 0 0 4ν/3 0

−a2ν/Pr 0 0 0 νγ/Pr


, Gw =



0 0 0 0 0
0 0 ν/3 0 0
0 ν/3 0 0 0
0 0 0 0 0
0 0 0 0 0


, (4.16.48)

Hw =



0 0 0 0 0
0 0 0 0 0
0 0 0 ν/3 0
0 0 ν/3 0 0
0 0 0 0 0


, Iw =



0 0 0 0 0
0 0 0 ν/3 0
0 0 0 0 0
0 ν/3 0 0 0
0 0 0 0 0


. (4.16.49)

Symmetric Form

The symmetrizing variables,

dV =

[
a dρ

ρ
√
γ
, du, dv, dw,

a dT

T
√
γ(γ − 1)

]t
, (4.16.50)
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and the primitive variables W = [ρ, u, v, w, p]t are transformed to each other by the following matrices:

∂V
∂W =



a

ρ
√
γ

0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− a

ρ
√
γ(γ − 1)

0 0 0 a

p
√
γ(γ − 1)


, (4.16.51)

∂W
∂V =



ρ
√
γ

a
0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

aρ
√
γ

0 0 0 aρ
√
γ − 1

√
γ


. (4.16.52)

The primitive form is now transformed, with ∂V
∂W multiplied from the left, into the symmetric form:

Vt + AvVx + BvVy + CvVz = DvVxx + EvVyy + FvVzz + GvVxy + HvVyz + IvVzx, (4.16.53)

where

Av =



u
a

√
γ

0 0 0

a
√
γ

u 0 0 a

√
γ − 1
γ

0 0 u 0 0

0 0 0 u 0

0 a

√
γ − 1
γ

0 0 u


, Bv =



v 0 a
√
γ

0 0

0 v 0 0 0

a
√
γ

0 v 0 a

√
γ − 1
γ

0 0 0 v 0

0 0 a

√
γ − 1
γ

0 v


, (4.16.54)

Cv =



w 0 0 a
√
γ

0

0 w 0 0 0

0 0 w 0 0

a
√
γ

0 0 w a

√
γ − 1
γ

0 0 0 a

√
γ − 1
γ

w


, Dv =



0 0 0 0 0

0 4
3
ν 0 0 0

0 0 ν 0 0

0 0 0 ν 0

0 0 0 0 νγ

Pr


, (4.16.55)

Ev =



0 0 0 0 0

0 ν 0 0 0

0 0 4
3
ν 0 0

0 0 0 ν 0

0 0 0 0 νγ

Pr


, Fv =



0 0 0 0 0

0 ν 0 0 0

0 0 ν 0 0

0 0 0 4
3
ν 0

0 0 0 0 νγ

Pr


, (4.16.56)



4.17. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 157

Gv =



0 0 0 0 0

0 0 ν

3
0 0

0 ν

3
0 0 0

0 0 0 0 0

0 0 0 0 0


, Hv =



0 0 0 0 0

0 0 0 0 0

0 0 0 ν

3
0

0 0 ν

3
0 0

0 0 0 0 0


, (4.16.57)

Iv =



0 0 0 0 0

0 0 0 ν

3
0

0 0 0 0 0

0 ν

3
0 0 0

0 0 0 0 0


. (4.16.58)

4.17 Incompressible Navier-Stokes Equations

As I said before, I like incompressible fluids: constant density or small Mach number. So, of course, I like the incom-
pressible Navier-Stokes equations, which are obtained from the full Navier-Stokes equations by assuming ρ = constant.

Conservative Form of the Incompressible Navier-Stokes Equations

div ρv = 0, (4.17.1)

∂t(ρv) + div(ρv⊗v) + grad p− div τ = 0, (4.17.2)

ρcv
DT

Dt
− div (k gradT ) − Φ = 0. (4.17.3)

where

τ = µ
[
grad v + (grad v)t

]
, (4.17.4)

Φ = τ : grad v = µ
[
grad v + (grad v)t

]
: grad v. (4.17.5)

Primitive Form of the Incompressible Navier-Stokes Equations

div v = 0, (4.17.6)

ρ
Dv
Dt

+ grad p− div τ = 0, (4.17.7)

ρcv
DT

Dt
− div (k gradT ) − Φ = 0. (4.17.8)

If the viscosity coefficient is constant, the viscous term can be written as the Laplacian,

divτ = div
[
µ
{

grad v + (grad v)t
}]

= µ div grad v + µ div(grad v)t

= µ div grad v + µ grad(div v)
= µ div grad v, (4.17.9)
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which is nice. Then, assuming also that the heat conductivity is constant, we have

div v = 0, (4.17.10)

Dv
Dt

+ 1
ρ

grad p− ν div grad v = 0, (4.17.11)

ρcv
DT

Dt
− k div gradT − Φ = 0, (4.17.12)

where

ν = µ

ρ
. (4.17.13)

I like the fact that the energy equation (the temperature equation) is completely independent from other equations.
So, we can solve the continuity and momentum equations first (to determine the velocity field), and then, if necessary,
solve the energy equation separately for a given velocity field. Also, I like the idea of pseudo-compressibility. See
Section 4.21.

4.18 2D Incompressible Navier-Stokes Equations

I like the 2D incompressible Navier-Stokes equations in any of the following forms.

Conservative Form

∂(ρu)
∂x

+ ∂(ρv)
∂y

= 0, (4.18.1)

∂(ρu)
∂t

+ ∂(ρu2)
∂x

+ ∂(ρuv)
∂y

= −∂p

∂x
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂v

∂x

)
, (4.18.2)

∂(ρv)
∂t

+ ∂(ρuv)
∂x

+ ∂(ρv2)
∂y

= −∂p

∂y
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂x

(
µ
∂u

∂y

)
+ ∂

∂y

(
µ
∂v

∂y

)
, (4.18.3)

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ Φ, (4.18.4)

where

Φ = µ

[
2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+
(
∂v

∂x
+ ∂u

∂y

)2
]
. (4.18.5)

Primitive Form

∂u

∂x
+ ∂v

∂y
= 0, (4.18.6)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂v

∂x

)
, (4.18.7)
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ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂x

(
µ
∂u

∂y

)
+ ∂

∂y

(
µ
∂v

∂y

)
, (4.18.8)

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ Φ. (4.18.9)

Case of Constant Viscosity and Heat Conductivity

∂u

∂x
+ ∂v

∂y
= 0, (4.18.10)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂2u

∂y2

)
, (4.18.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2 + ∂2v

∂y2

)
, (4.18.12)

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂x2 + ∂2T

∂y2

)
+ Φ. (4.18.13)

4.19 3D Incompressible Navier-Stokes Equations

Of course, I like the 3D incompressible Navier-Stokes equations also in any of the following forms.

Conservative Form

∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

= 0, (4.19.1)

∂(ρu)
∂t

+ ∂(ρu2)
∂x

+ ∂(ρuv)
∂y

+ ∂(ρuw)
∂z

= −∂p

∂x
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂z

(
µ
∂u

∂z

)
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂v

∂x

)
+ ∂

∂z

(
µ
∂w

∂x

)
,

(4.19.2)

∂(ρv)
∂t

+ ∂(ρuv)
∂x

+ ∂(ρv2)
∂y

+ ∂(ρvw)
∂z

= −∂p

∂y
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂z

(
µ
∂v

∂z

)
+ ∂

∂x

(
µ
∂u

∂y

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂z

(
µ
∂w

∂y

)
,

(4.19.3)

∂(ρw)
∂t

+ ∂(ρuw)
∂x

+ ∂(ρvw)
∂y

+ ∂(ρw2)
∂z

= −∂p

∂z
+ ∂

∂x

(
µ
∂w

∂x

)
+ ∂

∂y

(
µ
∂w

∂y

)
+ ∂

∂z

(
µ
∂w

∂z

)
+ ∂

∂x

(
µ
∂u

∂z

)
+ ∂

∂y

(
µ
∂v

∂z

)
+ ∂

∂z

(
µ
∂w

∂z

)
,

(4.19.4)

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ Φ,

(4.19.5)
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where

Φ = µ

[
2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+ 2
(
∂w

∂z

)2

+
(
∂v

∂x
+ ∂u

∂y

)2

+
(
∂w

∂y
+ ∂v

∂z

)2

+
(
∂u

∂z
+ ∂w

∂x

)2
]
. (4.19.6)

Primitive Form

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (4.19.7)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂p

∂x
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂z

(
µ
∂u

∂z

)
+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂v

∂x

)
+ ∂

∂z

(
µ
∂w

∂x

)
, (4.19.8)

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z
= −∂p

∂y
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂z

(
µ
∂v

∂z

)
+ ∂

∂x

(
µ
∂u

∂y

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂

∂z

(
µ
∂w

∂y

)
, (4.19.9)

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z
= −∂p

∂z
+ ∂

∂x

(
µ
∂w

∂x

)
+ ∂

∂y

(
µ
∂w

∂y

)
+ ∂

∂z

(
µ
∂w

∂z

)
+ ∂

∂x

(
µ
∂u

∂z

)
+ ∂

∂y

(
µ
∂v

∂z

)
+ ∂

∂z

(
µ
∂w

∂z

)
, (4.19.10)

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ Φ.

(4.19.11)

Case of Constant Viscosity and Heat Conductivity

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (4.19.12)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
, (4.19.13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
, (4.19.14)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
, (4.19.15)

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= k

(
∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

)
+ Φ. (4.19.16)

4.20 Axisymmetric Incompressible Navier-Stokes Equations

I like the axisymmetric incompressible Navier-Stokes equations because they are much simpler than the compressible
version in Section 4.11. I really like the assumptions that ρ and µ are constant, and thus ν = µ/ρ is also constant.
Then, we write the continuity equation (4.17.1) and the conservative momentum equations (4.17.2) in cylindrical
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coordinates in Figure 1.5.1, where the velocity is denoted by v = (ur, uθ, uz):

1
r

∂(rur)
∂r

+ ∂uz
∂z

= 0, (4.20.1)

∂ur
∂t

+ 1
r

∂(ru2
r)

∂r
+ ∂(uruz)

∂z
= −∂(p/ρ)

∂r
+ ν

[
1
r

∂

∂r

(
r
∂ur
∂r

)
+ ∂2ur

∂z2 − ur
r

]
, (4.20.2)

∂uz
∂t

+ 1
r

∂(ruzur)
∂r

+ ∂(u2
z)

∂z
= −∂(p/ρ)

∂z
+ ν

[
1
r

∂

∂r

(
r
∂uz
∂r

)
+ ∂2uz

∂z2

]
, (4.20.3)

where the viscous terms are obtained by using the Laplacian form (4.17.9). Note that uθ = 0 for axisymmetric flows
and the momentum equation for uθ vanishes and therefore it is ignored in the above. Note also that the viscous terms
have been obtained by Equation (1.5.61), i.e., the Laplacian of a vector. The momentum equations in the primitive
form can be obtained from the primitive form also by directly writing out (gradv)v or by inserting the continuity
equation into the conservative momentum equations:

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

= −∂(p/ρ)
∂r

+ ν

[
1
r

∂

∂r

(
r
∂ur
∂r

)
+ ∂2ur

∂z2 − ur
r

]
, (4.20.4)

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

= −∂(p/ρ)
∂z

+ ν

[
1
r

∂

∂r

(
r
∂uz
∂r

)
+ ∂2uz

∂z2

]
. (4.20.5)

Now, as we have done in Section 4.11, we multiply all the equations by r, replace (r, z) by (y, x) and (ur, uz) by (v, u),
and reverse the order of the momentum equations to obtain the axisymmetric incompressible Navier-Stokes equations
in a form similar to the two-dimensional equations:

∂(yu)
∂x

+ ∂(yv)
∂y

= 0, (4.20.6)

∂(yu)
∂t

+ ∂(yu2)
∂x

+ ∂(yuv)
∂y

= −∂(yp/ρ)
∂x

+ ν

[
∂

∂x

(
y
∂u

∂x

)
+ ∂

∂y

(
y
∂u

∂y

)]
, (4.20.7)

∂(yv)
∂t

+ ∂(yvu)
∂x

+ ∂(yv2)
∂y

= −∂(yp/ρ)
∂y

+ ν

[
∂

∂x

(
y
∂v

∂x

)
+ ∂

∂y

(
y
∂v

∂y

)]
+ p

ρ
− ν

v

y
. (4.20.8)

In the vector form, it can be written as

(yU)t + (yF)x + (yG)y = (yFv)x + (yGv)y + S, (4.20.9)

where

U =

 0
u
v

 , F =

 u
u2 + p/ρ

uv

 , G =

 v
uv

v2 + p/ρ

 , (4.20.10)

Fv = ν


0

∂u/∂x

∂v/∂x

 , Gv = ν


0

∂u/∂y

∂v/∂y

 , S =


0

0

p/ρ− ν
v

y

 . (4.20.11)

Of course, in the same way as described in Section 4.11, we can express the axisymmetric form and the two-dimensional
form in a single form with a logical switch, ω = 0 for the two-dimensional form and ω = 1 for the axisymmetric form:

(ωaU)t + (ωaF)x + (ωaG)y = (ωaFv)x + (ωaGv)y + ω S, (4.20.12)

where

ωa = (1 − ω) + ω y. (4.20.13)
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This is really nice.
One of the reasons that I like the axisymmetric incompressible Navier-Stokes equations very much is that the stream

function ψ for axisymmetric flows can be easily found from the continuity equation (4.20.6):

u = 1
y

∂ψ

∂y
, v = −1

y

∂ψ

∂x
. (4.20.14)

Clearly, then, the continuity equation is automatically satisfied. It’s so simple. I like it.

4.21 Pseudo-Compressible Navier-Stokes Equations

Yes, I like the pseudo-compressible Navier-Stokes equations. Introduce the artificial density,

ρ∗ = p/a∗2, (4.21.1)
and add its time derivative to the continuity equation,

∂ρ∗

∂t∗
+ div ρv = 0, (4.21.2)

which can be written also as
∂P

∂t∗
+ div (a∗2v) = 0, (4.21.3)

where P = p/ρ which is the kinematic pressure. The incompressible Navier-Stokes equations with this modified
continuity equation are the pseudo-compressible Navier-Stokes equations [21, 75, 97, 132]:

∂P

∂t∗
+ div (a∗2v) = 0, (4.21.4)

∂v
∂t∗

+ div(v⊗v + P I) = div τ , (4.21.5)

where
τ = ν

[
grad v + (grad v)t

]
. (4.21.6)

The time derivative in the momentum equation is a real time derivative but not realistic when solved with the pseudo-
compressible continuity equation (so t∗ instead of t).

In Cartesian coordinates:
Ut∗ + Fx + Gy + Hz = Fvx + Gv

y + Hv
z , (4.21.7)

U =


P
u
v
w

 , F =


a∗2u
u2 + P
uv
uw

 , G =


a∗2v
uv

v2 + P
uw

 , H =


a∗2w
uv
vw

w2 + P

 , (4.21.8)

Fv = ν


0

2ux
uy + vx
uz + wx

 , Gv = ν


0

vx + uy
2vy

vz + wy

 , Hv = ν


0

wx + uz
wy + vz

2wz

 . (4.21.9)

If we assume that the viscosity is constant, then the viscous term can be simplified to the Laplacian as shown in
Equation (4.17.9),

∂v
∂t∗

+ div(v⊗v + P I) = ν div grad v, (4.21.10)

and therefore the viscous fluxes are given by

Fv = ν


0
ux
vx
wx

 , Gv = ν


0
uy
vy
wy

 , Hv = ν


0
uz
vz
wz

 . (4.21.11)

This is nice. I like it.
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4.22 Vorticity Transport Equation and Stream Function

The vorticity transport equation (the curl of the momentum equation (4.17.11)) is given by

ωt + uωx + v ωy = ν (ωxx + ωyy) , (4.22.1)

where ω = vx − uy is the vorticity. To solve this for ω, the velocity components (u, v) must be given or solved
simultaneously. A nice way to compute the velocity is to introduce the stream function ψ as

u = ψy, v = −ψx, (4.22.2)

so that the continuity equation is automatically satisfied, and that we see from ω = vx − uy that the stream function
satisfies the following:

ψxx + ψyy = −ω. (4.22.3)

That is, we now have two equations (4.22.1) and (4.22.3) for two unknowns (ω, ψ). So, we only need to solve these
two equations (4.22.1) and (4.22.3) to get ω and ψ, and determine the velocity field.

Once the velocity is obtained (via ψ), the pressure can be computed as a solution of the following Poisson equation
(the divergence of the momentum equations):

div grad p = 2ρ (uxvy − uyvx) = 2ρ
[
ψxxψyy − (ψxy)2] . (4.22.4)

These are the fundamental equations for the famous vorticity-stream function approach (see Ref.[155] for details). It
is nice that instead of solving three equations simultaneously (continuity and two momentum equations), we solve two
equations simultaneously and then solve one equation independently afterwards. I surely like these equations.

4.23 Vorticity Transport Equation and Vector Potential

For a three-dimensional incompressible flow, we write the velocity as follows,

v = gradϕ+ curl Ψ, (4.23.1)

where ϕ is a scalar potential and Ψ is a vector potential. Note that the first term on the right is curl-free while the
second term is divergence-free. This is called the Helmholtz decomposition. Substitute Equation (4.23.1) into the
continuity equation to find the governing equation of ϕ,

div gradϕ = 0. (4.23.2)

Substitute Equation (4.23.1) into the vorticity, ω = curl v, to get the governing equation of Ψ,

div grad Ψ = −ω. (4.23.3)

Also, take the curl of the momentum equations (4.17.11) to get the governing equation of ω,

Dω

Dt
= (grad v)ω + ν div grad ω. (4.23.4)

Now, we can determine the velocity field by solving the above seven equations, (4.23.2), (4.23.3), and (4.23.4). Once
the velocity field is determined, we can compute the pressure by solving the Poisson equation (the divergence of the
momentum equations):

div grad p = −div [div (ρv⊗v)] , (4.23.5)

whose components are

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂(ρvivj)
∂xj

]
. (4.23.6)
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We may use the continuity equation to write this as
∂

∂xi

(
∂p

∂xi

)
= −ρ ∂vj

∂xi

∂vi
∂xj

. (4.23.7)

In Cartesian coordinates, we can write the Poisson equation as

pxx + pyy + pzz = −(ρu2)xx − (ρuv)xy − (ρuw)xz
−(ρvu)yx − (ρv2)yy − (ρvw)yz
−(ρwu)zx − (ρwv)zy − (ρw2)zz, (4.23.8)

or we obtain directly from Equation (4.23.7)

pxx + pyy + pzz = −ρ
[
(ux)2 + (vy)2 + (wz)2 + 2uyvx + 2uzwx + 2wyvz

]
, (4.23.9)

which we can rewrite as (by the continuity equation)

pxx + pyy + pzz = 2ρ [uxvy + vywz + wzux − uyvx − uzwx − wyvz] . (4.23.10)

These equations are fundamental equations for vortex methods [29].

4.24 Stream Functions

I like stream functions. They are useful in generating as well as visualizing flows. In 2D, we have only one stream
function, and we get two velocity components from a scalar function. That is nice. However, in 3D, we need two
stream functions. That’s one more scalar function. But it is still nice compared with the vorticity, which has one
component in 2D but three components in 3D.

4.24.1 Three-Dimensional Stream Functions
I like to set Ψ = ψ gradχ and ϕ = 0 because then I find from Equation (4.23.1) that

v = curl Ψ
= curl (ψ gradχ)
= ψ curl(gradχ) + gradψ × gradχ
= gradψ × gradχ. (4.24.1)

This means that v is tangent to the two surfaces defined by ψ =constant and χ = constant, and so that these two
families of surfaces are composed of streamlines. Therefore, ψ and χ can be thought of as three-dimensional stream
functions. Of course, the continuity equation, div v = 0, is automatically satisfied because div(curl Ψ) = 0. This is very
interesting. In fact, various well-known two-dimensional stream functions can be derived from the three-dimensional
stream functions.

4.24.2 Cartesian Coordinates (2D)
Consider Cartesian coordinates (x, y, z), and denote the velocity components by v = [u, v, w]t. We can derive a
well-known two-dimensional stream function by setting ψ = ψ(x, y) and χ = z, i.e., Ψ = ψ gradχ = ψ ez. Equation
(4.24.1) becomes

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (4.24.2)

The governing equation of the stream function is given by curl v = ω, which becomes

∂2ψ

∂x2 + ∂2ψ

∂y2 = −ωz, (4.24.3)

where ω = (0, 0, ωz). For irrotational flows, the stream function satisfies the Laplace equation:

∂2ψ

∂x2 + ∂2ψ

∂y2 = 0. (4.24.4)

That is nice.
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4.24.3 Polar Coordinates (2D)
Consider cylindrical coordinates (r, θ, z), and denote the velocity components by v = [ur, vθ, uz]t. We can derive
a well-known two-dimensional stream function in polar coordinates by setting ψ = ψ(r, θ) and χ = z, i.e., Ψ =
ψ gradχ = ψ ez. Equation (4.24.1) becomes

ur = 1
r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (4.24.5)

The governing equation of the stream function is given by curl v = ω, which becomes in cylindrical coordinates

1
r

∂

∂r

(
r
∂ψ

∂r

)
+ 1
r2
∂2ψ

∂θ2 = −ωz. (4.24.6)

Hence, for irrotational flows, the stream function satisfies, again, the Laplace equation:

1
r

∂

∂r

(
r
∂ψ

∂r

)
+ 1
r2
∂2ψ

∂θ2 = 0. (4.24.7)

4.24.4 Axisymmetric Cylindrical Coordinates
We can derive the stream function for axisymmetric flows (i.e., uθ = 0, ∂/∂θ = 0) in cylindrical coordinates by setting
ψ = ψ(r, z) and χ = θ, i.e., Ψ = ψ gradχ = ψ eθ. Equation (4.24.1) becomes

ur = −1
r

∂ψ

∂z
, uz = 1

r

∂ψ

∂r
, (4.24.8)

where the axis of symmetry has been taken along the z-axis (see Figure 1.5.1). Axisymmetric flows do not have
variations in θ by definition, and therefore they are essentially two-dimensional. Here, the two-dimensional plane is
defined by the (z, r)-plane. The governing equation of the stream function is given by curl v = ω, which becomes in
cylindrical coordinates for axisymmetric flows

∂

∂z

(
1
r

∂ψ

∂z

)
+ ∂

∂r

(
1
r

∂ψ

∂r

)
= −ωθ, (4.24.9)

or equivalently

1
r

(
∂2ψ

∂z2 + ∂2ψ

∂r2 − 1
r

∂ψ

∂r

)
= −ωθ. (4.24.10)

Note that the left hand side is not the Laplacian. The Laplacian for axisymmetric flows in cylindrical coordinates is
given by

div grad = div
(
∂

∂r
,

1
r �

��∂
∂θ
,
∂

∂z

)

= 1
r

∂

∂r

(
r
∂

∂r

)
+ ∂2

∂z2

= ∂2

∂r2 + ∂2

∂z2 + 1
r

∂

∂r
, (4.24.11)

which does not precisely match the operator on the left hand side of Equation 4.24.10. Therefore, the stream function
does not satisfy the Laplace equation in axisymmetric irrotational flows.

4.24.5 Axisymmetric Spherical Coordinates
The stream function for axisymmetric flows can be derived also in spherical coordinates (r, θ, ϕ), where the velocity
components are denoted by v = [ur, uθ, uϕ]t. Note that ϕ here is the angle, not the scalar potential. By setting
ψ = ψ(r, ϕ) and χ = −θ, i.e., Ψ = ψ gradχ = −ψ eθ, we obtain from Equation (4.24.1)

ur = 1
r2sinϕ

∂ψ

∂ϕ
, uϕ = − 1

rsinϕ
∂ψ

∂r
, (4.24.12)
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where again the axis of symmetry has been taken along the z-axis (see Figure 1.5.2). The governing equation of the
stream function is given by curl v = ω, which becomes in spherical coordinates for axisymmetric flows

1
r

[
∂

∂r

(
1

sinϕ
∂ψ

∂r

)
+ ∂

∂ϕ

(
1

r2sinϕ
∂ψ

∂ϕ

)]
= −ωθ. (4.24.13)

Again, the left hand side is not the Laplacian. The stream function does not satisfy the Laplace equation in axisymmetric
irrotational flows.

4.24.6 Axisymmetric (x, y) Coordinates
It is straightforward to show that Equation (4.24.8) and Equation (4.24.12) are equivalent, and both can be written as

u = 1
y

∂ψ

∂y
, v = −1

y

∂ψ

∂x
. (4.24.14)

Note that here the x-axis is the horizontal axis of symmetry and the y-axis is the vertical axis. Of course, the above
expression is equivalent to the one obtained directly from the axisymmetric continuity equation, i.e., Equation (4.20.14)
in Section 4.20. The governing equation of the stream function is

∂2ψ

∂x2 + ∂2ψ

∂y2 − 1
y

∂ψ

∂y
= −y ωθ, (4.24.15)

which will not reduce to the Laplace equation for irrotational flows as shown in Section 4.24.4. For irrotational flows,
we can define the velocity potential, ϕ:

u = ∂ϕ

∂x
, v = ∂ϕ

∂y
. (4.24.16)

The system (4.24.14) and (4.24.16) looks like the Cauchy-Riemann system for ϕ and ψ as described in Section 2.9.2,
but not really because of the non-constant coefficient 1/y. Note also that although ψ does not satisfy the Laplace
equation, the velocity potential satisfies the Laplace equation. Anyway, I like axisymmetric flows especially expressed
in the (x, y)-plane because the equations are very similar to those in two-dimensional flows and it makes it easy to
understand the differences between two-dimensional and axisymmetric flows as we have just seen.

4.24.7 Volume Flow and Stream Functions
Of course, the stream functions are associated with the volume flow. Consider a volume flow Q through a section S,

Q =
∫∫

S

v · ndS, (4.24.17)

where dS and n are the infinitesimal area and the unit outward normal vector of the section, respectively. By Stokes’
theorem in Section 1.13, it reduces to the line integral over the boundary of S,

Q =
∮
∂S

curl Ψ · dl =
∮
∂S

ψ gradχ · dl, (4.24.18)

where dl denotes the infinitesimal length vector in the counterclockwise direction. Assume that the section S is bounded
by four stream surfaces, ψ = ψ1, ψ2 and χ = χ1, χ2:

∂S = ∂Sψ1 + ∂Sχ1 + ∂Sψ2 + ∂Sχ2 , (4.24.19)

where ψ1, ψ2, χ1, and χ2 are constants, ∂Sψ1 denotes the boundary where ψ = ψ1, and similarly for others. Then, on
each boundary portion, one of the functions is constant. Noting that gradχ = 0 on ∂Sχ1 and ∂Sχ2 , we obtain

Q = ψ1

∫
∂Sψ1

gradχ · dl + ψ2

∫
∂Sψ2

gradχ · dl. (4.24.20)

By definition, dχ = gradχ · dl. We thus finally obtain

Q = ψ1(χ1 − χ2) + ψ2(χ2 − χ1) = (ψ2 − ψ1)(χ2 − χ1). (4.24.21)
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Therefore, the volume flow through the section S is given by the product of the differences of the stream functions.

I like the stream functions because they are applicable to a wide range of flows: irrotational, rotational, inviscid,
and viscous flows. Note also that the stream functions can be defined for compressible flows as v = (1/ρ)curl Ψ,
where ρ is the density, so that it automatically satisfies the steady continuity equation div(ρv) = 0. See, for exam-
ple, Refs.[18, 67, 120] for more details on three-dimensional stream functions. See Ref.[140] for an application of
three-dimensional stream functions to CFD.

4.25 Stokes’ Equations

I like Stokes’ equations because they are linear. In fact, we obtain Stokes’ equations by ignoring the nonlinear convective
term from the incompressible Navier-Stokes equations. This is a valid approximation for small Reynolds number flows.
These flows are often called Stokes’ flows or creeping flows.

Stokes’ Equations

Stokes’ equations are given by

div v = 0, (4.25.1)

ρ
∂v
∂t

+ grad p− µ div grad v = 0, (4.25.2)

where ρ and µ are constants. Note that the momentum equation has been obtained by ignoring the convective term
(grad v)v from Equation (4.17.7). I like the fact that the pressure satisfies the Laplace equation, which can be easily
shown by taking the divergence of the momentum equation:

ρ
∂(div v)
∂t

+ div grad p− µ div div grad v = 0, (4.25.3)

which becomes by Equation (1.7.12)

ρ
∂(���div v)
∂t

+ div grad p− µ div [grad(div v) − curl(curl v)] = 0, (4.25.4)

div grad p− µ div grad(���div v) + µ(((((((div curl(curl v) = 0, (4.25.5)

and thus

div grad p = 0. (4.25.6)

This is the Laplace equation for the pressure. That’s nice. Recall that the pressure satisfies the Poisson equation
(4.22.4) when the convective term is present.

Stokes Equations (pressure and vorticity)

Stokes’ equations can be written as a first-order system in terms of the pressure and the vorticity. By Equation (1.7.12),
we have

div grad v = grad(div v) − curl curl v = −curl ω, (4.25.7)

where ω = curl v = [ωx, ωy, ωz]t is the vorticity. Then, we obtain

div v = 0, (4.25.8)

curl v = ω, (4.25.9)

ρ
∂v
∂t

+ grad p+ µ curl ω = 0. (4.25.10)
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It is nice to be a first-order system because often the discretization is relatively simpler compared with second derivatives.
Nevertheless, I also find it interesting that the vorticity obeys the diffusion equation. Take the curl of the momentum
equation:

ρ
∂ω

∂t
+�����curl grad p+ µ curl curl ω = 0, (4.25.11)

which becomes by Equation (1.7.12)

∂ω

∂t
= ν div grad ω, (4.25.12)

where ν = µ/ρ. More interestingly, for steady flows, the vorticity satisfies the Laplace equation:

div grad ω = 0. (4.25.13)

4.26 2D Stokes Equations

I like the 2D Stokes equations. Especially I like the steady version because they reduce to two sets of Cauchy-Riemann
type equations.

2D Stokes Equations

∂u

∂x
+ ∂v

∂y
= 0, (4.26.1)

ρ
∂u

∂t
+ ∂p

∂x
− µ

(
∂2u

∂x2 + ∂2u

∂y2

)
= 0, (4.26.2)

ρ
∂v

∂t
+ ∂p

∂y
− µ

(
∂2v

∂x2 + ∂2v

∂y2

)
= 0. (4.26.3)

2D Stokes Equations (pressure and vorticity)

∂u

∂x
+ ∂v

∂y
= 0, (4.26.4)

∂v

∂x
− ∂u

∂y
= ωz, (4.26.5)

ρ
∂u

∂t
+ ∂p

∂x
+ µ

∂ωz
∂y

= 0, (4.26.6)

ρ
∂v

∂t
+ ∂p

∂y
− µ

∂ωz
∂x

= 0. (4.26.7)

For steady flows, these are basically two sets of the Cauchy-Riemann equations; they are coupled through the vorticity
ωz. It is nice to be the Cauchy-Riemann system because exact solutions can be found by using the theory of complex
variables [54]. I find it interesting that the Stokes equations cannot accurately describe a flow around an object in
two dimensions: a far-field free stream condition cannot be satisfied simultaneously with the no-slip condition on the
object. This is called Stokes’ paradox. To resolve this, we must retain a leading term in a linearized advection term;
this is called Oseen’s approximation. See Ref.[54] for more details.

4.27 3D Stokes Equations

I like the 3D Stokes equations because Stokes’ paradox does not apply and a flow over a body can be properly
described. It is also exciting that the vorticity is now a vector having three components (it has only one component in
two dimensions).
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3D Stokes Equations

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (4.27.1)

ρ
∂u

∂t
+ ∂p

∂x
− µ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
= 0, (4.27.2)

ρ
∂v

∂t
+ ∂p

∂y
− µ

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
= 0, (4.27.3)

ρ
∂w

∂t
+ ∂p

∂z
− µ

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
= 0. (4.27.4)

3D Stokes Equations (pressure and vorticity)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (4.27.5)

∂w

∂y
− ∂v

∂z
= ωx, (4.27.6)

∂u

∂z
− ∂w

∂x
= ωy, (4.27.7)

∂v

∂x
− ∂u

∂y
= ωz, (4.27.8)

∂p

∂x
+ µ

(
∂ωz
∂y

− ∂ωy
∂z

)
= 0, (4.27.9)

ρ
∂u

∂t
+ ∂p

∂y
+ µ

(
∂ωx
∂z

− ∂ωz
∂x

)
= 0, (4.27.10)

ρ
∂v

∂t
+ ∂p

∂z
+ µ

(
∂ωy
∂x

− ∂ωx
∂y

)
= 0. (4.27.11)

It is really nice to be a first-order system, but now I don’t see the Cauchy-Riemann equations for steady flows. The
theory of complex variables cannot be applied, and exact solutions need to be found by some other methods [54].
"How about axisymmetric flows?" That’s a good point. As we have seen before, axisymmetric equations are almost
like two-dimensional equations. It is worth looking at.

4.28 Axisymmetric Stokes Equations

Axisymmetric Stokes Equations

Axisymmetric Stokes equations can be obtained from the axisymmetric incompressible Navier-Stokes equations (4.20.8)
by ignoring the convective terms:

∂(yu)
∂x

+ ∂(yv)
∂y

= 0, (4.28.1)

ρ
∂(yu)
∂t

+ ∂(yp)
∂x

− µ

[
∂

∂x

(
y
∂u

∂x

)
+ ∂

∂y

(
y
∂u

∂y

)]
= 0, (4.28.2)

ρ
∂(yv)
∂t

+ ∂(yp)
∂y

− µ

[
∂

∂x

(
y
∂v

∂x

)
+ ∂

∂y

(
y
∂v

∂y

)]
= p− µ

v

y
, (4.28.3)

where as before the x-axis has been taken as the axis of symmetry.
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Axisymmetric Stokes Equations (pressure and vorticity)

For axisymmetric flows, the first-order system of Equations (4.25.8), (4.25.9), and (4.25.10) becomes

∂(yu)
∂x

+ ∂(yv)
∂y

= 0, (4.28.4)

∂v

∂x
− ∂u

∂y
= ω, (4.28.5)

ρ
∂(yu)
∂t

+ ∂(yp)
∂x

+ µ
∂(yω)
∂y

= 0, (4.28.6)

ρ
∂(yv)
∂t

+ ∂(yp)
∂y

− µ
∂(yω)
∂x

= p, (4.28.7)

where ω is the θ-component of the vorticity, which is the only nonzero component. As expected, the axisymmetric
system is very similar to the two-dimensional system, but not similar enough. Unfortunately, the momentum equations
do not become purely the Cauchy-Riemann system for steady flows because of the presence of the pressure source term.
Nevertheless, the stream function can be defined for the continuity equation as in the axisymmetric incompressible
Navier-Stokes equations (see Section 4.20), which can be useful for deriving exact solutions [54].

4.29 Boundary Layer Equations

The boundary layer equations for two-dimensional incompressible flows are given by

∂u

∂x
+ ∂v

∂y
= 0, (4.29.1)

u
∂u

∂x
+ v

∂u

∂y
= U

∂U

∂x
+ ν

∂2u

∂y2 , (4.29.2)

where U = U(x) is the velocity outside the boundary layer (constant for a flow over a flat plate). This can be solved
numerically, for example, as follows [158]. First, we compute v by numerically integrating the continuity equation in
y direction with the boundary condition u(x, 0) = v(x, 0) = 0, then solve the momentum equation for given v, and
repeat this process until convergence. In this case, the momentum equation behaves like the viscous Burgers’ equation
(2.15.4). It is nice that a scalar scheme can be used for solving such a nonlinear system. To be even nicer, there exists
an exact solution for this system (see Section 7.15.9), so that the accuracy of the numerical solution can be directly
measured.

http://www.cradle-cfd.com


Chapter 5

Turbulence Equations

5.1 Averages and Filters

Express a physical quantity a as the sum of the average a and the fluctuation a′: for example,

v = v + v′, ρ = ρ+ ρ′, p = p+ p′, h = h+ h′, T = T + T ′, H = H +H ′. (5.1.1)

This is called the Reynolds decomposition. Here we must be careful about the fact that the fluctuation is not necessarily
small (compared with the average), and also that usually fluctuations of the viscosity, the heat conductivity, and the
specific heats are small and therefore ignored.

In turbulence calculations, typically we average the Navier-Stokes equations and solve for averaged quantities. After
averaging, as we will see later, we find extra terms created which involve fluctuations and cannot be evaluated from
averaged quantities. So, we derive governing equations for these extra terms, but then we will find similar extra terms
again that cannot be evaluated, and this process goes on forever. Therefore, at some point, we must stop and model
these terms, i.e., evaluate them somehow in terms of averaged quantities.

The most fundamental in turbulence calculations is the averaging. There are many different ways of averaging.
Properties of averages and fluctuations depend on their definitions. Also, terms that need to be modeled, in averaged
governing equations, depend on them.

5.1.1 Reynolds Averaging
The Reynolds averaging includes ensemble averaging, time averaging, and space averaging. These are very interesting.
For example, they are identical to one another for steady homogeneous turbulence (which is called Ergodic hypothesis).
The simulation based on the Reynolds-averaged Navier-Stokes equations is called RANS.

Ensemble Averaging

The ensemble averaging:

f(x, t) = lim
N→∞

1
N

N∑
i=1,N

fi(x, t), (5.1.2)

which is the average of measurements, fi(x, t) where i = 1, 2, 3, · · ·N , obtained by N experiments. I like it, but it
is unrealistic to perform this averaging in practice. You can, of course, formally (or theoretically or mathematically,
whatever) use this averaging to write down averaged governing equations.

Time Averaging

The time averaging:

f(x, t) = 1
T

∫ t+T

t

f(x, t) dt, (5.1.3)

171
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where T must be larger than the fluctuation time scale but smaller than the average time scale. I like this one also,
but in real flows, these two time scales are comparable, so such T may not exist. Of course, you can still formally
derive averaged governing equations based on this assumption. For a steady flow, by taking T → ∞, we may define

f(x) = lim
T→∞

1
T

∫ t+T

t

f(x, t) dt. (5.1.4)

Space Averaging

The space averaging:

f(t) = lim
V→∞

1
V

∫∫∫
V

f(x, t) dV, (5.1.5)

which can be used for homogeneous turbulence in which the mean flow quantities are uniform in space. Of course,
many of us are probably not interested in uniform mean flows. However, for any flows, if we look close enough, there
could be a limit beyond which the flow looks locally uniform. Then, the homogeneous turbulence does make sense,
and the space averaging can be useful. I like it.

Properties of Reynolds Averaging

The Reynolds averaging has the following properties:

f = f, (5.1.6)

f ′ = 0, (5.1.7)

fg′ = 0, (5.1.8)

fg = f g, (5.1.9)

f + g = f + g. (5.1.10)

They all make sense and thus easy to remember. I like them.

5.1.2 Favre Averaging

Favre Averaging

The Favre averaging (denoted by a tilde):

f̃ = ρf

ρ
, (5.1.11)

which may be called the mass-weighted averaging or the mass-averaging. In fact, I like it very much because we can
greatly simplify the averaged compressible Navier-Stokes equations using this particular averaging, much simpler than
those obtained by using the Reynolds averaging.

Usually, only the velocity and thermodynamic variables are Favre-averaged and the density and the pressure are
Reynolds-averaged:

ṽ = ρv
ρ
, h̃ = ρh

ρ
, T̃ = ρT

ρ
, H̃ = ρH

ρ
. (5.1.12)

Also note that the fluctuation associated with Favre averaging f̃ is denoted by f ′′:

v = ṽ + v′′, ρ = ρ+ ρ′, p = p+ p′, h = h̃+ h′′, T = T̃ + T ′′, H = H̃ +H ′′. (5.1.13)
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Properties of Favre Averaging

Favre averaging has the following properties:

f ′′ = f − f − ρ′f ′

ρ
, (5.1.14)

f ′′ = −ρ′f ′

ρ
, (5.1.15)

f ′′ ̸= 0, (5.1.16)

ρf ′′ = 0, (5.1.17)

ρf = ρf̃ . (5.1.18)

These are more complicated than those of the Reynolds Averaging, but I like them. These are very important, anyway.

5.1.3 Spatial Filter
Spatial Filter

The spatial filter is a local space (or a local wave-number space) averaging. A typical spatial filter is the volume-average
box filter (also called the top-hat filter):

f(x, t) = 1
∆3

∫ x+∆x/2

x−∆x/2

∫ y+∆y/2

y−∆y/2

∫ z+∆z/2

z−∆z/2
f(ξ, t) dξdηdζ, (5.1.19)

where

x = (x, y, z)t = (x1, x2, x3)t, ξ = (ξ, η, ζ)t = (ξ1, ξ2, ξ3)t, ∆ = (∆x∆y∆z)1/3. (5.1.20)

We may think of it as the integral over a computational cell: f(x, t) can be thought of as a smooth (low-frequency)
component that can be resolved on that grid. This smooth component is called a grid scale (GS) or a resolvable scale,
and the rest (high-frequency component that cannot be resolved) is called a sub-grid scale (SGS), i.e.,

f = f + f ′, (5.1.21)

in which f ′ is the sub-grid scale. Note that in principle the filter spacing, (∆x,∆y,∆z), does not have to be the grid
spacing (as long as larger than the grid spacing). So, the terms like GS and SGS may be confusing. This filtering
operation can be thought of as a decomposition of a flow into large eddies(GS) and small eddies(SGS). The smaller the
filter spacing is, the more universal the properties of small eddies can be (Kolmogorov’s law: a theory by Kolmogorov,
which is sometimes called K41 theory because it came out in 1941 [73]. See Refs.[12, 156] for details). If the filter
spacing is small enough, then, a universal model can be developed: methods applicable to many different flows can
be developed. Yes, a smaller filter spacing implies finer computational grids, and hence such simulations are generally
very expensive.

We can generalize the filtering operation by writing it in the form,

f(x, t) =
∫∫∫

G(x − ξ)f(ξ, t) dξdηdζ, (5.1.22)

where the integration is over all space and G is called the filter function. For example, the following filter function
corresponds to the volume-average box filter (5.1.19),

G(xi − ξi) =
{

1/∆3 |xi − ξi| < ∆xi/2,
0 otherwise. (5.1.23)

There are other types of filters such as the Gaussian filter or the Fourier cut-off filter. See Ref.[171] for details.
The large eddy simulation (LES) refers to a simulation based on filtered governing equations with sufficiently small

filter spacing such that the sub-grid scale will be homogeneous. I like the idea, but it requires a very fine computational
grid (very expensive). If I use a grid fine enough to resolve all scales, then no turbulence models are needed, and the
simulation is called the direct numerical simulations (DNS). I like this one. It’s very simple. It is particularly nice that
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we do not need turbulence modeling. However it is even more expensive than LES: the grid must be extremely or often
prohibitively fine especially for high-Reynolds-number flows encountered in many practical applications. There is also
a class of methods called detached eddy simulations (DES) [147, 151]. In DES, the near-wall region (too expensive
to resolve by LES) is solved by RANS and the rest of the domain (where relatively large eddies dominate) is solved by
LES. I like the idea of DES, but I really think that it would be very very nice if DNS would become feasible for practical
flows. It is so simple.

Properties of Spatial Filter

Generally, filtering once and twice, we obtain different values:

f ̸= f, (5.1.24)

which is not the case in the Reynolds averaging. Therefore, filtered governing equations and averaged governing
equations can be quite different. We must be careful about the following also:

f ′ ̸= 0, (5.1.25)

fg′ ̸= 0. (5.1.26)

Do I like it? Well, sure, of course, I like it.

5.2 Reynolds-Averaged Incompressible Navier-Stokes Equations

Take the Reynolds average of the incompressible Navier-Stokes equations to get the Reynolds-averaged incompressible
Navier-Stokes equations (ρ = constant):

div (ρv) = 0, (5.2.1)

∂t(ρv) + div(ρv⊗v) + grad p− div τ̂ = 0, (5.2.2)

where

τ̂ = τ − ρv′⊗v′ = µ
[
grad v + (grad v)t

]
− ρv′⊗v′. (5.2.3)

The extra term,

ρv′⊗v′, (5.2.4)

has been generated by the averaging operation. This is usually interpreted as a stress and called the Reynolds stress.
Without the Reynolds stress, the system would have been closed and solved for the average quantities (just like the
laminar equations). It is possible to derive its own governing equations; but it is so much simpler to model this
term (i.e., to relate somehow to the average quantities) by the Boussinesq approximation (or the gradient transport
hypothesis) [16]:

−ρv′⊗v′ = µT
[
grad v + (grad v)t

]
− 2

3
ρkI, (5.2.5)

where µT is called the eddy viscosity or the turbulence viscosity, and

k = 1
2

v′ · v′, (5.2.6)

is called the turbulent energy. Basically, we assume that this fluctuation stress is proportional to the gradient of the
average quantities (similarly to Newtonian fluids). The second term − 2

3ρkI is needed in order for the Boussinesq
approximation to be valid when traced: the trace of the right hand side must be equal to that of the left hand side
−ρv′

iv
′
i = −2ρk. But this term is usually ignored if we have no ways to evaluate k, e.g., in zero-equation or one-

equation models. To evaluate k, we would probably have to derive and solve the governing equation for k. Typically,
two-equation models include such an option (see Section 5.6).
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I like ignoring k and employing the Boussinesq approximation because then I can write the viscous stress term as

τ̂ = (µ+ µT )
[
grad v + (grad v)t

]
, (5.2.7)

so that practically the form of the Reynolds-averaged incompressible Navier-Stokes equations is the same as that of
the original (laminar) incompressible Navier-Stokes equations except that it has one extra viscosity coefficient, µT ,

µ −→ µ+ µT . (5.2.8)

So, the focus is now on estimating the turbulent viscosity, µT . You might want to evaluate it algebraically (algebraic
models), by deriving and solving a governing equation for µT (one-equation models), or by deriving and solving
governing equations for µT as well as k (or any relevant two quantities: two-equation models).

5.3 Favre-Averaged Compressible Navier-Stokes Equations

Apply the Favre averaging (instead of the Reynolds averaging) to the compressible Navier-Stokes equations to ob-
tain the following relatively simple form of the averaged Navier-Stokes Equations:

∂tρ+ div(ρ ṽ) = 0, (5.3.1)

∂t(ρ ṽ) + div(ρ ṽ⊗ṽ) + grad p = div τ̂ , (5.3.2)

∂t(ρẼ) + div(ρ ṽH̃) = div (τ̂ ṽ) − div q̂ + div K, (5.3.3)

where

p = ρRT̃ , (5.3.4)

Ẽ = ẽ+ ṽ · ṽ
2

+ k, (5.3.5)

H̃ = h̃+ ṽ · ṽ
2

+ k, (5.3.6)

k = ρv′′ · v′′

2ρ
, (5.3.7)

τ̂ = τ − ρv′′⊗v′′ = µ
[
grad ṽ + (grad ṽ)t

]
− 2

3
µ (div ṽ)I − ρv′′⊗v′′, (5.3.8)

q̂ = − µ

Pr
gradh− ρv′′h′′, (5.3.9)

and also

K = τv′′ − ρv′′(v′′ · v′′)/2, (5.3.10)

but this one is considered to be small and often ignored. Also, as a matter of fact, because v′′ ̸= 0, we actually have

τ = µ
[
grad ṽ + (grad ṽ)t

]
− 2

3
µ (div ṽ)I +

[
grad v′′ + (grad v′′)t

]
− 2

3
µ (div v′′)I,

(5.3.11)

but the last two terms are considered to be small and often ignored. So, I have done so in Equation (5.3.8). Also,
the turbulent energy k in Ẽ and H̃ are often ignored. Now, with these terms all ignored, we apply the Boussinesq
approximation:

−ρv′′⊗v′′ = µT
[
grad ṽ + (grad ṽ)t

]
− 2

3
µT (div ṽ)I − 2

3
ρkI, (5.3.12)

−ρv′′h′′ = − µT
PrT

grad h̃, (5.3.13)

where of course, k will have to be ignored if there are no ways to estimate it; PrT is called the turbulent Prandtl number
and PrT = 0.9 is a good approximation for the sea-level air. So, we ignore k and obtain the following Favre-averaged
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Navier-Stokes equations:

∂tρ+ div(ρ ṽ) = 0, (5.3.14)

∂t(ρ ṽ) + div(ρ ṽ⊗ṽ) + grad p = div τ̂ , (5.3.15)

∂t(ρẼ) + div(ρ ṽH̃) = div (τ̂ ṽ) − div q̂, (5.3.16)

where

p = ρRT̃ , (5.3.17)

Ẽ = ẽ+ ṽ · ṽ
2

, (5.3.18)

H̃ = h̃+ ṽ · ṽ
2

, (5.3.19)

τ̂ = (µ+ µT )
[
grad ṽ + (grad ṽ)t

]
− 2

3
(µ+ µT ) (div ṽ)I, (5.3.20)

q̂ = −
(
µ

Pr
+ µT
PrT

)
grad h̃. (5.3.21)

Therefore, the differences between these equations and the laminar equations are the turbulent viscosity and the
turbulent Prandtl number:

µ −→ µ+ µT , (5.3.22)

µ

Pr
−→ µ

Pr
+ µT
PrT

, (5.3.23)

But since we may take PrT = 0.9, it is again a matter of how to estimate µT just like in the Reynolds-averaged
incompressible Navier-Stokes equations. This is nice and simple. I like it.

5.4 Filtered Incompressible Navier-Stokes Equations

Apply filtering to the incompressible Navier-Stokes equations to get the filtered incompressible Navier-Stokes equations:

div (ρv) = 0, (5.4.1)

∂t(ρv) + div(ρv⊗v) + grad p− div τ̂ = 0, (5.4.2)

where

τ̂SGS = −ρ(v⊗v − v⊗v), (5.4.3)

is called the SGS stress, which is usually expanded as

τ̂SGS = (v⊗v − v⊗v) + (v′⊗v + v⊗v′) + v′⊗v′, (5.4.4)

and on the right hand side the first term is called the Leonard stress, the second the cross-term stress, the third the
SGS Reynolds stress. It may look a little bit more complicated than the Reynolds stress in the Reynolds-averaged
incompressible Navier-Stokes equations (5.2.4), but I like it.

5.5 Filtered Compressible Navier-Stokes Equations

Apply mass-averaged filtering to the compressible Navier-Stokes Equations to obtain the simple filtered compress-
ible Navier-Stokes Equations:

∂tρ+ div(ρ ṽ) = 0, (5.5.1)

∂t(ρ ṽ) + div(ρ ṽ⊗ṽ) + grad p = div τ̂ , (5.5.2)

∂t(ρẼ) + div(ρ ṽH̃) = div (τ̂ ṽ) − div q̂ + div KSGS , (5.5.3)
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where

p = ρRT̃ , Ẽ = ẽ+ ṽ · ṽ
2

+ kSGS , H̃ = h̃+ ṽ · ṽ
2

+ kSGS , (5.5.4)

τ̂ = µ
[
grad ṽ + (grad ṽ)t

]
− 2

3
µ (div ṽ)I − τSGS , q̂ = − µ

Pr
grad h̃+ qSGS , (5.5.5)

kSGS = 1
2
ρ(ṽv − ṽṽ), (5.5.6)

τSGS = −ρ(ṽ⊗v − ṽ⊗ṽ), (5.5.7)
qSGS = −ρ(Ẽv − Ẽṽ), (5.5.8)

KSGS = ρ(τ̃v − τ̃ ṽ) − (p̃v − p̃ ṽ). (5.5.9)

Usually, if the Mach number is not large, kSGS and KSGS are ignored and only τSGS and qSGS are modeled. These
equations may look more complicated than the Favre-Averaged Navier-Stokes Equations, but essentially the same in
that extra terms are introduced in the viscous stress and the heat flux. I like these equations.

5.6 Turbulence Models

In many cases, the Boussinesq type approximation is made, and it leads us to the problem of estimating the eddy
viscosity, µT . There are various ways to evaluate the eddy viscosity. The simplest would be the algebraic models where
the eddy viscosity is computed algebraically in terms of the mean flow quantities. This includes, for examples, Prandtl’s
mixing-length theory [121], the Cebeci-Smith model [143], the Baldwin-Lomax model [8], and their numerous variants.
These methods can give a good estimate for the eddy viscosity in some cases, but its success essentially depends on
the flow because the eddy viscosity is not an intrinsic property of the fluid (unlike the molecular viscosity, µ). In other
words, the models need to be tuned (e.g., constants somehow adjusted) for each application. Johnson-King model [63]
is a little bit more sophisticated model with an ordinary differential equation incorporated (often called 1/2 equation
model), but still its applicability is limited because it does not directly estimate µT . I like these algebraic models
because they are relatively easy to implement, but I must admit that we definitely need more sophisticated methods for
successful and general turbulence calculations. Beyond the algebraic model, the simplest method would be to directly
solve a governing equation for µT . This is good because µT will be solved along with the flow equations and thus
it now depend on the flow. This includes, for examples, the Baldwin-Barth model [7, 6], the Spalart-Allmaras model
[146], and their variants. I like these models. They are still simple. It is possible to couple the turbulence equation
with the flow equations, but it is also possible to solve them separately. Personally, I like the latter. In fact, these
models work successfully for many different flows, but not so much for separated flows. It looks like that we need
more sophisticated models. Then, the simplest thing to do is to solve another equation for yet another turbulence
quantity. This leads to two-equation models. This includes, for example, the Menter shear stress transport (SST)
model [92], and its variants. These models are widely used; so people must like them. Anyway, I know there are many
other turbulence models, e.g., Reynolds stress model, Smagorinsky model for LES, etc., but honestly speaking, I am
not really an expert in turbulence modeling (although I like it very much). So, I recommend readers to consult other
books such as Ref.[171] for more details.

http://www.cradle-cfd.com
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Chapter 6

Methods for Exact Solutions

I like studying methods for deriving exact solutions. Various exact solutions have been used for accuracy verification
in CFD, but it is sometimes difficult to find detailed descriptions on how they were derived. It is nice to know various
methods for deriving exact solutions so that I can generate an exact solution myself whenever I need one.

6.1 Exact Solutions with Separation of Variables

I like separation of variables because it makes it possible to obtain exact solutions for some partial differential equations.
It is a very powerful technique.

6.1.1 Laplace Equation
Consider the Laplace equation:

uxx + uyy = 0. (6.1.1)

In separation of variables, we first assume the solution of the form,

u = X(x)Y (y), (6.1.2)

and substitute this into the Laplace equation to get

1
X

d2X

dx2 + 1
Y

d2Y

dy2 = 0, (6.1.3)

from which we find

1
X

d2X

dx2 = − 1
Y

d2Y

dy2 = constant. (6.1.4)

So, now the problem is to solve the two ordinary differential equations. If we want the solution to be periodic in
x-direction, then set the constant to be negative, say, −k2, and we obtain

X(x) = A sin(kx) +B cos(kx), (6.1.5)

Y (y) = Ceky +De−ky, (6.1.6)

where A, B, C, and D are arbitrary constants which are determined by boundary conditions. Therefore, we obtain an
exact solution as

u(x, y) = X(x)Y (y) = [A sin(kx) +B cos(kx)]
[
Ceky +De−ky] . (6.1.7)

It is, of course, true that any linear combination of the solution with different k, i.e.,the Fourier series:

u(x, y) =
∞∑
k=1

Xk(x)Yk(y) =
∞∑
k=1

[Ak sin(kx) +Bk cos(kx)]
[
Cke

ky +Dke
−ky] , (6.1.8)

179
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is also an exact solution because the equation is linear. This is called the principle of superposition. It may be useful
for deriving a solution which will fit a given domain and boundary conditions. But just one term would be enough for
the purpose of accuracy verification of numerical schemes.

As an example, we consider deriving a solution from the fundamental solution (6.1.7) in a square domain [x, y] =
[0, 1] × [0, 1] with the following boundary conditions:

u(x, 0) = u(0, y) = u(1, y) = 0, (6.1.9)
u(x, 1) = sin(πx). (6.1.10)

These boundary conditions require that we set

B = 0, C = −D, AC = 1
sinh(π)

, (6.1.11)

in Equation (6.1.7), and thus the exact solution is given by

u(x, y) = sin(πx) sinh(πy)
sinh(π)

. (6.1.12)

Now, consider another set of boundary conditions,

u(0, y) = u(x, 0) = u(x, 1) = 0, (6.1.13)
u(1, y) = sin(πy), (6.1.14)

to obtain the exact solution,

u(x, y) = sin(πy) sinh(πx)
sinh(π)

, (6.1.15)

and add this to the previous one to generate a new exact solution,

u(x, y) = sinh(πx) sin(πy) + sinh(πy) sin(πx)
sinh(π)

, (6.1.16)

which is the exact solution to the following boundary condition:

u(0, y) = u(x, 0) = 0, (6.1.17)
u(x, 1) = sin(πx), (6.1.18)
u(1, y) = sin(πy). (6.1.19)

This superposition is possible because the Laplace equation is linear. It is very nice. I like linear partial differential
equations.

6.1.2 Diffusion Equation
I like the two-dimensional diffusion equation also,

ut = ν (uxx + uyy) . (6.1.20)

This can also be easily solved by separation of variables. First, we assume

u(x, y, t) = T (t)X(x)Y (y), (6.1.21)

substitute it into the diffusion equation to find

1
T (t)

dT

dt
= ν

X(x)
d2X

dx2 + ν

Y (y)
d2Y

dy2 , (6.1.22)

and so by setting

1
T (t)

dT

dt
= −νπ2(a2 + b2), 1

X(x)
d2X

dx2 = −(aπ)2,
1

Y (y)
d2Y

dy2 = −(bπ)2, (6.1.23)
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where a and b are arbitrary constants, we find

T (t) = Ce−νπ2(a2+b2)t, (6.1.24)
X(x) = A1 sin(aπx) +A2 cos(aπx), (6.1.25)
Y (y) = B1 sin(bπy) +B2 cos(bπy), (6.1.26)

where C, A1, A2, B1, and B2 are arbitrary constants. Therefore, we obtain an exact solution as

u(x, y, t) = T (t)X(x)Y (y) = Ce−νπ2(a2+b2)t [A1 sin(aπx) +A2 cos(aπx)] [B1 sin(bπy) +B2 cos(bπy)] , (6.1.27)

where C, A1, A2, B1, and B2 are arbitrary constants which can be determined by specifying boundary conditions. Of
course, any linear combination of the solution with different a and b can also be an exact solution. Constants may
be determined to produce a desired solution for given domain and boundary conditions. But I like a simple one, even
simpler than the solution above. For example, I would set A1 = 1, A2 = 0, B1 = 1, and B2 = 0:

u(x, y, t) = T (t)X(x)Y (y) = Ce−νπ2(a2+b2)t sin(aπx) sin(bπy). (6.1.28)

This solution in a square domain with the Dirichlet boundary condition is enough for verifying the accuracy of a diffusion
scheme.

6.1.3 Advection-Diffusion Equation
Consider the two-dimensional advection-diffusion equation,

ut + aux + buy = ν(uxx + uyy), (6.1.29)

where a, b, and ν are constants, and a2 + b2 ̸= 0. This can be transformed into the following form,
ut

a2 + b2 + uξ = ν(uξξ + uηη), (6.1.30)

where ξ = ax + by and η = bx − ay (see Section 1.15 for the transformation). Basically, the coordinate system has
been chosen along and normal to the advection direction. So, there is only one advection term present, which is a
derivative along the advection direction. It is always nice to have less terms. I like it. To solve this, I first assume

u(ξ, η, t) = T (t)X(ξ)Y (η), (6.1.31)

substitute it into the transformed advection-diffusion equation (6.1.30) to find

1
(a2 + b2)T (t)

dT

dt
= − 1

X(ξ)
dX

dξ
+ ν

X(ξ)
d2X

dξ2 + ν

Y (η)
d2Y

dη2 , (6.1.32)

and so by setting,

1
(a2 + b2)T (t)

dT

dt
= −νπ2(B2 −A2), (6.1.33)

− 1
νX(ξ)

dX

dξ
+ 1
X(ξ)

d2X

dξ2 = (Aπ)2,
1

Y (η)
d2Y

dη2 = −(Bπ)2, (6.1.34)

where A and B are arbitrary constants (the constants on the right hand sides have been chosen to make the solution
periodic in η), we find

T (t) = C0e
−νπ2(a2+b2)(B2−A2)t, (6.1.35)

X(ξ) = C1 exp(λ1ξ) + C2 exp(λ2ξ), Y (η) = C3 sin(Bπη) + C4 cos(Bπη), (6.1.36)

where C0, C1, C2, C3, C4 are arbitrary constants, and

λ1 = 1 +
√

1 + 4A2π2ν2

2ν
, λ2 = 1 −

√
1 + 4A2π2ν2

2ν
. (6.1.37)
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Therefore, we obtain an exact solution as

u = T (t)X(ξ)Y (η) = C0e
−νπ2(a2+b2)(B2−A2)t [C1 exp(λ1ξ) + C2 exp(λ2ξ)] [C3 sin(Bπη) + C4 cos(Bπη)] . (6.1.38)

Note that it is easy to obtain a steady solution by taking A = B (see Section 7.3). This is very nice. But this solution
looks complicated to me. I cannot even think about taking a linear combination of this solution (which is also exact,
though). I like a simple one such as

u = C0 cos(Bπη) exp

(
1 −

√
1 + 4A2π2ν2

2ν
ξ

)
, (6.1.39)

which has been obtained by taking C1 = 0, C2 = 1, C3 = 0, C4 = 1. I can now imagine what this solution looks like.
Can you?

6.1.4 Advection-Diffusion-Reaction Equation
I like the one-dimensional advection-diffusion-reaction equation,

ut + aux = ν uxx − ku, (6.1.40)

where a, ν, and k are positive constants. I like it because I can easily derive an exact solution. Assume

u(x, t) = T (t)X(x), (6.1.41)

and substitute it into the advection-diffusion-reaction equation to find

1
T (t)

dT

dt
= − a

X(x)
dX

dx
+ ν

X(x)
d2X

dx2 − k. (6.1.42)

I like solutions that decay in time, and so I set

1
T (t)

dT

dt
= −A2 − a

X(x)
dX

dx
+ ν

X(x)
d2X

dx2 − k = A2, (6.1.43)

where A is an arbitrary constant. Then, I obtain

T (t) = C0e
−A2t, (6.1.44)

X(x) = C1 exp(λ1x) + C2 exp(λ2x), (6.1.45)

where C0, C1, C2 are arbitrary constants, and

λ1 =
a+

√
a2 + 4ν(k +A2)

2ν
, λ2 =

a−
√
a2 + 4ν(k +A2)

2ν
. (6.1.46)

Therefore, we obtain

u = T (t)X(x) = C0e
−A2t

[
C1 exp

(
a+

√
a2 + 4ν(k +A2)

2ν
x

)
+ C2 exp

(
a−

√
a2 + 4ν(k +A2)

2ν
x

)]
. (6.1.47)

I would set A2 = k so that the solution decays at the reaction rate k:

u = C0e
−kt

[
C1 exp

(
a+

√
a2 + 8νk
2ν

x

)
+ C2 exp

(
a−

√
a2 + 8νk
2ν

x

)]
. (6.1.48)

I like this exact solution because a steady solution is easily obtained by taking A = 0 in Equation (6.1.47):

u = C1 exp

(
a+

√
a2 + 4νk
2ν

x

)
+ C2 exp

(
a−

√
a2 + 4νk
2ν

x

)
. (6.1.49)
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6.1.5 Oscillating Solutions with Complex Variables: Diffusion
Notice that the exact solutions in the previous subsections will decay as time goes on and eventually vanish (because
of the exponential term). It would be nice also to have solutions which keep changing and never vanish. Then, I like
the idea of using the complex variables in separation of variables because it makes it possible to obtain such solutions
[54]. Consider the one-dimensional diffusion equation,

ut = νuyy, in y ∈ (0, d), (6.1.50)

with the time-dependent boundary conditions,

u(0) = 0, (6.1.51)
u(d) = U cos(ωt), (6.1.52)

where U and ω are arbitrary constants. Note that it is very hard to apply the solution obtained in Section 6.1.2 to this
problem because it is not compatible with the boundary condition at y = d. Now, an interesting strategy for deriving
an exact solution to this problem is to first write the boundary condition as

u(d) = U exp(iωt), (6.1.53)

where i =
√

−1, so that its real part describes the original condition; then, derive a solution by separation of variables,
which possibly involves complex variables; and finally extract the real part of the solution, which is the exact solution
for the original boundary condition. So, assume u(y, t) = Y (y)T (t) and substitute into the diffusion equation to get

1
T (t)

dT

dt
= ν

Y (y)
d2Y

dy2 = constant. (6.1.54)

The boundary condition suggests that the constant should be iω, which leads to

T (t) = C exp(iωt), (6.1.55)
Y (y) = A exp(λy) +B exp(−λy), (6.1.56)

where C, A, B are arbitrary constants and

λ =
√
iω

ν
= (1 + i)k, k =

√
ω

2ν
, (6.1.57)

(note that
√
i = [exp(iπ/2)]1/2 = exp(iπ/4) = (1+i)/

√
2). The constants are determined by the boundary conditions:

B = −A, AC = U

exp(λd) − exp(−λd)
= U

2 sinh(λd)
. (6.1.58)

We thus obtain the complex solution,

u(y, t) = T (t)Y (y) = sinh(λy)
sinh(λd)

U exp(iωt). (6.1.59)

Finally, we take the real part of this to get the solution to the original problem,

u(y, t) = Q [sinh(ky) cos(ky) sinh(kd) cos(kd) + cosh(ky) sin(ky) cosh(kd) sin(kd)] cos(ωt)
+Q [sinh(ky) cos(ky) cosh(kd) sin(kd) − cosh(ky) sin(ky) sinh(kd) cos(kd)] sin(ωt), (6.1.60)

where

Q = U

cosh2(kd) − cos2(kd)
. (6.1.61)

It looks a little complicated, but I like it. It is really nice that this solution does not decay in time and oscillates forever.
It can be a good test case for studying a long time behavior of a diffusion scheme.
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6.1.6 Oscillating Solutions with Complex Variables: Advection-Diffusion
It is possible to derive an exact oscillating solution to the one-dimensional advection-diffusion equation,

ut + auy = νuyy, in y ∈ (0, d), (6.1.62)

with the time-dependent boundary conditions,

u(0) = 0, (6.1.63)
u(d) = U cos(ωt), (6.1.64)

where U and ω are arbitrary constants. The derivation follows exactly the same procedure as in the previous section.
So, assume u(y, t) = Y (y)T (t) and substitute into the advection-diffusion equation to get

1
T (t)

dT

dt
= − a

Y (y)
d2

dy
+ ν

Y (y)
d2Y

dy2 = iω, (6.1.65)

which gives

T (t) = C exp(iωt), (6.1.66)
Y (y) = A exp(λ1y) +B exp(λ2y), (6.1.67)

where A, B, and C are arbitrary constants, and

λ1 = a+
√
a2 + 4νωi
2ν

, λ2 = a−
√
a2 + 4νωi
2ν

. (6.1.68)

Therefore, by applying the boundary conditions, we obtain the following complex solution:

u(y, t) = T (t)Y (y) = exp(λ1y) − exp(λ2y)
exp(λ1d) − exp(λ2d)

U exp(iωt), (6.1.69)

whose real part is the exact solution to the original problem. I haven’t been able to analytically extract the real part of
the complex solution, but I like it because I can easily compute it numerically and it is useful for testing time-accurate
advection-diffusion schemes.

6.2 Exact Solutions with Complex Variables

I like the Cauchy-Riemann system for the velocity potential ϕ and the stream function ψ,

ψx + ϕy = 0, (6.2.1)

ϕx − ψy = 0, (6.2.2)

because this implies that ϕ and ψ are the real and imaginary parts of an analytic function F of a complex variable
Z = x+ iy:

F (Z) = ϕ(z, y) + iψ(z, y), (6.2.3)

where i =
√

−1. F is called the complex potential. The velocity is obtained by the derivative of the complex potential:

W (Z) = F ′ = dF/dZ = u− iv, (6.2.4)

which is called the complex velocity. Note that any analytic function of Z represents a flow. In other words, we can
generate an exact solution for a steady, incompressible, inviscid, irrotational two-dimensional flow, just by picking up
an analytic function of Z [68]. This is very nice. In particular, I like the following basic examples:

(a) Flow around a corner of angle α, where α is measured with respect to the x-axis,

F = CZπ/α, (6.2.5)

W = u− iv = πC

α
Zπ/α−1. (6.2.6)

If α = π, this is a uniform stream with the velocity C which is a constant. If α = π/2, it represents a flow against
a horizontal wall (stagnation flow).
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(b) Uniform Stream at an angle α:

F = U∞Ze
−iα, (6.2.7)

W = U∞e
−iα, (6.2.8)

u = U∞ cosα, (6.2.9)

v = U∞ sinα. (6.2.10)

(c) Source/Sink with a strength σ located at Z = Z0 = x0 + iy0:

F = σ

2π
ln(Z − Z0), (6.2.11)

W = σ

2π(Z − Z0)
, (6.2.12)

u = σ

2π
x− x0

(x− x0)2 + (y − y0)2 , (6.2.13)

v = σ

2π
y − y0

(x− x0)2 + (y − y0)2 . (6.2.14)

(d) Doublet with a strength m at an angle α located at Z = Z0 = x0 + iy0:

F = − meiα

2π(Z − Z0)
, (6.2.15)

W = meiα

2π(Z − Z0)2 , (6.2.16)

u = m

2π

[
(x− x0)2 − (y − y0)2] cosα+ 2(x− x0)(y − y0) sinα

[(x− x0)2 + (y − y0)2]2
, (6.2.17)

v = m

2π
2(x− x0)(y − y0) cosα−

[
(x− x0)2 − (y − y0)2] sinα

[(x− x0)2 + (y − y0)2]2
. (6.2.18)

(e) Clockwise Vortex with a positive circulation Γ located at Z = Z0 = x0 + iy0:

F = iΓ
2π

ln(Z − Z0), (6.2.19)

W = iΓ
2π(Z − Z0)

, (6.2.20)

u = Γ
2π

y − y0

(x− x0)2 + (y − y0)2 , (6.2.21)

v = − Γ
2π

x− x0

(x− x0)2 + (y − y0)2 . (6.2.22)

(f) Superposition:
Above solutions can be superposed to create a new flow: e.g., a uniform flow around a cylinder (of unit radius) at
the origin is obtained by the sum of the uniform stream and the doublet.

F = U∞Z + U∞

Z
, (6.2.23)

W = U∞ − U∞

Z2 , (6.2.24)
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u = U∞ − U∞ cos 2θ
r2 , (6.2.25)

v = U∞ sin 2θ
r2 . (6.2.26)

Here, the doublet strength m has been set m = 2πU∞, so that the cylinder itself becomes a streamline. Also,
note that α = π has been taken, i.e. the doublet pointing against the uniform stream.

More examples are given in Section 7.11.

6.3 Superposition for Nonlinear Equations

Generally, the principle of superposition (a sum of solutions is also a solution) is valid only for linear equations.
But it is sometimes possible to ‘superpose’ a solution onto another solution for nonlinear equations such as the Euler
equations. Consider superposing a perturbation velocity field v′ to a mean flow with a constant velocity v∞:

v(x, t) = v∞ + v′(x − x0, t), (6.3.1)

where x0 indicates some reference center location of the perturbation field (which may be the origin). More specifically,
here we consider a type of solution in which the perturbation is convected at the mean flow velocity, i.e.,

v(x, t) = v∞ + v′(x − x0 − v∞t). (6.3.2)

If such a solution exists, it will be very interesting. The perturbation flow field will not affect the mean flow at all; it
will be simply convected in the uniform stream. Of course, the density, the pressure, and the temperature will also be
convected together at the mean flow velocity:

ρ(x, t) = ρ(x − x0 − v∞t), (6.3.3)

p(x, t) = p(x − x0 − v∞t), (6.3.4)

T (x, t) = T∞ + T ′(x − x0 − v∞t), (6.3.5)

where only the temperature has been decomposed into the mean T∞ and the perturbation T ′ for the sake of convenience;
others can be obtained from the temperature. In particular, we consider only a flow with constant entropy (homentropic
flow), i.e., the following relations are valid,

p

ργ
= p∞

ρ∞γ
,

ρ

ρ∞
=
(
T

T∞

) 1
γ−1

,
p

p∞
=
(
T

T∞

) γ
γ−1

, (6.3.6)

which can be used to calculate p and ρ from T . Then, we seek such a solution for the Euler equations:

∂ρ

∂t
+ div(ρv) = 0, (6.3.7)

∂v
∂t

+ (grad v)v + 1
ρ

grad p = 0. (6.3.8)

Note that the energy equation is not needed for homentropic flows. Now, substituting the velocity (6.3.2), the density
(6.3.3), the pressure (6.3.4), and the temperature (6.3.5) into the Euler equations, we obtain

div(ρv′) = 0, (6.3.9)

(grad v′)v′ + γR

γ − 1
gradT ′ = 0, (6.3.10)
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where the isentropic relation dp
ρ = γR

γ−1dT has been used to replace the pressure gradient by the temperature gradient.
This is interesting. This means that our desired unsteady solution exists if the perturbations satisfy the above steady
Euler equations. A good example is a vortex-type perturbation in two-dimensions:

u′
r = 0, (6.3.11)

u′
θ = f(r), (6.3.12)

where (u′
r, u

′
θ) is the perturbation velocity in polar coordinates and f(r) is a function to be determined later. Likewise,

the density, the pressure, and the temperature depend only on r. Then, the continuity equation and the θ-momentum
equation are identically satisfied, and we are left with the r-momentum equation,

(u′
θ)2

r
= γR

γ − 1
dT ′

dr
. (6.3.13)

Integrating this to the far-field (r → ∞), where the perturbation is assumed to vanish, we get

−T ′ = γ − 1
γR

∫ ∞

r

f(r)2

r
dr. (6.3.14)

Now, the form of f(r) needs to be chosen so that this can be fully integrated. A good choice for f(r) is

f(r) = K

2π
reα(1−r2)/2, (6.3.15)

which describes a vortex perturbation with the strength K and the rate of decay α (it quickly decays to the far-field
for a large value of α). Integrating Equation (6.3.14) with this f(r), we obtain

T ′ = −K2(γ − 1)
8απ2γR

eα(1−r2). (6.3.16)

Using this result, we finally obtain the exact solution of a vortex, initially centered at (x0, y0), convected in a uniform
flow:

u(x, y, t)
a∞

= u∞

a∞
+ u′(x, y)

a∞
= u∞

a∞
− K

2πa∞
yeα(1−r2)/2, (6.3.17)

v(x, y, t)
a∞

= v∞

a∞
+ v′(x, y)

a∞
= v∞

a∞
+ K

2πa∞
xeα(1−r2)/2, (6.3.18)

T (x, y, t)
T∞

= T∞

T∞
+ T ′(x, y)

T∞
= 1 − K2(γ − 1)

8απ2a2
∞

eα(1−r2), (6.3.19)

ρ(x, y, t)
ρ∞

=
(
T (x, y, t)
T∞

) 1
γ−1

, (6.3.20)

p(x, y, t)
p∞

=
(
T (x, y, t)
T∞

) γ
γ−1

, (6.3.21)

where a∞ =
√
γp∞/ρ∞,

x = x− x0 − u∞t, (6.3.22)

y = y − y0 − v∞t, (6.3.23)

r =
√
x2 + y2. (6.3.24)

I like this solution very much. It is really interesting that it is possible to superpose a vortex on a uniform flow and
that such a simple flow is an exact solution to the Euler equations. Moreover, other exact solutions could be obtained
in a similar way, i.e., by choosing some other steady solution as a perturbation.
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6.4 Exact Solutions with Transformations

6.4.1 Cole-Hopf Transformations
One-Dimensional Viscous Burgers’ Equation

Consider the one-dimensional viscous Burgers’ equation,

ut + uux = νuxx. (6.4.1)

It is well known that the transformation

u = −2ν ∂(lnϕ)
∂x

= −2ν ϕx
ϕ
, (6.4.2)

called the Cole-Hopf transformation, relates u(x, t) and ϕ(x, t) > 0 in such a way that if ϕ is a positive solution of the
linear diffusion equation,

ϕt = νϕxx, (6.4.3)

then, u is a solution of the Burgers’ equation (6.4.1). This means that we can generate various exact solutions of the
viscous Burgers’ equation simply by substituting exact solutions of the linear diffusion equation into Equation (6.4.2).
This is nice. I like it. See Ref.[13] for various exact solutions, and also see Section 7.8.1 for a few examples.

Two-Dimensional Viscous Burgers’ Equation

Consider the two-dimensional viscous Burgers’ equations,

ut + uux + vuy − ν(uxx + uyy) = 0, (6.4.4)
vt + uvx + vvy − ν(vxx + vyy) = 0. (6.4.5)

Again, we have a nice transformation [37],

u = −2ν ∂(lnϕ)
∂x

= −2ν ϕx
ϕ
, v = −2ν ∂(lnϕ)

∂y
= −2ν ϕy

ϕ
, (6.4.6)

which relate u(x, t), v(x, t) and ϕ(x, t) > 0 in such a way that if ϕ is a positive solution of the linear diffusion equation,

ϕt = ν(ϕxx + ϕyy), (6.4.7)

then, u and v are solutions of the Burgers’ equations (6.4.4) and (6.4.5). See Ref.[37] for examples, or Section 7.8.3
for an example.

Vector Form of the Viscous Burgers’ Equation (3D)

Consider the vector form of the viscous Burgers’ equation,

Ut + (grad U)U = ν div grad U, (6.4.8)

where U = [u, v, w]t. It is nice to know that there is in fact a vector version of the Cole-Hopf transformation. That
is, the transformation

U = −2ν grad (lnϕ) = −2ν gradϕ
ϕ

, (6.4.9)

relates the solution vector U and a scalar function ϕ(x, y, z, t) > 0 in such a way that if ϕ is a positive solution of the
linear diffusion equation,

ϕt = ν div gradϕ, (6.4.10)

then, U is a solution of the vector form of the viscous Burgers’ equation (6.4.8). This is very nice. I like it very much.
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Viscous Burgers’ Equation with Source Terms

Consider the one-dimensional viscous Burgers’ equation with various source terms,

ut + uux = νuxx + ϵu2 − ku+ d, (6.4.11)

where ν, ϵ, k, and d are constants. It is nice to be able to find exact solutions to this equation. I like the following
derivation. The equation is transformed by

u = p
∂(lnϕ)
∂x

= p
ϕx
ϕ
, (6.4.12)

into

[(ϕt − νϕxx)x + kϕx − dϕ/p]ϕ2 + [ϕt − (p+ 3ν)ϕxx + ϵpϕx]ϕϕx − [p+ 2ν](ϕx)3 = 0, (6.4.13)

which is true for any ϕ if

(ϕt − νϕxx)x + kϕx − dϕ/p = 0, (6.4.14)
ϕt − (p+ 3ν)ϕxx + ϵpϕx = 0, (6.4.15)

p+ 2ν = 0, (6.4.16)

i.e., p = −2ν, and

(ϕt − νϕxx)x + kϕx + d

2ν
ϕ = 0, (6.4.17)

ϕt − νϕxx − 2ϵνϕx = 0, (6.4.18)

thus resulting

2ϵνϕxx + kϕx + d

2ν
ϕ = 0. (6.4.19)

Insert a trial solution ϕ = C(t) eλx, where C(t) is an arbitrary function of time, into this to find the characteristic
equation,

2ϵνλ2 + kλ+ d

2ν
ϕ = 0. (6.4.20)

Then, this can be solved easily, i.e.,

λ = −k ±
√
k2 − 4ϵd

4ϵν
. (6.4.21)

We now consider three cases: k2 − 4ϵd > 0, k2 − 4ϵd < 0, and k2 − 4ϵd = 0.

(a) Two distinct real roots: k2 − 4ϵd > 0
Denote the two distinct real roots by λ1 and λ2, i.e.,

λ1 = −k −
√
k2 − 4ϵd

4ϵν
, λ2 = −k +

√
k2 − 4ϵd

4ϵν
, (6.4.22)

then one solution ϕ1 is given by

ϕ1 = C1(t) eλ1x, (6.4.23)

where C1(t) depends only on time, and it can be determined by inserting the solution into Equation (6.4.15) and
solving the resulting ordinary differential equation:

C1(t) = K1 e
νλ1(λ1+2ϵ)t, (6.4.24)

where K1 is an arbitrary constant. Therefore, the solution is given by

ϕ1 = K1 exp [λ1x+ νλ1(λ1 + 2ϵ)t] . (6.4.25)
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Now, we obtain a similar solution for the other root λ2, and superpose the two to get the general solution,

ϕ = K1 exp [λ1x+ νλ1(λ1 + 2ϵ)t] +K2 exp [λ2x+ νλ2(λ2 + 2ϵ)t] , (6.4.26)

where K2 is another arbitrary constant. Finally, we obtain an exact solution to the Burgers equation (6.4.11) from
the solution (6.4.12),

u = −2ν λ1K1 exp [λ1x+ νλ1(λ1 + 2ϵ)t] + λ2K2 exp [λ2x+ νλ2(λ2 + 2ϵ)t]
K1 exp [λ1x+ νλ1(λ1 + 2ϵ)t] +K2 exp [λ2x+ νλ2(λ2 + 2ϵ)t]

. (6.4.27)

(b) Complex conjugate roots: k2 − 4ϵd < 0
Express the complex roots as

λ1,2 = λr ± iλi, (6.4.28)

where

i =
√

−1, λr = −k
4ϵν

, λi =
√

4ϵd− k2

4ϵν
, (6.4.29)

then insert these roots directly into Equation (6.4.26), split it into the real and imaginary parts, and form a linear
combination of them to get the general solution,

ϕ = eλrx+ν(λ2
r−λ2

i+2ϵλr)t [K ′
1 cos θ +K ′

2 sin θ] , (6.4.30)

where K ′
1 and K ′

2 are arbitrary constants, and

θ = λix+ 2ν(λrλi + ϵλi)t. (6.4.31)

Therefore an exact solution is given by

u = −2ν ϕx
ϕ

= −2ν (λrK ′
1 + λiK

′
2) cos θ + (λrK ′

2 − λiK
′
1) sin θ

K ′
1 cos θ +K ′

2 sin θ
. (6.4.32)

(c) Multiple roots: k2 − 4ϵd = 0

Denote the single root by λs,

λs = −k
4ϵν

, (6.4.33)

and find the general solution of Equation (6.4.19),

ϕ = eλsx [C1(t) + xC2(t)] . (6.4.34)

Insert this into Equation (6.4.15) and solve the resulting system of ordinary differential equations for C1(t) and C2(t)
straightforwardly to get

C1(t) = 2K ′′
1 ν(λs + ϵ)t eνλs(λs+2ϵ)t, (6.4.35)

C2(t) = K ′′
2 e

νλs(λs+2ϵ)t, (6.4.36)

where K ′′
1 and K ′′

2 are arbitrary constants, and thus obtain

ϕ = eλ1x+νλs(λs+2ϵ)t [K ′′
2 x+ 2K ′′

1 ν(λs + ϵ)t] . (6.4.37)

Finally, we obtain an exact solution as follows,

u = −2ν ϕx
ϕ

= −2ν K
′′
2 (1 + λsx) + 2K ′′

1 νλs(λs + ϵ)t
K ′′

2 x+ 2K ′′
1 ν(λs + ϵ)t

. (6.4.38)

Finally, I remark that the method described above is originally studied and exact solutions of a more general equation
is discussed in Ref.[9].
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6.4.2 Hodograph Transformation
Consider the compressible continuity equation in two dimensions,

∂(ρu)
∂x

+ ∂(ρv)
∂y

= 0. (6.4.39)

This is automatically satisfied by the stream function ψ defined by

u = ρ0

ρ

∂ψ

∂y
= ρ0

ρ
ψy, (6.4.40)

v = −ρ0

ρ

∂ψ

∂x
= −ρ0

ρ
ψx, (6.4.41)

where the subscript 0 denotes the stagnation state. This stream function is governed by the nonlinear equation,[
1 −

(
ρ0

ρ

)2 ψ2
y

c2

]
ψxx +

[
1 −

(
ρ0

ρ

)2
ψ2
x

c2

]
ψyy + 2

(
ρ0

ρ

)2
ψxψy
c2 ψxy = 0, (6.4.42)

where c is the speed of sound given by

c2 = c2
0 − γ − 1

2

(
ρ0

ρ

)2

(ψ2
x + ψ2

y), (6.4.43)

and

ρ0

ρ
=

[
1 + γ − 1

2

(
ρ0

ρ

)2 ψ2
x + ψ2

y

c2

] 1
γ−1

. (6.4.44)

These are basically derived from the irrotationality condition vx−uy = 0 and the momentum equations (see Ref.[138]).
Obviously, it is not very easy to solve this nonlinear equation; it looks even more complicated than the nonlinear potential
equation (3.19.14). However, there is a nice way to get around it. That is, we exchange the independent variables
(x, y) and the dependent variables (V, θ), where V is the flow speed and θ is the flow angle, and transform the equation
(6.4.42) into

V 2 ∂
2ψ

∂V 2 + V

(
1 + V 2

c2

)
∂ψ

∂V
+
(

1 − V 2

c2

)
∂2ψ

∂θ2 = 0, (6.4.45)

(see Ref.[138] for derivation). This is a linear differential equation in ψ and therefore can be solved relatively easily.
In fact, to find analytical solutions, we don’t really need to solve this in a formal way. Pick any function and see if
it satisfies the equation. If it does, then it is a solution. Moreover, any linear combination of such solutions (i.e.,
superposition) is also a solution because the equation is linear. This is very nice. Especially, I like the solution called
Ringleb’s flow described in Section 7.13.6. See Ref.[138] for other examples.

6.5 Exact Solutions for Linear Systems of Conservation Laws

Consider the linear hyperbolic system of one-dimensional conservation laws of the form,

∂U
∂t

+ A∂U
∂x

= 0, (6.5.1)

where U = U(x, t) and A is a constant coefficient matrix having real eigenvalues and linearly independent eigenvectors.
If we are given an initial solution as

U(x, 0) = U0(x), (6.5.2)

then, we can find the exact solution as follows. First, we multiply Equation (6.5.1) by the left-eigenvector matrix L
(of A) from the left,

L∂U
∂t

+ LARL∂U
∂x

= 0, (6.5.3)
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where R is the right-eigenvector matrix (the inverse of L). Because the matrix L is constant, we can write

∂(LU)
∂t

+ LAR∂(LU)
∂x

= 0. (6.5.4)

Defining the characteristic variables (or the Riemann invariants) by

W = LU, (6.5.5)

and the diagonal matrix Λ by Λ = LAR, we arrive at the diagonalized form of the system (6.5.1).

∂W
∂t

+ Λ∂W
∂x

= 0. (6.5.6)

We point out that each component is now a linear scalar advection equation

∂wk
∂t

+ λk
∂wk
∂x

= 0, (6.5.7)

where wk denotes the k-th component of W and λk is the k-th eigenvalue. Therefore, the exact solution of the k-th
component is given simply by

wk(x, t) = wk(x− λkt, 0). (6.5.8)
Then, by definition (6.5.5), we obtain

U(x, t) = RW(x, t) =
∑
k

wk(x, t)rk =
∑
k

wk(x− λkt, 0)rk, (6.5.9)

or equivalently, (by Equation (6.5.5) again),

U(x, t) =
∑
k

(ℓkU0(x− λkt))rk, (6.5.10)

where ℓk is the k-th row of L (the k-th left-eigenvector) and rk is the k-th column of R (the k-th right-eigenvector).
This is the exact solution for the initial solution (6.5.2).

Now we consider a simple wave. A simple wave is defined as a solution whose variation is confined in a one-
dimensional subspace spanned by a single eigenvector. For example, if the initial solution is a j-th simple wave, we
project it onto the j-th eigenspace to write

U0(x) =
∑
k

(ℓkU0(x))rk

= (ℓjU0(x))rj +
∑
k:k ̸=j

ckrk, (6.5.11)

where ck are constant. Then, the exact solution (6.5.10) can be written as

U(x, t) =
∑
k

(ℓkU0(x− λjt))rk

= (ℓjU0(x− λjt))rj +
∑
k:k ̸=j

ckrk

= U0(x− λjt). (6.5.12)

Therefore, the initial solution is preserved perfectly for a simple wave. This is natural because only one advection speed
is relevant in a simple wave. Finally, we give an example: set the following initial solution,

U0(x) = U + σ sin(x) rj , (6.5.13)

where U is a constant state and σ is an amplitude of the sine wave, then the exact solution is given by

U(x, t) = U0(x− λjt) = U + σ sin(x− λjt) rj . (6.5.14)

It is indeed simple and also general enough to be applicable to arbitrary linear hyperbolic systems of the form Equation
(6.5.1). Particularly, I like the fact that the result (and all the above discussion) is valid even for steady systems, i.e.,
Equation (6.5.1) with (x, t) replaced by (x, y) or (y, x). This is very nice.
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6.6 Simple Wave Solutions for Nonlinear Systems of Conservation Laws

Consider the nonlinear hyperbolic system of one-dimensional conservation laws of the form,
∂U
∂t

+ ∂F(U)
∂x

= 0, (6.6.1)

or
∂U
∂t

+ A(U)∂U
∂x

= 0, (6.6.2)

where U = U(x, t) and A(U) is a coefficient matrix which is diagonalizable but no longer constant. Unlike the linear
case, for a given initial solution such as

U(x, 0) = U0(x), (6.6.3)
we cannot find the exact solution generally in a closed form. To see this, as in the linear case, we multiply Equation
(6.6.2) by the left-eigenvector matrix L from the left,

L∂U
∂t

+ LARL∂U
∂x

= 0. (6.6.4)

Here is a difficulty. We can no longer define the characteristic variables as in Equation (6.5.5) because L is not constant
any more. Instead, I define the characteristic variables by

∂W = L∂U, (6.6.5)

and arrive at the diagonalized form of the system.
∂W
∂t

+ Λ∂W
∂x

= 0. (6.6.6)

Each component is now a nonlinear scalar advection equation with the exact solution,

wk(x, t) = wk(x− λkt, 0), (6.6.7)

which is valid up to the time when a shock forms. Note that this solution is given implicitly in general because λk
depends on the solution. Then, we use Equation (6.6.5) to get the solution in the conservative variables, (6.6.5)

∂U(x, t) = R∂W(x, t) =
∑
k

∂wk(x, t)rk =
∑
k

∂wk(x− λkt, 0)rk, (6.6.8)

and so
∂U(x, t) =

∑
k

(ℓk∂U0(x− λkt))rk. (6.6.9)

I like it, but it is too bad that we cannot get U(x, t) unless this is integrable. We cannot project even the initial
solution onto the space of an eigenvector exactly:

U0(x) ̸=
∑
k

(ℓkU0(x))rk. (6.6.10)

Then, we consider a simple wave solution because it gives us a hope to get exact solutions. Let h(x, t) be any
smooth function that satisfies the j-th component of Equation (6.6.6),

∂h

∂t
+ λj(U) ∂h

∂x
= 0, (6.6.11)

so that h(x, t) is the j-th characteristic variable wj(x, t) = h(x−λj(U) t) = h(ξ), and assume that other characteristic
variables are constant. Then, we have from Equation (6.6.5)

∂U(x, t) = rj(U) ∂h(ξ), (6.6.12)

or because U(x, t) = U(ξ), we may write

dU(ξ)
dξ

= rj(U) dh(ξ)
dξ

. (6.6.13)

If this is integrable, we can find an exact solution U for the j-th simple wave. This is possible in some cases. Note
that the variable U can be taken to be any variable (e.g., conservative or primitive) as long as the eigenvector rj is
defined consistently. Some examples are given in the next section.
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6.7 Some Exact Simple Wave Solutions

6.7.1 Case 1: rj = constant
I like eigenvectors that are independent of the solution because the ordinary differential equation (6.6.13) is then trivial.
We readily obtain a simple wave solution as

U(ξ) = h(ξ) rj + constant. (6.7.1)

The entropy wave in the Euler equations is a good example: the eigenvector, based on the primitive variables V =
[ρ, u, p]t, is given by

rj =

 1
0
0

 , (6.7.2)

with eigenvalue λj = u. So, it follows immediately from Equation (6.7.1) that

ρ = h(x− u t) + constant, (6.7.3)
u = constant, (6.7.4)
p = constant. (6.7.5)

This shows that the wave does not deform because the speed u is constant (the entropy wave is linearly degenerate).
Any function (even a discontinuous one) can be chosen for h(x). It will be simply convected at the velocity u.

6.7.2 Case 2: rj ∝ U

Consider the case where the eigenvector is proportional to the solution vector,

rj = M U, (6.7.6)

where M is a constant matrix. In this case, we have from Equation (6.6.13),

dU(ξ)
dξ

= M Udh(ξ)
dξ

= M Uh
′
(ξ). (6.7.7)

This is a linear system of ordinary differential equations and therefore can be solved analytically by a standard technique.
This is nice. A good example is the Alfvén wave of the ideal magnetohydrodynamic equations. For the primitive variables
U = [ρ, vx, vy, vz, Bx, By, Bz, p]t, where (vx, vy, vz) is the velocity vector and (Bx, By, Bz) is the magnetic field, with
the coefficient matrix,

A =



vx ρ 0 0 0 0 0

0 vx 0 0 By
4πρ

Bz
4πρ

1
ρ

0 0 vx 0 − Bx
4πρ

0 0

0 0 0 vx 0 − Bx
4πρ

0

0 By −Bx 0 vx 0 0

0 Bz 0 −Bx 0 vx 0

0 ρa2 0 0 0 0 vx



, (6.7.8)
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where a is the speed of sound (a2 = γp/ρ), the eigenvector for the Alfvén waves is given by

r±
j =



0

0

±Bz

∓By

−
√

4πρBz
√

4πρBy

0



, (6.7.9)

with the eigenvalues
λ±
j = vx ± Bx√

4πρ
. (6.7.10)

Note that zeroes in Equation (6.7.9) correspond to the density, the velocity component vx, and the pressure. This
means that these variables are constant through the Alfvén waves (see Section 1.16.2). Therefore, the eigenvalues
are constant; this wave is linearly degenerate. Now, because the density is constant, the eigenvector is linear in the
primitive variable,

rj = M U, (6.7.11)
where U is taken to be the primitive variable and

M =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 ±1
0 0 0 0 0 ∓1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −

√
4πρ

0 0 0 0 0
√

4πρ 0


. (6.7.12)

Since only four variables, vy, vz, p, By, Bz, are relevant, we ignore other components in the following. Now, we derive
an exact solution by solving Equation (6.6.13):

d

dξ


vy
vz
By
Bz

 =


0 0 0 ±1
0 0 ∓1 0
0 0 0 −

√
4πρ

0 0
√

4πρ 0




vy
vz
By
Bz

 h′
(ξ). (6.7.13)

The standard diagonalization yields the decoupled system,

d(vy ±By/
√

4πρ)
dξ

= 0, (6.7.14)

d(vz ±Bz/
√

4πρ)
dξ

= 0, (6.7.15)

d(Bz + i By)
dξ

= −i a (Bz + i By)h
′
(ξ), (6.7.16)

d(Bz − i By)
dξ

= i a (Bz − i By)h
′
(ξ), (6.7.17)

whose general solution is

vy(ξ) = ∓By(ξ)/
√

4πρ+ cvy, (6.7.18)
vz(ξ) = ∓Bz(ξ)/

√
4πρ+ cvz, (6.7.19)

By(ξ) = KR cos(
√

4πρh(ξ)) +KI sin(
√

4πρh(ξ)), (6.7.20)
Bz(ξ) = KI cos(

√
4πρh(ξ)) −KR sin(

√
4πρh(ξ)), (6.7.21)
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where cvy, cvz, KR and KI are arbitrary constants. This is the exact simple wave solution for the Alfvén wave in the
most general form. Note that we can use only one solution, i.e., we can take only either positive or negative sign in
the formula; otherwise it will not be a simple wave. Here is an example: take h(ξ) = ξ/

√
4πρ and KI = 0, and obtain

the simple wave associated with λ+
j ,

vy(x− λ+
j t) = −K

′

R cos(x− λ+
j t) + cvy, (6.7.22)

vz(x− λ+
j t) = K

′

R sin(x− λ+
j t) + cvz, (6.7.23)

By(x− λ+
j t) =

√
4πρK

′

R cos(x− λ+
j t), (6.7.24)

Bz(x− λ+
j t) = −

√
4πρK

′

R sin(x− λ+
j t), (6.7.25)

where cvy, cvz, and K
′

R are arbitrary constants, and KR =
√

4πρK ′

R. I like this simple Alfvén wave solution. It is
linearly degenerate, and therefore the wave must be preserved at all times. This can be a good test case for code
verification.

6.7.3 Case 3: Other cases
The acoustic wave in the Euler equations is a good example. In terms of the primitive variables, the acoustic eigenvectors
are given by

r±
j =

 ±ρ/a
1

±ρa

 , (6.7.26)

where a is the speed of sound. The associated eigenvalues are

λ±
j = u± a. (6.7.27)

It must be kept in mind that there are two acoustic waves, + and −, but we can take only either + or − for this
solution to be a simple wave. Now, we insert these into Equation (6.6.13) to get

d

dξ

 ρ
u
p

 =

 ±ρ/a
1

±ρa

 dh(ξ)
dξ

. (6.7.28)

This is nonlinear, except for the velocity which can be integrated easily,∫ u

u∞

du =
∫ h

h∞

dh, (6.7.29)

to give

u(ξ) = h(ξ) + u∞, (6.7.30)

where we have set h∞ = 0 so that u∞ is a mean flow value and any non-zero h can be thought of as a perturbation
to the mean flow. Now, the density component can also be integrated if the flow is adiabatic, i.e. if

p/ργ = p∞/ρ
γ
∞. (6.7.31)

We take advantage of this adiabatic relation to write the speed of sound in terms of the density as

a

a∞
=

(
ρ

ρ∞

) γ−1
2

, (6.7.32)

which is substituted into the first component of Equation (6.7.28) to yield

dρ

dξ
= ±

(
ρ

ρ∞

) 3−γ
2 ρ∞

a∞

dh(ξ)
dξ

. (6.7.33)

This can be integrated easily, ∫ ρ/ρ∞

1

(
ρ

ρ∞

) γ−3
2

d

(
ρ

ρ∞

)
= ± 1

a∞

∫ h

h∞=0
dh, (6.7.34)
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resulting

ρ(ξ)
ρ∞

=
[
1 ± γ − 1

2
h(ξ)
a∞

] 2
γ−1

, (6.7.35)

or by Equation (6.7.30)

ρ(ξ)
ρ∞

=
[
1 ± γ − 1

2

(
u(ξ)
a∞

−M∞

)] 2
γ−1

, (6.7.36)

where M∞ = u∞/a∞. The pressure follows from the adiabatic relation (6.7.31),

p(ξ)
p∞

=
(
ρ(ξ)
ρ∞

)γ
=
[
1 ± γ − 1

2

(
u(ξ)
a∞

−M∞

)] 2γ
γ−1

. (6.7.37)

This completes the derivation of the exact simple wave solution for the acoustic wave. Now, we summarize the exact
acoustic simple wave solution:

u(x− λ±
j t)

a∞
= M∞ +

h(x− λ±
j t)

a∞
, (6.7.38)

ρ(x− λ±
j t)

ρ∞
=

[
1 ± γ − 1

2

(
u(x− λ±

j t)
a∞

−M∞

)] 2
γ−1

, (6.7.39)

p(x− λ±
j t)

p∞
=

[
1 ± γ − 1

2

(
u(x− λ±

j t)
a∞

−M∞

)] 2γ
γ−1

, (6.7.40)

where λ±
j = u± a and h is an arbitrary function which must be chosen to keep the density and the pressure positive.

This is a very nice solution, but it is given implicitly, i.e., λ±
j depends on the solution itself, and also it is valid only

when there are no shocks.
We point out here that the simple wave solution satisfies Burgers’ equation as shown in Section 3.4.3. For example,

the simple wave solution corresponding to λ+
j = u+ a satisfies Equation (3.4.36) which is repeated here,

Vt + V Vx = 0, (6.7.41)

where V = u+ a. I like this because V = u+ a can be written in terms of u only, by using the fact that u− 2
γ−1a =

u∞ − 2
γ−1a∞ = constant:

V = γ + 1
2

u+
(
a∞ − γ − 1

2
u∞

)
, (6.7.42)

so that, by solving this for u, a solution V of Burgers’ equation (6.7.41) can be translated into the simple wave solution
of the Euler equation by

u(ξ)
a∞

= 2
(γ + 1)

V (ξ)
a∞

− 2
γ + 1

(
1 − γ − 1

2
M∞

)
, (6.7.43)

where ξ = x − V t, and the density and the pressure follow from Equations (6.7.39) and (6.7.40). Again, V must be
chosen such that the density and the pressure stay positive. I like this solution because basically I can add any constant
to u (and still V satisfies Burgers’ equation), and so we may set up a solution as

u(ξ)
a∞

= M∞ + 2
(γ + 1)

V (ξ)
a∞

, (6.7.44)

i.e., we use the solution V of Burgers’ equation as a perturbation to the mean flow. Compare this with Equation
(6.7.38) and see how you can determine h(ξ) by a solution V (ξ) of Burgers’ equation. See Section 7.13.1 for some
examples.

The bottom-line is that the exact solution can be obtained if Equation (6.6.5) is integrable so that the Riemann
invariants can be defined explicitly. For example, the shallow-water equations and the isothermal Euler equations have
this property. I like such equations.
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6.8 Manufactured Solutions

Pick any function, substitute it into a governing equation you wish to solve, and define whatever left as a source
term. This way, you can cook up an exact solution to any equations (by introducing a source term). It is so simple. I
like it very much. Many people call such solutions manufactured solutions [127]. Here are some simple examples.

(a) 1D Linear Advection:
Substitute u = sin x into the advection equation (plus a possible source term f), aux = f , to get

a cosx = f, (6.8.1)

which suggests to define f = a cosx. Therefore, we can say that the advection equation,

aux = f with f = a cosx, (6.8.2)

has the following exact solution,

u = sin x. (6.8.3)

(b) Poisson Equation:
Substitute u = sin x+ cos y into the Poisson equation, uxx + uyy = f , to get

− sin x− cos y = f, (6.8.4)

which suggests to define f = − sin x− cos y. Therefore, the Poisson equation,

uxx + uyy = f with f = − sin x− cos y, (6.8.5)

has the following exact solution,

u = sin x+ cos y. (6.8.6)

I like cooking up exact solutions this way, but it always introduces a source term, i.e., an additional complication
to the original equation. Honestly speaking, I don’t really like source terms because a scheme could lose its formal
accuracy unless the source term discretization is carefully designed [47, 82, 174].

(c) 2D Linear Advection:
In this example, we manufacture a solution by choosing appropriate coefficients rather than introducing a source
term. Substitute u = x2 + y2 into the two-dimensional advection equation, aux + buy = 0, to get

2xa+ 2yb = 0, (6.8.7)

which can be true if we take a = y and b = −x. Hence, the advection equation,

yux − xuy = 0, (6.8.8)

has the following exact solution,

u = x2 + y2. (6.8.9)

After all, I like the method of manufactured solutions very much because it is very convenient and useful especially
for complicated equations, such as the Navier-Stokes equations [83, 133] and turbulence models [34, 135]. Also
note that exact solutions for compressible flow equations can be manufactured by substituting exact incompressible
flow solutions into compressible flow equations and generating appropriate source terms. This will be useful for
manufacturing a physically realistic exact solution, which does look like a flow. It is very important to have a physically
meaningful manufactured solution because a solution will not be useful if it gives a negative viscosity, for example.
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6.9 Fine Grid Solutions

Some people use a numerical solution on a very fine grid as an exact solution: for example, compute the error of
a numerical solution against the fine grid solution, and estimate the order of accuracy of a scheme. I like the idea, but
this is wrong because the fine grid solution is not an exact solution. Such an error convergence study shows only how
quickly the solution converge to this particular fine grid solution, not to the exact solution. Note that the error or the
order of accuracy would not make sense at all if the scheme turned out to be inconsistent. You would then only know
how close your solution is to a wrong solution or how quickly your solution converges to the wrong solution. Anyway,
always remember that a fine grid solution is not an exact solution.

http://www.cradle-cfd.com
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Chapter 7

Exact Solutions

I like exact solutions because I can directly measure the errors of numerical solutions. In doing so, in many cases, the
domain can be in any shape, and the boundary condition can be specified directly by using the exact solutions (the
Dirichlet condition). Also, a regular domain may be used with a periodic boundary condition so that any boundary
issues can be avoided. In either way, exact solutions are very convenient and useful for code verification. Note that the
verification is to check if a numerical method is correctly implemented, i.e., to see if it is solving the target equation
with a design accuracy. Even if a code has been verified, it still needs to be validated, for example, with experimental
data, i.e., to see if it is solving the right equation. Exact solutions are useful generally for verification, not for validation.
See Ref.[127] for more details on the difference between verification and validation.

7.1 Linear Advection

7.1.1 1D Linear Advection
I like the linear advection equation,

ut + aux = 0, (7.1.1)

where a is a constant, because it simply means that any initial solution is merely convected at the speed a, preserving
its initial profile. The exact solution in the general form is therefore given by

u = f(x− at), (7.1.2)

for the initial solution u(x, 0) = f(x). Note that we can avoid, in many cases, any boundary issues by using a periodic
boundary condition: u(1) = u(0) in the domain x ∈ [0, 1]. I like this periodic boundary condition very much. It is very
interesting that it can be interpreted as transforming the plane domain into a cylinder surface by rolling up the plane
with respect to the vertical axis and connecting the left and right boundaries. Here are some examples.

(a) Smooth solution (Figure 7.1.1):

u = sin[2π(x− at)], (7.1.3)

for the initial solution u(x, 0) = sin(2πx).

(b) Steep solution (Figure 7.1.2):

u = exp
[
− (x− x0 − at)2

d

]
, (7.1.4)

for the initial solution u(x, 0) = exp
[
− (x−x0)2

d

]
where d is a constant, e.g., d = 0.01.

201
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Figure 7.1.1: Smooth solution.
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Figure 7.1.2: Steep solution.
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Figure 7.1.3: Discontinuous Solu-
tion.

(c) Discontinuous solution (Figure 7.1.3):

u =

{
1 if xL + at < x < xR + at,

0 elsewhere,
(7.1.5)

where xL and xR are arbitrary constants that specify the width of the non-zero part of the solution. Remember
that discontinuous solutions do not satisfy the differential form of the advection equation but do satisfy the integral
form (2.1.8).

7.1.2 2D Linear Advection
Of course, I like the linear advection equation in two dimensions also,

ut + aux + buy = 0, (7.1.6)

where (a, b) is a constant advection vector. Any initial solution is simply convected at the velocity (a, b), preserving
its initial profile. The exact solution in the general form is given by

u(x, y, t) = f(x− at, y − bt), (7.1.7)

for the initial solution of the form, u(x, y, 0) = f(x, y). Here are some examples.

(a) One-dimensional wave solution: (a, b) = (a, 0),

u(x, y, t) = U∞ +A sin[2π(x− at)], (7.1.8)

where U∞ and A are arbitrary constants.

(b) Two-dimensional plane wave solution:

u(x, y, t) = U∞ +A sin(x+ y − ct), (7.1.9)

where U∞ and A are arbitrary constants, and c = a+ b.

(c) Discontinuous solution:
In the square domain, (x, y) ∈ [0, 1] × [0, 1], with a > 0 and b > 0,

u =

{
uL if ay − bx > 0,

uR elsewhere,
(7.1.10)

where uL and uR are arbitrary constants, with the inflow condition, u(0, y) = uL and u(x, 0) = uR. See Figure
7.1.4.
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uL

uR

1

1 x

y

O

Figure 7.1.4: Discontinuous Solution. Two constant states uL and uR are separated along the
characteristic passing through the origin with the slope 1.

(d) Steady solution:
I like the characteristic coordinates,

ξ = ax+ by, (7.1.11)
η = bx− ay, (7.1.12)

which give

∂x = ξx∂ξ + ηx∂η = a∂ξ + b∂η, (7.1.13)
∂y = ξy∂ξ + ηy∂η = b∂ξ − a∂η, (7.1.14)

and

a∂x + b∂y = (a2 + b2)∂ξ, (7.1.15)

because in these coordinates, the advection equation (7.1.6) is written as

ut + (a2 + b2)uξ = 0, (7.1.16)

so that the steady equation is simply

uξ = 0. (7.1.17)

Hence, any function of η is an exact solution to the two-dimensional linear advection equation: e.g.,

u = η3 + η2 + η + 1, u = sin(πη), u = exp(η). (7.1.18)

This is very nice, isn’t it? I like it so much. Note that boundary values must be specified on inflow boundaries,
according to the flow direction (a, b).

7.1.3 2D Circular Advection
The circular advection equation,

ut + aux + buy = 0, (7.1.19)

where (a, b) = (ωy,−ωx), describes a clockwise circular advection around the origin at the angular speed ω rad/sec.
I like it because it is a very simple and good test case to see how long a numerical scheme can accurately preserve an
initial profile. Here are some examples.

(a) Rotating Smooth Cone:
In the domain [−1, 1] × [−1, 1], start with the initial solution,

u(x, y, 0) =
{

exp−r2/d for r ≤ 0.25,
0 otherwise, (7.1.20)

where r =
√

(x+ 0.25)2 + y2 and (a, b) = (2πy,−2πx). The cone returns to its initial position at t = 1.
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(b) Rotating Cylinder:
In the same setting as above, we may set instead

u(x, y, 0) =
{

1 for r ≤ 0.25,
0 otherwise, (7.1.21)

to rotate a cylinder which is discontinuous and more difficult compute accurately than a cone.

(c) Steady solutions:
Here is a steady test case where the initial solution is set up as

u(x, 0, 0) =

{
f(x) for − 0.65 ≤ x ≤ −0.35,

0 elsewhere,
(7.1.22)

in the domain [−1, 1] × [0, 1]. The initial profile f(x) is then convected in a clockwise circular direction; the exact
steady solution is given, in the polar coordinates (r, θ), by

u(r, θ) =

{
f(r) for − 0.65 ≤ r ≤ −0.35,

0 elsewhere.
(7.1.23)

At a steady state, for example, we may compare the solution at the outflow boundary where x > 0 and y = 0 with
the initial profile to see how well its initial shape has been preserved. Here are examples of f(x):

(c-1) Smooth solution:

f(x) = exp−(x+0.5)2/0.01 . (7.1.24)

(c-2) Discontinuous solution:

f(x) =

{
1 for − 0.65 ≤ x ≤ −0.35,

0 elsewhere.
(7.1.25)

I like the smooth one better because the numerical error should converge to zero as I refine the mesh whereas
it will not converge generally if the solution is discontinuous. But, of course, if I am interested to study the
non-oscillatory behavior of numerical solutions, I would use the discontinuous one for which numerical oscillations
are more likely to occur.

7.1.4 3D Circular (Helicoidal) Advection
I like the 3D circular advection equation,

ut + aux + buy + cuz = 0, (7.1.26)

where

(a, b, c) = (ωz, V,−ωx), (7.1.27)

and ω > 0 and V > 0. This describes a flow rotating clockwise around (at the angular speed ω rad/sec) and
simultaneously transported (at the speed V ) along the y-axis. So, any initial solution imposed on the (x, y)-plane at
z = 0 is rotated around and transported along the y-axis. For example, in the domain defined by

(x, y, z) ∈ [−1, 0] × [0, 1] × [0, 1], (7.1.28)

if we specify the initial solution,

u(x, y, 0) = exp
[
−50

{
(x+ 0.5)2 + (y − 0.5)2}] , (7.1.29)

in the (x, y)-plane at z = 0, then the exact steady solution in the (y, z)-plane at x = 0 is given by

u(0, y, z) = exp
[
−50

{
(y − 0.5 − V )2 + (z − 0.5)2}] . (7.1.30)

It is a very simple and useful solution for evaluating the accuracy of a three-dimensional advection scheme.
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Figure 7.1.5: Unsteady solution of the 1D diffusion
equation. n = 2.
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Figure 7.1.6: Unsteady solution that oscillates forever.
U0 = 1 and ω = 2π.

7.2 Diffusion Equation

I like the diffusion equation because it is easy to obtain exact solutions by separation of variables (see Section 6.1).

7.2.1 1D Diffusion Equation
The one-dimensional diffusion equation,

ut = νuxx, in (0, 1), (7.2.1)

has the following exact solutions.

(a) Time dependent solution I (Figure 7.1.5):

u = e−νn
2π2t sin(nπx), (7.2.2)

for the initial solution u(x, 0) = sin(nπx) with the boundary conditions u(0, t) = u(1, t) = 0. where n is an
integer. I like this simple solution, but if you are looking for something more involved, you can generate it yourself
by superposition (see Section 6.1).

(b) Time dependent solution II:

u(x, t) =
√

A

t+B
e− (x−1)2

4ν(t+B) , (7.2.3)

where A, B and x0 are arbitrary constants. for the initial solution and the boundary conditions:

u(x, 0) =
√
A

B
e− (x−1)2

4νB , u(0, t) =
√

A

t+B
e− 1

4ν(t+B) , u(1, t) =
√

A

t+B
. (7.2.4)

Note that the boundary condition changes in time at both ends. I like it. This type of solution is used for accuracy
verification of high-order schemes [119].

(c) Time dependent solution that will never decay to zero:
As derived in Section 6.1.5, there exists a time-dependent solution that oscillates forever:

u(x, t) = Q [sinh(kx) cos(kx) sinh(k) cos(k) + cosh(kx) sin(kx) cosh(k) sin(k)] cos(ωt)
+Q [sinh(kx) cos(kx) cosh(k) sin(k) − cosh(kx) sin(kx) sinh(k) cos(k)] sin(ωt), (7.2.5)
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where k and ω are arbitrary positive constants, and

Q = U

cosh2(k) − cos2(k)
. (7.2.6)

It satisfies the diffusion equation for the following boundary conditions:

u(0) = 0, (7.2.7)
u(1) = U cos(ωt). (7.2.8)

I like this one since it can be a good test case for studying a long time behavior of a diffusion scheme.

(d) Another time dependent solution that will never decay to zero:
There exists another time-dependent solution that oscillates forever:

u(x, t) = U exp
(

−
√

ω

2ν
x

)
cos

[
ω

(
t−

√
1

2νω
x

)]
, (7.2.9)

where U and ω are arbitrary constants. This exact solution can be easily derived by a trial solution of the form:

u = Uei(ωt+ξx), (7.2.10)

where ξ is determined so as to satisfy the diffusion equation1. That is, you substitute it into the diffusion equation
and solve the resulting equation for ξ. I like this solution, especially, the way it is derived. You pick a function
and make it satisfy the target equation. That’s a wonderful way of deriving exact solutions. It’s like you are
creating a solution rather than solving the equation. Of course, the solution itself is also very interesting in that it
represents a traveling wave entering the domain at x = 0 and quickly damped towards x → ∞. See Figure 7.1.6.
The difference between the previous solution (7.2.5) and this solution (7.2.9) lies in the boundary condition: the
former has u = 0 precisely at x = 0 whereas the latter has u = 0 theoretically at x → ∞. At the other end, both
solutions have the same boundary condition: u = U cos(ωt).

(e) Steady solution (a simple linear function):

u(x) = (1 − x)uL + xuR, (7.2.11)

with the boundary conditions u(0) = uL and u(1) = uR. This is too simple. Any diffusion scheme should be able
to compute this exactly.

7.2.2 2D Diffusion Equation
The two-dimensional diffusion equation,

ut = ν(uxx + uyy), (7.2.12)

has exact solutions of the form,

u(x, y, t) = e−νπ
2(n2 +m2)t sin(nπx) sin(mπy), (7.2.13)

where n and m are integers so that u = 0 on the boundary. It is straightforward to set up the problem in a square
domain. But sometimes it is too simple. Then, I would consider the following highly anisotropic problem,

ut = ν(uxx + uyy), (x, y) ∈ (0, 1) × (0, 0.005), (7.2.14)

with the initial solution,

u(x, y, 0) = 5 sin(πx) sin(4000πy), (7.2.15)

and the boundary condition, u = 0 on the boundary. The exact solution is given by

u(x, y, t) = 5 exp(−16000001π2νt) sin(πx) sin(4000πy). (7.2.16)
1 This derivation is due to Professor P. L. Roe.
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Figure 7.2.1: Anisotropic solution of the unsteady diffusion equation (t = 0).

The solution at t = 0 is shown in Figure 7.2.1. This is a very good test case for diffusion schemes because it involves
high-aspect-ratio and possibly highly-skewed grids as typically encountered in practical CFD computations for viscous
problems. Many diffusion schemes work very well for isotropic problems, but not necessarily for this problem. In
Refs.[101, 108], this problem is used to illustrate numerical difficulties such as oscillations and instability with highly
stretched and skewed grids.

Various other exact solutions can be obtained by superposition as mentioned earlier in Section 6.1. I like the two-
dimensional diffusion equation especially because it is nothing but the Laplace equation at a steady state and therefore
it has many many exact steady solutions (see Section 7.9).

7.2.3 3D Diffusion Equation
The three-dimensional diffusion equation,

ut = ν(uxx + uyy + uzz), in (0, 1) × (0, 1) × (0, 1), (7.2.17)

has exact solutions such as

u(x, y, z, t) = e−νπ
2(n2 +m2 + l2)t sin(nπx) sin(mπy) sin(lπz), (7.2.18)

where n, m, and l are integers so that u = 0 on the boundary. Other exact solutions can be obtained by superposition
as mentioned earlier in Section 6.1. Of course, I like this equation because it is again nothing but the Laplace equation
at a steady state and it has many many many exact solutions (see Section 7.9). Also, I like highly anisotropic problems,
which can be easily constructed from the above solution as in the two-dimensional case.

7.3 Advection-Diffusion Equation

7.3.1 1D Advection-Diffusion Equation
The one-dimensional advection-diffusion equation,

ut + aux = νuxx, (7.3.1)

where a and ν(> 0) are constants, has the following exact solutions.

(a) Time-dependent solution:

u(x, t) = exp(−k2νt) sin k(x− at) in [0, 1], (7.3.2)

where k is an arbitrary constant, for the initial condition u(x) = sin(kx) with a periodic boundary condition.
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Figure 7.3.1: Boundary Layer.
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Figure 7.3.2: Friedrichs’ model.
c = 0.3.
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Figure 7.3.3: Manufactured solu-
tion. C = 1/Re.

(b) Time-dependent solution that will never decay to zero:
As derived in Section 6.1.6, there exists an exact solution that oscillates forever:

u(x, t) = R
[

exp(λ1x) − exp(λ2x)
exp(λ1) − exp(λ2)

U exp(iωt)
]
, (7.3.3)

where i =
√

−1, R indicates the real part of the complex solution (the expression in the square brackets), U and
ω are arbitrary constants, and

λ1 = a+
√
a2 + 4νωi
2ν

, λ2 = a−
√
a2 + 4νωi
2ν

. (7.3.4)

The boundary conditions are

u(0) = 0, (7.3.5)
u(1) = U cos(ωt). (7.3.6)

I like this one because it can be useful for studying a long-time behavior of time-accurate advection-diffusion
schemes. I would like it better if it were possible to extract the real part of the solution analytically.

(c) Steady boundary-layer type solution (Figure 7.3.1):

u(x) = 1 − exRe

1 − eRe
in [0, 1], (7.3.7)

where Re = a/ν, with the boundary conditions u(0) = 0 and u(1) = 1.

(d) Steady boundary-layer type solution (Figure 7.3.2):
The Friedrichs’ model is given by

νuxx + ux − c = 0 in (0, 1), (7.3.8)

where c is an arbitrary constant (modeling the pressure gradient). It has the exact solution,

u(x) = cx+ (1 − c)1 − exRe

1 − eRe
, (7.3.9)

where Re = 1/ν, with the boundary conditions u(0) = 0 and u(1) = 1. Particularly I like this one because it
has an interesting geometrical interpretation. The solution curve in the three-dimensional space with coordinates
(u, x, p = ux) is an intersection of two surfaces defined by

νp+ u− cx = constant, (7.3.10)
x+ ν ln(p− c) = constant, (7.3.11)

where the constants are determined by the boundary condition. See Ref.[107] for details. The solution shown in
Figure 7.3.2 is a projection of this curve onto (x, u)-plane.



7.3. ADVECTION-DIFFUSION EQUATION 209

(a) t = 0.0 (b) t = 0.05 (c) t = 0.1

Figure 7.3.4: Unsteady solution (7.3.16): C = −0.01, ν = 0.5, a = 1, b = 0, A = 0.5, B = 2.0.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 7.3.5: Unsteady solution (7.3.17): C = 50.0, ν = 0.15, a = 2.5, b = 2.5, c1 = 1.0, c2 = 1.0.

(e) Manufactured solution (Figure 7.3.3):

u(x) = 1 − exRe

1 − eRe
+ C sin(πx) in [0, 1], (7.3.12)

where C is an arbitrary constant, is the exact solution of the following steady equation,

aux = νuxx + Cπ [a cos(πx) + πν sin(πx)] . (7.3.13)

I like this solution because it is non-trivial in the diffusion limit (Re → 0).

7.3.2 2D Advection-Diffusion Equation
The two-dimensional advection-diffusion equation,

ut + aux + buy = ν(uxx + uyy), (7.3.14)

where a, b, and ν(> 0) are constants, has the following exact solutions.

(a) Unsteady solution 1 (Figure 7.3.4):
As derived in Section 6.1.3, we have the following exact unsteady solution,

u(x, y, t) = Ce−νπ2(a2+b2)(B2−A2)t cos(Bπη) exp

(
1 −

√
1 + 4A2π2ν2

2ν
ξ

)
, (7.3.15)

where ξ = ax + by, η = bx − ay, and A, B, and C are arbitrary constants. If we rationalize the exponent, we
obtain

u(x, y, t) = Ce−νπ2(a2+b2)(B2−A2)t cos(Bπη) exp
(

−2A2π2ν

1 +
√

1 + 4A2π2ν2
ξ

)
, (7.3.16)

which can be used safely in the diffusion limit, i.e., as ν → 0. So, I like this one better.
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Figure 7.3.6: Exponential steady solution (7.3.21): C =
−0.009, ν = 0.1, a = 1.0, b = 0.0, A = 2.0.

Figure 7.3.7: Boundary-layer type solution (7.3.22): ν =
0.05, a = 1.0, b = 1.0.

(b) Unsteady solution 2 (Figure 7.3.5):
Here is another exact unsteady solution to the advection-diffusion equation (7.3.14):

u(x, y, t) = C

4t+ c1
exp

[
− (x− at− c2)2

ν(4t+ c1)
− (y − bt− c2)2

ν(4t+ c1)

]
, (7.3.17)

where C, c1, and c2 are arbitrary constants. I like the fact that this will reduce to an exact solution of the
two-dimensional diffusion equation if we set a = b = 0.

(c) Polynomial solutions:

Quadratic: u(x, y) = u0 + C1η + C2
(
2νξ + η2) , (7.3.18)

Cubic: u(x, y) = u0 + C3η + C4

(
νξ + η2

2

)
+ C5

(
νξη + η3

6

)
, (7.3.19)

Quartic: u(x, y) = u0 + C6η + C7

(
νξ + η2

2

)
+ C8

(
νξη + η3

6

)
+ C9

(
ν3ξ + ν2ξ2

2
+ νξη2

2
+ η4

24

)
, (7.3.20)

where u0, C1, C2, C3, C4, C5, C6, C7, C8, C9 are all arbitrary constants. I like these polynomial solutions
because I can directly check, for example, whether a numerical scheme can preserve a quadratic/cubic/quartic
exact solution. Such a polynomial-preserving property can be a useful measure of the accuracy of a scheme,
especially on unstructured grids.

(d) Exponential solution (Figure 7.3.6):
Simply by setting A = B in the solution (7.3.16), we obtain the following steady exact solution:

u(x, y) = C cos(Aπη) exp
(

−2A2π2ν

1 +
√

1 + 4A2π2ν2
ξ

)
, (7.3.21)

where C and A are arbitrary constants. I like this solution because it is very smooth and thus can be easily used
to verify the accuracy of numerical schemes.
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Figure 7.3.8: Boundary-layer type manufactured solution (7.3.24): Re = 104, x0 = 0.2.

(e) Boundary-layer type solution I (Figure 7.3.7):

u(x, y) =
[
1 − exp

(
(x− 1)aν

)] [
1 − exp

(
(y − 1) bν

)][
1 − exp

(
−a
ν

)] [
1 − exp

(
− b
ν

)] in [0, 1] × [0, 1]. (7.3.22)

This solution can be useful when we test a scheme for resolving boundary layers [155]. How would you avoid
spurious oscillations? Would you use a stretched mesh or an upwind scheme?

(f) Boundary-layer type solution II:

It is possible to construct an exact solution by superposing two one-dimensional exact solutions: e.g.,

u(x, y) = Cx
1 − eax/ν

1 − ea/ν
+ Cy

1 − eby/ν

1 − eb/ν
in [0, 1] × [0, 1], (7.3.23)

where Cx and Cy are arbitrary constants. Note that the first term satisfies aux = νuxx and the second term satisfies
buy = νuyy: the sum of them satisfies the two-dimensional advection-diffusion equation, aux+buy = ν(uxx+uyy).
I like this type of solution because it has no cross-derivatives such as uxy or uxxy.

(g) Boundary-layer type solution III (manufactured solution):

An interesting manufactured solution is used in Ref.[153], which is essentially the same as the following:

u(x, y) = 1 − exp(−η), (7.3.24)

where

η = y

√
Re

x+ x0
, Re =

√
a2 + b2

ν
. (7.3.25)

The reference location x0 can be chosen to avoid the singularity, e.g., x0 = 0.2. It resembles the x-component of
the velocity for the laminar flat-plate boundary layer flow in Section 7.15.9. It is exact for the steady advection-
diffusion equation with a source term, f(η):

aux + buy = ν(uxx + uyy) + f(η), (7.3.26)

where

f(η) = exp(−η)
[
aηx + bηy − ν(ηxx + ηyy − (η2

x + η2
y))
]
. (7.3.27)

Look at Figure 7.3.8. It is just like a boundary layer in a very thin domain. It can be a good test case for advection-
diffusion schemes. I like it very much. Of course, the same solution can be made exact for the compressible
Navier-Stokes equations with a suitable source term.
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7.4 Advection-Reaction Equation(3D)

The advection-reaction equation,

ut + aux + buy + cuz = −ku, (7.4.1)

has the exact solution of the form,

u(x, y, z, t) = e−ktf(x− at, y − bt, z − ct), (7.4.2)

where u(x, y, z, 0) = f(x, y, z); and its two-dimensional version,

ut + aux + buy = −ku, (7.4.3)

has the exact solution of the form,

u(x, y, t) = e−ktg(x− at, y − bt), (7.4.4)

where u(x, y, 0) = g(x, y); and its one-dimensional version,

ut + aux = −ku, (7.4.5)

has the exact solution of the form,

u(x, t) = e−kth(x− at), (7.4.6)

where u(x, 0) = h(x). So, as soon as you choose the initial solution, you immediately have the exact solution. I like
it. Basically, these exact solutions can be derived very easily. All are derived from the fact that

du

dt
= −ku, (7.4.7)

along the characteristic (dx/dt, dy/dt, dz/dt) = (a, b, c). Or equivalently, we may apply the change of variables,

u = e− kx
a v, in one dimension, (7.4.8)

u = e− k
2 ( xa+ y

b )v, in two dimensions, (7.4.9)

u = e− k
3 ( xa+ y

b+ z
c )v, in three dimensions, (7.4.10)

to transform the advection-reaction equation into a pure advection equation of v, which can be solved easily. Note
that t = x/a = y/b = z/c along the characteristic. Either way, it is very simple to derive the exact solution.

7.5 Advection-Diffusion-Reaction Equation

(a) Steady Solution:
Consider the steady advection-diffusion-reaction equation:

aux = νuxx − ku+ s(x), (7.5.1)

where a, ν(> 0), and k(> 0) are constants, and s(x) is an arbitrary function of x. I like this equation because
the exact solution can be easily derived. Substitute u(x) = A exp(λ1x) + B exp(λ2x) + s(x)/k, A and B are
constants, into Equation (7.5.1), and find that the solution is exact if

νλ2
1,2 − aλ1,2 − k = 0, (7.5.2)
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which yields

λ1,2 = a±
√
a2 + 4νk
2ν

. (7.5.3)

Therefore, the exact solution is given by

u(x) = A exp

(
a+

√
a2 + 4νk
2ν

x

)
+B exp

(
a−

√
a2 + 4νk
2ν

x

)
+ s(x)

k
, (7.5.4)

where A and B can be determined from the boundary conditions, e.g., by solving u(x = 0) = 0 and u(x = 1) = 1
for A and B. Interestingly, this exact solution is used to construct a finite-difference scheme in Ref.[141].

(b) Unsteady Solution I:
As derived in Section 6.1.4, the following solution,

u = C0e
−kt

[
C1 exp

(
a+

√
a2 + 8νk
2ν

x

)
+ C2 exp

(
a−

√
a2 + 8νk
2ν

x

)]
, (7.5.5)

where C0, C1, C2 are arbitrary constants, is the exact solution to the unsteady advection-diffusion-reaction equa-
tion,

ut + aux = νuxx − ku. (7.5.6)

(c) Unsteady Solution II (manufactured solution):
The exact solution to the unsteady version of the advection-diffusion-reaction equation can be constructed by the
method of manufactured solutions. For example, the solution [141]

u(x, t) = x2 e−t, (7.5.7)

satisfies the advection-diffusion-reaction equation,

ut + aux = νuxx − ku+ s(x, t), (7.5.8)

where

s(x, t) = e−t [(k − 1)x2 + 2ax− 2ν
]
. (7.5.9)

Of course, various other exact solutions can be constructed by the method of manufactured solutions.

7.6 Spherical Advection Equation(3D)

Consider the spherical advection equation:

ut + ur = −u

r
, (7.6.1)

where r is the distance from the origin. This equation was used in Ref.[71] as a model for aeroacoustics for studying
the long-time behavior of advection schemes in a large domain r ∈ [5, 400]. I like this equation because it can be
written as

(ru)t + (ru)r = 0, (7.6.2)

so that the exact solution is simply ru(r, t) = f(r − t), i.e.,

u(r, t) = 1
r
f(r − t), (7.6.3)

where f is determined by the initial condition, say u(r, 0) = 1
r sin(2πr), meaning f(r) = sin(2πr). This is very nice.
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7.7 Burgers Equation

7.7.1 1D Burgers Equation
For the one-dimensional Burgers equation,

∂tu+ ∂x
(
u2/2

)
= 0, (7.7.1)

or

∂tu+ u ∂xu = 0, (7.7.2)

basically a shock is developed if the initial solution is monotonically decreasing (characteristics converging) while a
rarefaction is developed if monotonically increasing (characteristics diverging). What is nice about this equation is that
u is constant along the characteristics dx/dt = u, which in turn means that the characteristics are straight lines. So,
it is very easy to find the exact solution (simply trace back along a characteristic line) until characteristics collide with
each other to form a shock. In particular, I like the following exact solutions.

(a) Smooth solution turning into a shock (Figure 7.7.1):
A smooth initial solution such as

u = 1
2πts

sin(2πx), x ∈ [0, 1], (7.7.3)

with the periodic boundary condition u(0, t) = u(1, t) = 0, leads to the following exact solution,

u = 1
2πts

sin[2π(x− ut)], (7.7.4)

where ts is a free parameter that specifies the time when a shock is formed, i.e., ∂xu → ∞ at x = 0.5. Note that
it is given implicitly and therefore must be solved numerically at each point and time (x, t): for example, for a
given location xi at time tn, iterate on uki by a simple fixed-point iteration,

uk+1
i = 1

2πts
sin[2π(xi − uki tn)], (7.7.5)

until |uk+1
i − uki | < 10−15. I like this solution because it can be used continuously to measure the numerical

accuracy up to the shock formation as well as to test the shock-capturing capability after the shock formation.

(b) Smooth rarefaction (Figure 7.7.2):
A smooth initial solution such as

u = A tanh(k(x− 0.5)), (7.7.6)

leads to the following exact solution,

u = A tanh(k(x− 0.5 − ut)), (7.7.7)

where A and k are arbitrary constants. Of course, it is given implicitly again, but can be computed numerically as
in the previous one.

(c) Compression turning to a shock (Figure 7.7.3):
A linear initial condition such as

u(x, 0) =



3
2

if x ≤ 0,

3
2

− 2x if 0 < x < 1,

−1
2

if x ≥ 1,

(7.7.8)
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Figure 7.7.1: Smooth solution turning into a shock:
solid line at t = 0, dashed line at t = 0.5, and dotted
line at t = 0.9. A = 1

2πts with ts = 1.
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Figure 7.7.2: Smooth solution spreading out: solid
line at t = 0, dashed line at t = 0.5, and dotted line
at t = 0.9. A = 0.2 and k = 20.

leads to the following exact solution: the solution before a shock is formed,

u(x, t < 1/2) =



3
2

if x ≤ 3t
2 ,

3 − 4x
2 − 4t

if 3t
2 < x < 1 − t

2 ,

−1
2

if x ≥ 1 − t
2 ,

(7.7.9)

and the solution after the shock is formed at t = 1/2,

u(x, t ≥ 1/2) =


3
2

if x ≤ 1+t
2 ,

−1
2

if x ≥ 1+t
2 .

(7.7.10)

It is quite simple. I like it.

(d) Accelerating shock (Figure 7.7.4):
Consider a linear initial condition with a shock,

u(x, 0) =

 uL if x ≤ 0,

uR(x− 1) if x > 0,
(7.7.11)

where uL and uR are arbitrary constants. Assuming uL > 0, we would like a solution where the shock travels
to the right keeping the left side of the shock uniform u = uL. On the right side of the shock, the solution is
continuous, and therefore the exact solution is obtained by tracing back the characteristics:

u(x, t) = u(x− ut, 0) = uR((x− ut) − 1), (7.7.12)

which can be solved for u to yield

u(x, t) = uR(x− 1)
1 + uR t

. (7.7.13)
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Figure 7.7.3: Compression wave turning into a straight
shock at (x, t) = (0.5, 0.75).
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Figure 7.7.4: Accelerating shock wave solution with the
parameters: uR = 2uL and uL = 2

3
(1 +

√
3).

Therefore, the exact solution to the problem can be written as

u(x, t) =


uL if x ≤ xs(t),

uR(x− 1)
1 + uR t

if x ≥ xs(t),
(7.7.14)

where xs(t) is the location of the shock. See Figure 7.7.4; observe that the shock is accelerating. The shock path
can be obtained by solving the ordinary differential equation for the shock speed (2.13.3),

Vs(t) = dxs(t)
dt

= 1
2

[
uL + uR(xs − 1)

1 + uR t

]
, (7.7.15)

with the initial condition xs(0) = 0. The solution is

xs(t) =
(
uL
uR

+ 1
)(

1 −
√

1 + uR t
)

+ uL t. (7.7.16)

In order for the shock to travel to the right, we must choose the parameters such that

uR ≤ uL. (7.7.17)

And I personally like the following values:

uL = 3, uR = uL, (7.7.18)

because it will lead to xs(1) = 1, i.e., the shock will reach x = 1 at t = 1 as in Figure 7.7.4. In this case, the
shock path can be expressed by

t = x+ 2
√
x

3
. (7.7.19)

I like this solution very much. This is a very good test case to check if a numerical scheme can compute a shock
wave with the correct traveling speed. It is well-known that conservation is very important to ensure a correct
shock speed; the shock computed by a non-conservative scheme may not reach x = 1 at t = 1.



7.7. BURGERS EQUATION 217

Vs =
uL + uR

2

u = uL (> uR) u = uR

x

t

O

Figure 7.7.5: Isolated Shock for the 1D Burgers equation.
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Figure 7.7.6: Rarefaction for the 1D Burgers equation.

7.7.2 1D Burgers Equation: Riemann Problems
The Riemann problem consists of a hyperbolic equation and piecewise constant initial data with a single discontinuity.
I like it especially because I can cook up exact solutions easily. Consider the Riemann problem for Burgers’ equation,

∂tu+ ∂x
(
u2/2

)
= 0, (7.7.20)

u(x, 0) =
{
uL if x < 0,
uR if x > 0. (7.7.21)

This has the following exact solutions.

(a) Shock (Figure 7.7.5):
Choose uL and uR such that

uL > uR, (7.7.22)

then a shock is created and it will travel at the speed,

Vs = uL + uR
2

, (7.7.23)

and so, the exact solution is given by

u(x, t) =
{
uL if x/t < Vs,
uR if x/t > Vs.

(7.7.24)

(b) Rarefaction (Figure 7.7.6):
Choose uL and uR such that

uL < uR, (7.7.25)

then a rarefaction wave is created, and the exact solution is given by

u(x, t) =


uL if x/t < uL,

x/t− uR
uL − uR

uL + x/t− uL
uR − uL

uR if uL < x/t < uR,

uR if x/t > uR.

(7.7.26)

(c) Sonic Rarefaction (Figure 7.7.7):
Choose uL and uR such that

uL < 0, uR > 0, and uL = −uR, (7.7.27)
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u = uL = −uR u = uR (> 0)
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Figure 7.7.7: Sonic Rarefaction for the 1D Burgers equation.

then a rarefaction wave is created at the center, expanding to the left and the right at the same speed, which is
called a sonic rarefaction. The exact solution is given by

u(x, t) =


uL if x/t < uL,

x/t if uL < x/t < uR,

uR if x/t > uR.

(7.7.28)

Some numerical schemes fail to compute this solution, preserving the initial discontinuity which must break up
immediately.

7.7.3 2D Burgers Equation
The two-dimensional Burgers equation of the form,

uux + uy = 0, (7.7.29)

is basically a one-dimensional equation with y considered as time. So, any time-dependent one-dimensional solutions
can be exact solutions of this equation if t is replaced by y. Namely, any exact solutions for ut+uux = 0 in (x, t)-space,
such as those in Sections 7.7.1 and 7.7.2, are exact solutions for uy + uux = 0 in (x, y)-space. For example, those in
Figures 7.7.3, 7.7.4, 7.7.5, 7.7.6, and 7.7.7 can be directly interpreted, with t replaced by y, as the exact solutions of
the two-dimensional equation (7.7.29). This is very convenient. I love it. Actually, the curved shock solution in Figure
7.7.4 is my favorite, and I have used it as a test case for mesh adaptation [114].

7.8 Viscous Burgers Equation

7.8.1 1D Viscous Burgers Equation
The one-dimensional viscous Burgers equation,

ut + uux = νuxx, (7.8.1)

has the following exact solutions.

(a) Unsteady/Steady solution (Figure 7.8.1):

u = 1 + (2a− 1) exp((1 − a)ξ/ν)
1 + exp((1 − a)ξ/ν)

, (7.8.2)

ξ = x− at− x0, (7.8.3)
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Figure 7.8.1: Unsteady solution of the 1D viscous Burg-
ers’ equation. uL = 1, uR = 0, ν = 0.01.

0 1

0

1

x

u

Figure 7.8.2: Steady solution of the 1D viscous Burgers’
equation. x0 = 0.5, b = 1.0, c = 0.5, ν = 0.01.

x0, a, and ν are constants, e.g., x0 = 0.1, a = 0.5, ν = 0.001 (see Ref.[64]). This solution is nice because it can
be expressed also in the following form,

u = uR + 1
2

(uL − uR)
[
1 − tanh

(
(uL − uR)(x− Vst)

4ν

)]
, (7.8.4)

where

Vs = uL + uR
2

, uL = lim
x→−∞

u, uR = lim
x→∞

u, uL > uR. (7.8.5)

Personally, I like this form better. It is very simple and intuitive. Moreover, if we take uR = −uL, then the shock
speed Vs vanishes and thus we obtain a steady solution. This is also very nice.

(b) Steady solution (Figure 7.8.2):
A slightly modified version of the viscous Burgers equation [155],

ut + (bu− c)ux = νuxx, (7.8.6)

has the exact steady solution,

u = c

b

[
1 − tanh

(
c(x− x0)

2ν

)]
, (7.8.7)

where b( ̸= 0), c( ̸= 0), and x0 are arbitrary constants.

I like this version also [154],

ut + uux = ν

2
(uux)x , x ∈ (0, 1), (7.8.8)

because it has the following very smooth steady exact solution:

u(x) = eνx. (7.8.9)

7.8.2 1D Viscous Burgers Equation with Source Terms
As shown in Section 6.4.1, the one-dimensional Burgers equation with source terms,

ut + uux = νuxx + ϵu2 − ku+ d, (7.8.10)

where ν(> 0), ϵ, k, and d are arbitrary constants, has the following analytical solutions, depending on the value of
D = k2 − 4ϵd.
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Figure 7.8.3: Exact solution of the 1D viscous Burgers equation with source terms: Solid t=0.0,
Dash t=0.125, Dash-Dot t=0.25.

(a) D > 0

u = −2ν λ1K1 exp [λ1x+ νλ1(λ1 + 2ϵ)t] + λ2K2 exp [λ2x+ νλ2(λ2 + 2ϵ)t]
K1 exp [λ1x+ νλ1(λ1 + 2ϵ)t] +K2 exp [λ2x+ νλ2(λ2 + 2ϵ)t]

, (7.8.11)

where K1 and K2 are arbitrary constants, and

λ1 = −k −
√
D

4ϵν
, λ2 = −k +

√
D

4ϵν
. (7.8.12)

(b) D < 0

u = −2ν (λrK ′
1 + λiK

′
2) cos θ + (λrK ′

2 − λiK
′
1) sin θ

K ′
1 cos θ +K ′

2 sin θ
, (7.8.13)

where K ′
1 and K ′

2 are arbitrary constants, and

θ = λix+ 2ν(λrλi + ϵλi)t, λr = −k
4ϵν

, λi =
√

−D
4ϵν

. (7.8.14)

(c) D = 0

u = −2ν K
′′
2 (1 + λsx) + 2K ′′

1 νλs(λs + ϵ)t
K ′′

2 x+ 2K ′′
1 ν(λs + ϵ)t

, (7.8.15)

where K ′′
1 and K ′′

2 are arbitrary constants, and

λs = −k
4ϵν

. (7.8.16)

In particular, I like the case (a) because the following set of parameters generates a nice and smooth traveling wave
solution shown in Figure 7.8.3:

ν = 0.01, K1 = 100.0, K2 = 0.01, ϵ = 0.1, k = 0.5, d = 0.6. (7.8.17)

I really like this case because in other cases I have not been able to discover a set of parameters which produces a
solution with no singularities.
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Figure 7.8.4: Steady solution for the 2D viscous Burgers equation, (7.8.24) with ν = 0.05.

7.8.3 2D Viscous Burgers Equations
The two-dimensional viscous Burgers equations,

ut + uux + vuy − ν(uxx + uyy) = 0, (7.8.18)
vt + uvx + vvy − ν(vxx + vyy) = 0, (7.8.19)

have an exact steady solution in the form [37],

u =
−2ν

[
a2 + a4y + λa5

(
eλ(x−x0) − e−λ(x−x0)) cos(λy)

]
a1 + a2x+ a3y + a4xy + a5

(
eλ(x−x0) + e−λ(x−x0)

)
cos(λy)

, (7.8.20)

v =
−2ν

[
a3 + a4x− λa5

(
eλ(x−x0) − e−λ(x−x0)) sin(λy)

]
a1 + a2x+ a3y + a4xy + a5

(
eλ(x−x0) + e−λ(x−x0)

)
cos(λy)

, (7.8.21)

where a1, a2, a3, a4, a5, x0 are arbitrary constants. In Ref.[37], the following set of parameters,

a1 = a2 = 1.3 × 1013, a3 = a4 = 0, a5 = 1, λ = 25, x0 = 1, ν = 0.04, (7.8.22)

are used to generate a smooth boundary-layer type solutions. Well, in fact, my favorite is the following two-dimensional
viscous Burgers equation,

ut + uux + uy − νuxx = 0. (7.8.23)

This is nice because it is a scalar equation and also it has a simple and interesting exact steady solution:

u(x, y, t = ∞) = −4 tanh
(
y + 2x
ν

)
− 1

2
. (7.8.24)

As shown in Figure 7.8.4, this solution has a very simple boundary-layer type feature. A similar solution was used in
Ref.[23] to verify the accuracy of high-order schemes.

7.9 Laplace Equation

I like the Laplace equation very much because it has a variety of solutions in two and three dimensions although
it has only a trivial linear solution in one dimension (7.2.11).
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7.9.1 2D Laplace Equation
I like the two-dimensional Laplace equation:

uxx + uyy = 0. (7.9.1)

It has various smooth exact solutions:

(a) u = xy, (7.9.2)

(b) u = x2 − y2, (7.9.3)

(c) u = 2y
(1 + x)2 + y2 , (7.9.4)

(d) u = exp(kx) sin(ky), (7.9.5)

(e) u = sinh(πx) sin(πy) + sinh(πy) sin(πx)
sinh(π)

, (7.9.6)

where k is an arbitrary constant. We may take the domain to be [0, 1]× [0, 1] for all, and specify the boundary condition
directly by using the exact solutions (the Dirichlet condition).

7.9.2 3D Laplace Equation
The three-dimensional Laplace equation,

uxx + uyy + uzz = 0, (7.9.7)

or in spherical coordinates,

1
r2

∂

∂r

(
r2 ∂α

∂r

)
+ 1
r2 sin2 ϕ

∂2α

∂θ2 + 1
r2 sinϕ

∂

∂ϕ

(
sinϕ∂α

∂ϕ

)
= 0, (7.9.8)

has the following exact solutions.

(a) u = k

r
, (7.9.9)

(b) u = exp(
√

2kx) sin(ky) cos(kz), (7.9.10)

where r =
√
x2 + y2 + z2 and k is an arbitrary constant. In addition, it is possible to generate more solutions by

superposition: e.g.,

(c) u = A1 exp(
√

2k1x) sin(k1y) cos(k1z) +A2 exp(
√

2k2z) sin(k2x) cos(k2y)

+A3 exp(
√

2k3y) sin(k3z) cos(k3x), (7.9.11)

where Ai and ki with i = 1, 2, 3 are arbitrary constants. This is nice. I like it.
Note also that any two dimensional solutions in the previous subsection and their linear combinations are exact

solutions to the three-dimensional Laplace equation. For example, these solutions,

(d) u = A1xy +A2yz +A3zx, (7.9.12)

(e) u = A1(x2 − y2) +A2(y2 − z2) +A3(z2 − x2), (7.9.13)

(f) u = A1 exp(k1x) sin(k1y) +A2 exp(k2y) sin(k2z) +A3 exp(k3z) sin(k3x), (7.9.14)

are all exact solutions to the three-dimensional Laplace equation. There are many many many possible exact solutions
for the Laplace equation.
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7.10 Poisson Equations

I like the Poisson equation because exact solutions can be easily manufactured (see Section 6.8). Basically, you
can easily cook up an exact solution simply by picking up a function u(x, y, z), substituting it into the left hand side
of the Poisson equation (i.e., the Laplacian part), and defining whatever left as the source term f(x, y, z). Just like
the Laplace equation, the Poisson equation is often used as a model equation for developing numerical schemes for the
viscous terms.

7.10.1 2D Poisson Equations
The two-dimensional Poisson equation,

uxx + uyy = f(x, y), (7.10.1)

has the following manufactured solutions:

(a) u = exy with f = (x2 + y2)exy, (7.10.2)

(b) u = exp(kx) sin(ky) + A

4
(x2 + y2) with f = A, (7.10.3)

(c) u = sinh x with f = sinh x, (7.10.4)

(d) u = exp
[
x2 + y2

d

]
with f = 4(x2 + y2 + d)

d2 exp
[
x2 + y2

d

]
, (7.10.5)

where k, A and d are arbitrary constants. Of course, as in two dimensions, we may take the domain to be [0, 1] × [0, 1]
for all, and specify the boundary conditions directly by using the exact solutions. Also, we can superpose some of these
solutions to generate a new exact solution such as

(e) u = Aexy +B sinh x with f = A(x2 + y2)exy +B sinh x, (7.10.6)

where A and B are arbitrary constants.
Smooth isotropic solutions are nice, but if numerical schemes are to be applied eventually to practical high-Reynolds-

number viscous simulations involving boundary layers, they must be tested for anisotropic solutions. I like the following
anisotropic solution:

(f) u = sin(πx) sin(2000πy) with f = −(1 + 20002)π2 sin(πx) sin(2000πy), (7.10.7)

where the domain is taken to be (x, y) ∈ (0, 1) × (0, 0.005), so that u = 0 on the boundary. This solution is very
similar to the anisotropic solution to the diffusion equation (7.2.16).

7.10.2 3D Poisson Equations
The three-dimensional Poisson equation,

uxx + uyy + uzz = f(x, y, z), (7.10.8)

has the following manufactured solutions:

(a) u = e
√
kxyz with f = k(x2 + y2 + z2)exyz, (7.10.9)

(b) u = A

6
(x2 + y2 + z2) with f = A, (7.10.10)

(c) u = Cx sinh x+ Cy sinh y + Cz sinh z with f = Cx sinh x+ Cy sinh y + Cz sinh z, (7.10.11)

(d) u = exp
[
r2

d

]
with f = 2(2r2 + 3d)

d2 exp
[
r2

d

]
, (7.10.12)

where k, A, Cx, Cy, Cz, and d are arbitrary constants, and r2 = x2 + y2 + z2.
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7.11 Incompressible-Euler/Cauchy-Riemann/Laplace Equations

Two-dimensional incompressible irrotational flows are governed by the Cauchy-Riemann equations, in terms of the
stream-function ψ and the velocity potential ϕ,

ψx + ϕy = 0, (7.11.1)
ϕx − ψy = 0, (7.11.2)

or in terms of the velocity components u and v,

ux + vy = 0, (7.11.3)
vx − uy = 0, (7.11.4)

or the Laplace equations:

ϕxx + ϕyy = 0, (7.11.5)
ψxx + ψyy = 0, (7.11.6)

or

uxx + uyy = 0, (7.11.7)
vxx + vyy = 0. (7.11.8)

Note that exact solutions to these equations are exact for the Euler equations in the incompressible limit, and therefore
can be used to test an Euler code. As mentioned in Section 6.2, I find it very interesting that a flow is obtained
simply by picking up an analytic function F of a complex variable Z = x+ iy = reiθ. The velocity potential and the
stream function are immediately obtained as the real and imaginary parts, respectively: F (Z) = ϕ(z, y) + iψ(z, y).
The velocity components (u, v) are obtained as the real and imaginary parts of the complex velocity, respectively:
W (Z) = F ′ = dF/dZ = u− iv. Some basic flows are given in Section 6.2. More practical flows such as a flow over
an airfoil can also be obtained by a mapping technique (the conformal mapping) as shown in this section. We also
consider a rotational flow for which the velocity potential does not exist but the stream function exists.

7.11.1 Stagnation Flow
Stagnation flow is obtained by the following complex potential:

F = −Z2

2
. (7.11.9)

The velocity potential and the stream function are given by

ϕ = 1
2

(y2 − x2), ψ = −xy. (7.11.10)

The complex velocity is given by

W = dF

dZ
= −Z, (7.11.11)

which thus yields by W = u− iv

u = −x, v = y. (7.11.12)

Streamlines are plotted in Figure 7.11.1 where the flow goes from the right to the left towards the wall represented by
the y-axis. I like the stagnation flow because the velocity components are linear function of space. So, a second-order
Euler code should be able to produce the exact solution. It sounds like an easy flow to compute. However, for practical
problems, the stagnation region is often a major source of convergence difficulty due to the vanishing velocity. See
Refs.[32, 162] for details.
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Figure 7.11.1: Inviscid Stagnation Flow in 2D.
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Figure 7.11.2: Flow over a Rankine Half-Body in 2D.

7.11.2 Flow over a Rankine Half-Body
Superposing a source and a free stream, we can generate a flow over a half-body:

F (Z) = V∞Z + σ

2π
lnZ, (7.11.13)

where σ is the source strength. The velocity potential and the stream function are given by

ϕ = V∞r cos θ + σ

2π
ln r = V∞x+ σ

4π
ln(x2 + y2), (7.11.14)

ψ = V∞r sin θ + σ

2π
θ = V∞y + σ

2π
tan−1(y/x). (7.11.15)

The complex velocity is given by

W = dF

dZ
= V∞ + σ

2πZ
=
(
V∞ + σ

2π
cos θ
r

)
− i

σ

2π
sin θ
r

, (7.11.16)

which thus yields by W = u− iv

u = V∞ + σ

2π
cos θ
r

= V∞ + σ

2π
x

x2 + y2 , (7.11.17)

v = − σ

2π
sin θ
r

= σ

2π
y

x2 + y2 . (7.11.18)

Streamlines are plotted in Figure 7.11.2. Clearly, we see a flow over a half-body, which is called the Rankine half-body.
The equation of the half-body is given by ψ = σ/2:

y = σ

2πV∞
(π − θ), (7.11.19)

which can be used to discretize the boundary of the half-body. The above expression represents the thickness of the
half-body. It shows that the thickness converges to

ymax = σ

2V∞
, (7.11.20)
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Figure 7.11.3: Cavity Flow: Velocity potential.
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Figure 7.11.4: Cavity Flow: Streamlines.

as x → ∞ (i.e., θ → 0). The location of the stagnation point can be easily found by solving u = 0 at y = 0:

xstagnation = − σ

2πV∞
. (7.11.21)

Since we also have v = 0 at y = 0, it is a stagnation point.
A flow over a Rankine half-body can be useful for testing a CFD code and checking the performance for a flow

with a stagnation point. You may want to take only the upper half of the domain as the flow is symmetric anyway.
I like the upper half. It may be called a Rankine quater-body of which I’ve never heard. Also, it is possible to create
a closed body by placing a sink behind the source. The resulting flow is known as a Rankine oval. See your favorite
fluid dynamics textbook for details.

7.11.3 Cavity Flow
In a square domain [0, 1] × [−1, 0], a flow that comes out at the upper left corner and sinks in the upper right corner
is given by the following complex potential2,

F (Z) = ϕ+ iψ = m ln
(
g(Z)
g(a2 )

)
, (7.11.22)

g(Z) = sinh
(
πZ

2a

) Πk=even

(
1 −

sinh2 πZ
2

sinh2 kπ
2

)

Πk=odd

(
1 −

sinh2 πZ
2

sinh2 kπ
2

) , (7.11.23)

where Z = x+ iy, k = 1, 2, 3, · · · , and m and a are arbitrary constants. This solution converges very fast: say, k = 20
is sufficient in practice. For example, we take

m = − 2
π
, (7.11.24)

a = 1, (7.11.25)

2This solution was derived by Professor P. L. Roe at the University of Michigan.
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so that ψ(x, y) and ϕ(x, y) take the following boundary values,

ψ(x, 0) = 0, (7.11.26)
ψ(x,−1) = ψ(0, y) = ψ(1, y) = 1, (7.11.27)

ϕ(0.5, 0) = 0, (7.11.28)

i.e., the boundary becomes a wall (see Figures 7.11.3 and 7.11.4: the solutions with k = 22.).
The solution is singular at the upper corners: obviously, the stream function is multi-valued and the potential goes

positive/negative infinity. But I like this solution. I can easily avoid the singularity, if I really wish, by restricting the
domain with the upper boundary taken somewhere a bit below y = 0.

7.11.4 Flow over a Circular Cylinder
A flow over a circular cylinder is obtained by superposing a uniform stream, a doublet, and possibly a vortex, in the
form of the complex potential,

F (Z) = ϕ+ iψ = V∞

[
Ze−iα + R2eiα

Z

]
+ iΓ

2π
lnZ, (7.11.29)

i.e., with Z = reiθ,

ϕ = V∞ cos(θ − α)
[
r + R2

r

]
− Γ

2π
θ, (7.11.30)

ψ = V∞ sin(θ − α)
[
r − R2

r

]
+ Γ

2π
ln r, (7.11.31)

which give

ur = ∂ϕ

∂r
= 1
r

∂ψ

∂θ
= V∞ cos(θ − α)

[
1 − R2

r2

]
, (7.11.32)

uθ = 1
r

∂ϕ

∂θ
= −∂ψ

∂r
= −V∞ sin(θ − α)

[
1 + R2

r2

]
− Γ

2πr
. (7.11.33)

Alternatively, either from the complex velocity W (Z),

W (Z) = dF

dZ
= u− iv = V∞

[
e−iα − R2eiα

Z2

]
+ iΓ

2πZ
, (7.11.34)

or by the transformation (1.8.4), we obtain the Cartesian velocity components,

u = V∞ cosα− (x2 − y2) cosα+ 2xy sinα
r4 V∞R

2 + yΓ
2πr2 , (7.11.35)

v = V∞ sinα+ (x2 − y2) sinα− 2xy cosα
r4 V∞R

2 − xΓ
2πr2 . (7.11.36)

This describes a flow past a circular cylinder of radius R with the free stream V∞ coming from the left at an angle of
attack α. With non-zero Γ, it can be a flow over a rotating cylinder whose rotating speed is given by Γ

2πR . I like it
very much because I think that it is one of the most beautiful flows. The pressure can be obtained directly from the
Bernoulli’s equation (3.18.4), or in the form of the pressure coefficient Cp,

Cp = p− p∞
1
2ρV

2
∞

= 1 − u2
r + v2

θ

V 2
∞

= 1 − u2 + v2

V 2
∞

. (7.11.37)

The flow is symmetric with respect to both x-axis and y-axis if Γ is zero. If it is not zero, the symmetry breaks
down (see Figures 7.11.5 and 7.11.6). The stagnation points (zero tangential velocity at r = R) are given by

sin θstag = − Γ
4πRV∞

, (7.11.38)
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Figure 7.11.5: Pressure coefficient Cp of the cylinder
flow: V∞ = 1, α = 0, Γ = π.

Figure 7.11.6: Streamlines of the cylinder flow: V∞ = 1,
α = 0, Γ = π.

where θstag gives the location of a stagnation point. Note that the stagnation points do not exist on the cylinder
surface if

|Γ| > 4πRV∞. (7.11.39)

Note also that a force F = (Fx, Fy) acting on the cylinder can be obtained by the Blasius formula,

Fx − iFy = iρ

2

∮
Cylinder

[W (Z)]2 dZ, (7.11.40)

giving

Fx − iFy = ρV∞Γei(π/2+α). (7.11.41)

Therefore, the force acts perpendicular to the free stream, and so the drag D and the lift L are given by

L = ρV∞Γ, (7.11.42)
D = 0. (7.11.43)

This result is called the Kutta-Joukowsky theorem. Of course, I like it. It is very nice that the drag is zero. This is
actually called d’Alembert’s paradox since the drag will be non-zero in reality. But an Euler code (being without any
viscous effects) should be able to produce this paradoxical result. Can your Euler code predict a zero-drag potential
flow?

Finally, I find it interesting that the line integral over a closed curve C of the complex velocity gives the volume
flow Q across C and the circulation Γ around C:

Γ + iQ =
∮

C
W dz, (7.11.44)

which is very easy to prove. So, I’ll leave it to you. Have fun.

7.11.5 Flow over an Elliptic Cylinder
Analytic function g that maps a point ζ = ξ + iη into a point Z = x+ iy (see Figure 7.11.7):

Z = g(ζ), (7.11.45)
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Figure 7.11.7: Conformal mapping from a circle to an ellipse. A = R+ ℓ2/R2 and B = R− ℓ2/R2.

is called a conformal mapping. Consider a flow in Z-plane defined by the complex potential F (Z). This flow can be
mapped onto ζ-plane easily by Z = g(ζ). The corresponding flow in ζ-plane is then described by the complex potential
f(ζ) given by

f(ζ) = F (g(ζ)), (7.11.46)

and the complex velocity w(ζ) is given by

w(ζ) = df(ζ)
dζ

= dF

dZ

dZ

dζ
= W (g(ζ)) g′(ζ). (7.11.47)

Now, reverse the viewpoint. As a matter of fact, the mapping is useful in obtaining a complicated flow in Z-plane
from a simple flow in ζ-plane: f(ζ) → F (Z) and w(ζ) → W (Z). For example, the Joukowsky transformation,

Z = ζ + ℓ2

ζ
, (7.11.48)

maps a circle in ζ-plane onto an ellipse in Z-plane with the foci at Z = ±2ℓ, and a circle with radius ℓ onto a line
segment of length 4ℓ. I like the Joukowsky transformation, but I like its inverse better because it is more useful.
Suppose we wish to compute a velocity at a point Zp in Z-plane, but we know only f(ζ), i.e., the complex velocity in
ζ-plane (the simpler flow). Then, first, we must map a point Zp back to the corresponding point ζp in ζ-plane,

ζp = g−1(Zp), (7.11.49)

and then compute the desired velocity by

W (Zp) = W (g(ζp)) = w(ζp)/g′(ζp) = f ′(ζp)/g′(ζp). (7.11.50)

This way, we can compute the velocity at a point Zp in Z-plane. The key is to have the inverse transformation g−1 at
hand. It is generally difficult to obtain the inverse transformation, but it is often possible to do so. For the Joukowsky
transformation (7.11.48), since it can be written in the form,

Z − 2ℓ
Z + 2ℓ

=
(
ζ − ℓ

ζ + ℓ

)2

, (7.11.51)

an inverse is found to be

ζ = (Z + 2ℓ) 1
2 + (Z − 2ℓ) 1

2

(Z + 2ℓ) 1
2 − (Z − 2ℓ) 1

2
ℓ. (7.11.52)



230 CHAPTER 7. EXACT SOLUTIONS

Figure 7.11.8: Pressure coefficient Cp of the flow over an
ellipse: V∞ = 1, R = 3/4, α = 10◦, Γ = 0, ℓ =

√
3/4.

Figure 7.11.9: Streamlines of the flow over an ellipse:
V∞ = 1, R = 3/4, α = 10◦, Γ = 0, ℓ =

√
3/4.

With this, it is now possible to obtain the velocity in a flow over an elliptic cylinder (or a flat plate) in Z-plane from a
flow over a circular cylinder in ζ-plane, by setting up the complex potential,

f(ζ) = V∞

[
ζe−iα + R2eiα

ζ

]
+ iΓ

2π
ln ζ, (7.11.53)

where R > ℓ (or R = ℓ for a flat plate), leading to the velocity

W (Z) = u− iv = f ′(ζ)/g′(ζ)

=
V∞

[
e−iα − R2eiα

ζ2

]
+ iΓ

2πζ

1 − ℓ2

ζ2

. (7.11.54)

Note that we would have to use L’Hopital’s rule to evaluate it at ζ = ℓ.
The surface of the elliptic cylinder is defined by

x = A cos θ, (7.11.55)
y = B sin θ, (7.11.56)

where

A = R+ ℓ2

R
, (7.11.57)

B = R− ℓ2

R
, (7.11.58)

which can be inverted to get

R = A+B

2
, (7.11.59)

ℓ = A2 −B2

4
. (7.11.60)

So, now we can do the following.
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O

Figure 7.11.10: Circle that is mapped onto an airfoil.

Construction of an Ellipse:

1. Choose the major axis A and the minor axis B of the ellipse.

2. Generate an ellipse by Equations (7.11.55) and (7.11.56) in Z-plane.

Computation of Exact Solution:

1. Determine R and ℓ by

R = A+B

2
, ℓ = A2 −B2

4
. (7.11.61)

2. Choose V∞, α, and Γ.

3. Pick any point Zp = xp + iyp (on or outside the ellipse), and get the corresponding ζp by Equation
(7.11.52).

4. Compute the exact velocity at the point Zp by Equation (7.11.54), using ζp, and the pressure by

Cp = p− p∞
1
2ρV

2
∞

= 1 − u2 + v2

V 2
∞

. (7.11.62)

An example is shown in Figures 7.11.8 and 7.11.9.

7.11.6 Flow over an Airfoil
To generate a flow over an airfoil, first set up a flow over a shifted circular cylinder in ζ-plane as follows. Consider a
circle of radius a, centered at

ζ = µ, (7.11.63)

and passing through the point,

ζ = ℓ, (7.11.64)

where ℓ is a real value (nearly a half chord of the resulting airfoil) while µ is a complex value (see Figure 7.11.10).
This circle is represented by the formula,

ζ = µ+ aeiθ, (7.11.65)
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where

0 ≤ θ ≤ 2π, (7.11.66)
µ = ℓ(−ϵ+ iκ), (7.11.67)

a = ℓ
√

(1 + ϵ)2 + κ2, (7.11.68)

and ϵ and κ are positive constants that are related to the thickness and the camber respectively of the resulting airfoil.
In fact, the point ζTE = ℓ corresponds to the trailing edge of the resulting airfoil and if we denote the angle that
indicates this point by β, i.e.,

ζTE = ℓ = µ+ ae−iβ , (7.11.69)

then we find

β = sin−1
(
ℓκ

a

)
= sin−1

(
κ√

(1 + ϵ)2 + κ2

)
. (7.11.70)

Note that the point here is to shift the circle off from the origin. Recall that a circle centered at the origin ζ-plane is
Joukowsky-transformed onto an ellipse in Z-plane. Now imagine that a circle off from the origin will be Joukowsky-
transformed onto something different from an ellipse, which turns out to be an airfoil-like shape in Z-plane.

The complex potential that describes a flow over the circle defined above is given by

f(ζ)
V∞

= ζe−iα + i 2a sin(α+ β) ln(ζ − µ) + a2eiα

ζ − µ
, (7.11.71)

which leads to the complex velocity,

w(ζ)
V∞

= e−iα + i
2a sin(α+ β)

ζ − µ
− a2eiα

(ζ − µ)2 . (7.11.72)

Note that the circulation Γ has been determined such that the velocity be finite at the trailing edge (the Kutta
condition). In fact, the velocity at the trailing edge is given by w(ζTE)

dg/dζ , but dg/dζ vanishes for the Joukowsky
transformation. Therefore, in order for the velocity to be finite, it is required that w(ζTE) = 0. This gives Γ =
4πaV∞ sin(α + β). For other types of transformations, even if dg/dζ does not vanish, we must have w(ζTE) = 0
(i.e., the trailing edge must be a stagnation point) because otherwise a flow is not uniquely determined and there are
a plenty of experimental evidences that support this.

Now, we are ready to transform the circle (and a flow around it) onto something like an airfoil (and a flow around
it). Specifically, we create a flow around an airfoil from a flow around the circle by a mapping Z = g(ζ), and compute
a velocity at any point in the airfoil flow by transforming the point back to the ζ-plane by ζ = g−1(Z) and then
evaluate the velocity by

W (Z)
V∞

= u− iv

V∞
= w(ζ)/g′(ζ)

V∞
. (7.11.73)

For this purpose, I give two examples for the mapping Z = g(ζ): the Joukowsky transformation and the Kármán-
Trefftz transformation. Airfoils generated by these transformations are called the Joukowsky and Kármán-Trefftz airfoils
respectively.

Joukowsky Airfoils

The Joukowsky transformation:

Z = g1(ζ) = ζ + ℓ2

ζ
. (7.11.74)

An inverse is given by

ζ = g−1
1 (ζ) = (Z + 2ℓ) 1

2 + (Z − 2ℓ) 1
2

(Z + 2ℓ) 1
2 − (Z − 2ℓ) 1

2
ℓ. (7.11.75)
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The derivative of the transformation,

g′
1(ζ) = 1 − ℓ2

ζ2 , (7.11.76)

is needed to compute the velocity by Equation (7.11.73).

I like the Joukowsky airfoils because they look very smooth, especially near the trailing edge. In fact, the trailing
edge is cusped, i.e., zero thickness, and so the velocity there is not zero but finite (not a stagnation point). This can
be nice because the flow is then smooth everywhere.

Note that if κ is not zero (cambered airfoils), there may be a region (below the airfoil but above the x axis) where
the inverse (7.11.75) does not work. I would suggest the use of the Kármán-Trefftz transformation to avoid this trouble.

Kármán-Trefftz Airfoil

The Kármán-Trefftz transformation:

Z − nℓ

Z + nℓ
=
(
ζ − ℓ

ζ + ℓ

)n
, n = 2 − τ

π
, (7.11.77)

where τ is a free parameter to specify the trailing edge angle. This transformation can be written as

Z = g2(ζ) = (ζ + ℓ)n + (ζ − ℓ)n

(ζ + ℓ)n − (ζ − ℓ)n
nℓ. (7.11.78)

An inverse transformation is then given by

ζ = g−1
2 = (Z + nℓ) 1

n + (Z − nℓ) 1
n

(Z + nℓ) 1
n − (Z − nℓ) 1

n

ℓ. (7.11.79)

Note that the inverse transformation does not work if κ is too large for the same reason as in the inverse Joukowsky
transformation (increasing the thickness parameter ϵ may help in keeping a valid inverse transformation with a relatively
large κ). The derivative of the transformation is given by

g′
2(ζ) = 4n2ℓ2 [(ζ + ℓ)(ζ − ℓ)]n−1

[(ζ + ℓ)n − (ζ − ℓ)n]2
, (7.11.80)

which is needed to compute the velocity by Equation (7.11.73).

I like Kármán-Trefftz airfoils because these airfoils have a trailing edge with a finite angle. This is more realistic
and practical than the cusped trailing edge. Note also that the Joukowsky transformation is in fact a special case of
the Kármán-Trefftz transformation: the Kármán-Trefftz transformation with τ = 0 is the Joukowsky transformation.
Anyway, so, I focus on the Kármán-Trefftz transformation in the rest of the section.
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Figure 7.11.11: Pressure coefficient Cp of the flow over a
Kármán-Trefftz airfoil: ℓ = 0.5, α = 10◦, ϵ = 0.1, κ = 0,
τ = 0.

Figure 7.11.12: Streamlines of the flow over a Kármán-
Trefftz airfoil: ℓ = 0.5, α = 10◦, ϵ = 0.1, κ = 0, τ = 0.

Construction of a Kármán-Trefftz Airfoil:

1. Specify the parameters:

ℓ : Chord length ≈ 2ℓ, (7.11.81)
α : Angle of attack (radian) , (7.11.82)
ϵ : Thickness , (7.11.83)
κ : Camber , (7.11.84)
τ : Trailing edge angle (radian) . (7.11.85)

2. Compute the following quantities:

a = ℓ
√

(1 + ϵ)2 + κ2 : Radius of the circle, (7.11.86)

β = sin−1
(κ
a

)
: Trailing edge location, (7.11.87)

(ξc, ηc) = (−ℓϵ, ℓκ) : Center of the circle. (7.11.88)

This completely defines the circle by Equation (7.11.65).

3. Substitute points on the circle, ζi = (ξi, ηi), i = 1, 2, 3, . . . , N , represented by

ξi = a cos(θi − β) + ξc, (7.11.89)
ηi = a sin(θi − β) + ηc, (7.11.90)

with θi in [0, 2π] into the transformation (7.11.78) to obtain the points Z that form an airfoil (NB:
θ = 0 corresponds to the trailing edge).

4. (Optional) Compute the velocity at the airfoil points by substituting the points generated in the
previous step into Equation (7.11.73). Note that the inverse transformation g−1

2 is not needed here,
so that the velocity on the surface of the airfoil can be safely computed for any values of camber,
thickness, and trailing edge angle.
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Computation of Exact Solution (the whole flow field):

1. Pick a point Zp = xp + iyp (on and anywhere outside the airfoil!) where you want to compute the
velocity.

2. Transform the point Zp by Equation (7.11.79) onto the corresponding point ζp in ζ-plane.

3. Compute the velocity by substituting ζp into Equation (7.11.73).

An example, which was generated by the sample program available at http://www.cfdbooks.com, is given in Figures
7.11.11 and 7.11.12; it is in fact a Joukowsky airfoil since τ = 0. A flow over a cylinder can be generated by taking
τ = 180◦. Note that the flow has a stagnation point is at the rear of the cylinder because the circulation in in Equation
(7.11.72) has been determined by the Kutta condition. It is interesting to compute the lift force, which is given by

L = ρV∞Γ = 4ρV 2
∞πa sin(α+ β). (7.11.91)

Can your CFD code predict the lift to the design accuracy?

7.11.7 Flow over Airfoils

It is possible to compute an exact solution for a flow around multiple airfoils by the conformal mapping technique. But
the solution is usually available only on the surface of the airfoils (not the whole flow field). See Ref.[48, 56, 152, 172]
for more details. In particular, the four-element configuration computed in Ref.[152] is widely used. The geometry of
the four airfoils and the pressure coefficient over the airfoils are tabulated (with a limited precision) in Ref.[152].

7.11.8 Fraenkel’s Flow: Constant Vorticity Flow over a Cylinder

Fraenkel’s flow [38] is an exact solution of the incompressible Euler equations with a non-zero constant vorticity, i.e.,
linearly varying free stream. It was used to study the accuracy of an Euler code in Refs.[113, 123]. Although it is
basically a flow over a cylinder (of radius 1 located at the origin), it contains recirculation zones in the front and back
of the cylinder (see Figure 7.11.13). These recirculation zones can be quite difficult to capture numerically if a scheme
is very dissipative. Can your code capture the recirculation zones (especially those in the rear)?

Here is the stream function ψ, which is presented with complex variables in Ref.[38], written in terms of real
variables:

ψ = 1
2
ωy2 + ω

2π

[(
1 − 1

r2

)
y + xy(r4 − 1)

2r4 ln
(
r2 − 2x+ 1
r2 + 2x+ 1

)

+1
2

{(
1 + 1

r4

)
(x2 − y2) − 2

}
arctan

(
2y

r2 − 1

)]
+ U∞

(
1 − 1

r2

)
y, (7.11.92)

where r =
√
x2 + y2, ω is the constant vorticity, and U∞ is the free stream velocity of the irrotational part of the

flow. The velocity (u, v) is obtained simply by differentiating the stream function,

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (7.11.93)

http://www.cfdbooks.com
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Figure 7.11.13: Streamlines of Fraenkel’s flow.

but the result is very complicated:

u = ωy + ω

2π

[
2y2

r4 +
(

1 − 1
r2

)
+ x

2

(
1 − 1

r4 + 4y2

r6

)
ln
(
r2 − 2x+ 1
r2 + 2x+ 1

)

+
4x2y2 (1 − 1

r4

)
(r2 − 2x+ 1)(r2 + 2x+ 1)

−
{

2y(x2 − y2)
r6 +

(
1 + 1

r4

)
y

}
arctan

(
2y

r2 − 1

)

+
{(

1 + 1
r4

)
(x2 − y2) − 2

}
(x2 − y2 − 1)

(r2 − 1)2 + 4y2

]
+ U∞

(
1 − x2 − y2

r4

)
, (7.11.94)

v = − ω

2π

[
2xy
r4 + y

2

(
1 − 1

r4 + 4x2

r6

)
ln
(
r2 − 2x+ 1
r2 + 2x+ 1

)

+
2xy(x2 − y2 − 1)

(
1 − 1

r4

)
(r2 − 2x+ 1)(r2 + 2x+ 1)

−
{

2x(x2 − y2)
r6 −

(
1 + 1

r4

)
x

}
arctan

(
2y

r2 − 1

)

−
2xy

{(
1 + 1

r4

)
(x2 − y2) − 2

}
(r2 − 1)2 + 4y2

]
− U∞

2xy
r4 . (7.11.95)

These functions were used to generate the streamline plot in Figure 7.11.13. Note that the above exact solution is
valid only on the upper half of the domain, i.e., y ≥ 0, and to make it valid on the lower half, I have to change the
sign of y, i.e., y → −y. Also, Note also that the above exact solution is singular at (x, y) = (−1, 0) and (1, 0) where
it should be set to be a stagnation point u = v = 0. By the way, it is very interesting that such a complicated flow
(as in Figure 7.11.13) can be represented by an analytical formula.



7.12. 3D INCOMPRESSIBLE EULER EQUATIONS (AXISYMMETRIC FLOWS) 237

x

y

0 0.5 1-0.5

0

0.5

Figure 7.12.1: Inviscid Stagnation Flow in 3D.
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Figure 7.12.2: Flow over a Rankine Half-Body in 3D.

7.12 3D Incompressible Euler Equations (Axisymmetric Flows)

I like 3D flows because they are much more realistic than 1D and 2D flows. 3D solutions can be used to verify
practical CFD codes, which solve 3D problems. Although the theory of complex variables cannot be applied, various
exact solutions can be derived for 3D irrotational flows because the velocity potential satisfies the Laplace equation.
Especially, I like axisymmetric flows because these flows can be described by a single stream function just like 2D flows.
Below, axisymmetric flows are described in (x, y)-plane with the x-axis as the axis of symmetry. Note that these are
3D solutions and therefore should not be used for 2D CFD codes that solve 2D equations.

7.12.1 Stagnation Flow
A three-dimensional stagnation flow is an axisymmetric flow. It is described by the following velocity potential:

ϕ = 1
4

(y2 − 2x2). (7.12.1)

It is easy to verify that the above velocity potential satisfies the Laplace equation for axisymmetric flows:

∂2ϕ

∂x2 + ∂2ϕ

∂y2 + 1
y

∂ϕ

∂y
= 0. (7.12.2)

The velocity components (u, v) are given by

u = ∂ϕ

∂x
= −x, v = ∂ϕ

∂y
= 1

2
y, (7.12.3)

which differ from the two-dimensional case in Section 7.11.1 by the factor 1/2 in v. As in the two-dimensional case,
the velocity components are linear function of space. I like that. A second-order scheme should still give the exact
result in 3D. The stream function can be derived by integrating Equation (4.24.14):

ψ = −1
2
xy2, (7.12.4)

which is different from the two-dimensional version (7.11.10). Streamlines are plotted in Figure 7.12.1, which should
be compared with Figure 7.11.1.
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7.12.2 Flow over a Rankine Half-Body
A flow over a Rankine half-body can be obtained in 3D. As in 2D, we superpose a source and a free stream:

ϕ = V∞x− σ

4πr
, (7.12.5)

where r =
√
x2 + y2 and the second term represents the three-dimensional source with the strength σ. It is straight-

forward to verify that the above potential satisfies the Laplace equation (7.12.2). The velocity components (u, v) are
given by

u = ∂ϕ

∂x
= V∞ + σx

4πr3 , v = ∂ϕ

∂y
= σy

4πr3 . (7.12.6)

The stream function can be derived as

ψ = 1
2
V∞y

2 + σ

4π

(
1 − x

r

)
. (7.12.7)

Streamlines are plotted in Figure 7.12.2. This is the Rankine half-body in three dimensions. Compare the streamlines
and the half-body with those in two dimensions, Figure 7.11.2. They are similar but different. In 3D, the equation of
the half-body is given by ψ = σ/(2π):

y = ±
√

2σ
πV∞

(cos θ + 1), (7.12.8)

where θ = tan−1(y/x), which can be used to discretize the boundary of the half-body by varying θ. It follows that the
thickness converges to

ymax = 2
√

σ

V∞
, (7.12.9)

as x → ∞ (i.e., θ → 0), which is slightly thicker than the two-dimensional body. The location of the stagnation point
can be easily found by solving u = 0 at y = 0:

xstagnation = −2
√

σ

πV∞
. (7.12.10)

Of course, we have v = 0 at y = 0, and thus it is indeed a stagnation point.

7.12.3 Flow over a Sphere
A flow over a sphere at zero angle of attack is a valid axisymmetric flow. The following velocity potential, which
consists of a uniform flow and a doublet, is an exact solution that represents a flow over a sphere of radius R,

ϕ = V∞x

[
1 + 1

2

(
R

r

)3
]
. (7.12.11)

It is quite straightforward to verify that the above potential satisfies the Laplace equation (7.12.2). The velocity
components are given by

u = ∂ϕ

∂x
= V∞

[
1 + R3

2r3

(
1 − 3x2

r2

)]
, (7.12.12)

v = ∂ϕ

∂y
= −3xyV∞R

3

2r5 . (7.12.13)

The stream function can be derived in the form:

ψ = 1
2
V∞y

2
(

1 − R3

r3

)
. (7.12.14)
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Figure 7.12.3: Flow over a Sphere (3D).

Streamlines are plotted in Figure 7.12.3. Note that the maximum speed on the sphere is

|u|x=0,y=R = 3
2
V∞, (7.12.15)

which is smaller than that for a flow over a cylinder obtained from Equation (7.11.35),

|u| = 2V∞. (7.12.16)

On the sphere (x2 + y2 = R2), we have

u2 + v2 = 9V 2
∞

4
y2

R2 . (7.12.17)

Therefore, the pressure coefficient over the sphere is given by

Cp = p− p∞
1
2ρV

2
∞

= 1 −
(
u2 + v2

V 2
∞

)∣∣∣∣
r=R

= 1 − 9
4
y2

R2 . (7.12.18)

I like the flow over a sphere. It is very simple and smooth. But it is not really simple to compute numerically. First,
it is not trivial to generate a computational grid around a sphere (unlike generating a grid around a two-dimensional
cylinder): structured grids need some effort to avoid possible geometric singularities. Second, it is often hard to obtain
a clean symmetric solution with respect to the (y, z)-plane (i.e., fore-aft symmetry) by an Euler code, particularly with
unstructured grids. How accurately can your Euler code compute this flow?

7.13 Euler Equations

I like the compressible Euler Equations. Basically, all the incompressible flows described in the previous section are the
exact solutions to the compressible Euler Equations with constant density. Here, we consider exact solutions for the
compressible Euler Equations with variable density.
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7.13.1 One-Dimensional Simple Acoustic Waves
Consider the simple wave solution derived in Section 6.7.3:

u(x, t)
a∞

= M∞ + 2
(γ + 1)

V (ξ)
a∞

, (7.13.1)

ρ(x, t)
ρ∞

=
[
1 + γ − 1

2

(
u(ξ)
a∞

−M∞

)] 2
γ−1

, (7.13.2)

p(x, t)
p∞

=
[
1 + γ − 1

2

(
u(ξ)
a∞

−M∞

)] 2γ
γ−1

, (7.13.3)

where ξ = x− V t, V = u+ a, and V is a solution of Burgers’ equation. This is valid for smooth flows and the exact
solutions of Burgers’ equation given in Section 7.7.1 can be directly employed for V .

(a) Smooth solution turning into a shock:
Set an initial solution with

V (x) = 1
2πts

sin(2πx), (7.13.4)

then it gives the exact solution with

V (ξ) = 1
2πts

sin(2π(x− V t)), (7.13.5)

where ts is a free parameter that specifies the time when a shock is formed. This solution is given implicitly and
therefore must be computed numerically (see Section 7.7.1).

(b) Smooth rarefaction:
Set an initial solution with

V (x) = A tanh(k(x− 0.5)), (7.13.6)

then it gives the exact solution with

V (ξ) = A tanh(k(x− 0.5 − V t)), (7.13.7)

where A and k are arbitrary constants. Again, this is given implicitly and therefore must be computed numerically.

These solutions are very similar to those in Figures 7.7.1 and 7.7.2. These types of solutions were actually used in
Ref.[87] for verification of higher-order schemes. It is nice to have smooth exact solutions for nonlinear systems such
as the Euler equations. In particular, it is very nice that we can generate various exact solutions through the solutions
of Burgers’ equation. I really like it.

7.13.2 Entropy Waves
The entropy wave is an exact simple wave solution of the compressible Euler equations. The one-dimensional entropy
wave is given by

ρ = ρ∞ +A sin [π(x− U∞t)] , (7.13.8)
u = U∞, (7.13.9)
p = P∞, (7.13.10)

where ρ∞, U∞ and P∞ are constants. The two-dimensional version is given by

ρ = ρ∞ +A sin [π(x+ y −Q∞t)] , (7.13.11)
u = U∞, (7.13.12)
v = V∞, (7.13.13)
p = P∞, (7.13.14)
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Figure 7.13.1: Density contours for the two-dimensional isentropic vortex convection. α = 1, K = 5.0, ρ∞ = 1,
p∞ = 1/γ, u∞ = v∞ = 2.0, (x0, y0) = (−10,−10).

where V∞ is a constant and Q∞ = U∞ + V∞. The three-dimensional version is given by

ρ = ρ∞ +A sin [π(x+ y + z −Q∞t)] , (7.13.15)
u = U∞, (7.13.16)
v = V∞, (7.13.17)
w = W∞, (7.13.18)
p = P∞, (7.13.19)

where W∞ is a constant and Q∞ = U∞ + V∞ +W∞. With a periodic boundary condition, the entropy wave should
travel through the domain, preserving its initial profile. Certainly, I like the entropy wave. It is very useful in verifying
the accuracy of a time-dependent Euler code.

7.13.3 Two-Dimensional Unsteady Isentropic Vortex Convection
As derived in Section 6.3, the following is an exact solution to the full unsteady two-dimensional compressible Euler
equations:

u(x, y, t)
a∞

= u∞

a∞
− K

2πa∞
yeα(1−r2)/2, (7.13.20)

v(x, y, t)
a∞

= v∞

a∞
+ K

2πa∞
xeα(1−r2)/2, (7.13.21)

T (x, y, t)
T∞

= 1 − K2(γ − 1)
8απ2a2

∞
eα(1−r2), (7.13.22)

ρ(x, y, t)
ρ∞

=
(
T (x, y, t)
T∞

) 1
γ−1

, (7.13.23)

p(x, y, t)
p∞

=
(
T (x, y, t)
T∞

) γ
γ−1

, (7.13.24)
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Figure 7.13.2: Subsonic solution. Streamlines calculated by the total velocity (U∞ + u, v) with U∞ = 1.0,
k = π/

√
1 −M2

∞ and M∞ = 0.5.

where

x = x− x0 − u∞t, (7.13.25)
y = y − y0 − v∞t, (7.13.26)

r =
√
x2 + y2. (7.13.27)

This exact solution describes a vortex simply convected isentropically with the free stream velocity (u∞, v∞). It is
often employed to measure the accuracy of an Euler code [28, 142, 177]. For example, I like the following set of
parameters: α = 1, ρ∞ = 1, p∞ = 1/γ, u∞ = v∞ = 2, (x0, y0) = (−10,−10), K = 5, because then the vortex starts
at (x, y) = (−10,−10), moves to the origin at t = 5, and then will finally reach at (x, y) = (10, 10) precisely at t = 10
as shown in Figure 7.13.1. You may measure the accuracy of your Euler code at the final location.

7.13.4 Linearized Potential Equations
The linearized potential equation (see Section 3.20),

(1 −M2
∞)ϕ′

xx + ϕ′
yy = 0, (7.13.28)

or the equivalent system for the perturbation velocity components (see Section 3.21),

(1 −M2
∞)ux + vy = 0, (7.13.29)

vx − uy = 0, (7.13.30)

has various exact solutions.

Subsonic solution

As discussed in Section 3.21, the Prandtl-Glauert transformation

ξ = x, η = y
√

1 −M2
∞, Φ′ =

√
1 −M2

∞ ϕ′, U =
√

1 −M2
∞ u, V = v, (7.13.31)

turns the governing equations into the Laplace equation for the potential,

Φ′
ξξ + Φ′

ηη = 0, (7.13.32)

and the Cauchy-Riemann system for the velocity components,

Uξ + Vη = 0, (7.13.33)
Vξ − Uη = 0, (7.13.34)
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M∞ =
√

2

(u, v) = (0, 0.1)

(u, v) = (0, 0)

(u, v) = (0, 0)

(u, v) = (0,−0.1)

(u, v) = (0, 0)

(u, v) = (0, 0)

Figure 7.13.3: Supersonic solution. Inflow perturbation velocity components are u = 0 and v = 0.1, with the
mean-flow Mach number M∞ =

√
2. Thin lines are characteristics dividing the constant states.

where we have assumed here that M∞ < 1. This means that any incompressible flow solution Φ′(ξ, η), i.e., the solution
of the Laplace equation (7.13.32), can be transformed into a compressible flow solution, i.e., the solution of Equation
(7.13.28), as follows,

ϕ′(x, y) =
Φ′(x, y

√
1 −M2

∞)√
1 −M2

∞
. (7.13.35)

Alternatively, we may start from a set of solutions for the Cauchy-Riemann system, U(ξ, η) and V (ξ, η), and then
obtain the velocity components in the equivalent compressible flow as follows,

u(x, y) =
U(x, y

√
1 −M2

∞)√
1 −M2

∞
, (7.13.36)

v(x, y) = V (x, y
√

1 −M2
∞). (7.13.37)

For example, the exact solution (7.9.5) from Section 7.9.1,

Φ′(ξ, η) = exp(kξ) sin(kη), (7.13.38)

where k is an arbitrary constant, can be transformed into the corresponding compressible solution as follows,

ϕ′(x, y) =
exp(kx) sin

(
ky
√

1 −M2
∞

)
√

1 −M2
∞

. (7.13.39)

To see what flow this represents, we derive the perturbation velocity components,

u(x, y) = ϕ′
x(x, y) =

k exp(kx) sin
(
ky
√

1 −M2
∞

)
√

1 −M2
∞

, (7.13.40)

v(x, y) = ϕ′
y(x, y) = k exp(kx) cos

(
ky
√

1 −M2
∞

)
. (7.13.41)

The streamlines calculated from these are plotted in Figure 7.13.2. It does look like a flow. This is simple and smooth
enough for accuracy verification, possibly with the Dirichlet condition. I like this very much. It is really nice that any
solution of Laplace’s equation can be transformed into a subsonic flow solution.

Supersonic solution

As shown in Section 3.21, for supersonic flows (M∞ > 1), the governing equations become hyperbolic. The method
of characteristics can then be used to generate various exact solutions: applying the following characteristic relations,

u
√
M2

∞ − 1 − v = constant, along dy/dx = 1/
√
M2

∞ − 1, (7.13.42)

u
√
M2

∞ − 1 + v = constant, along dy/dx = −1/
√
M2

∞ − 1, (7.13.43)
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with appropriate boundary conditions, we can construct a flow field, starting from a supersonic free stream of the
Mach number M∞ > 1 (see Ref.[155] for more details if needed). An example is a supersonic flow through a dust: a
mean-flow coming from the left at Mach number M∞ =

√
2 with the perturbation velocity (u, v) = (0, 0.1), through

a parallel duct. The small incidence introduced by the non-zero v causes compression and expansion waves created
at the leading edges and reflected through the duct, recovering the inflow condition at the exit. This is sketched in
Figure 7.13.3. Solution at each region can be easily found by drawing characteristic lines from a known upstream state
and applying the appropriate characteristic relation above. I like this solution because it can be a very simple test case
(with a simple rectangular domain) for solving linear hyperbolic systems involving discontinuities. In fact, this solution
was used to demonstrate the capability of a particular mesh adaptation technique in Ref.[130].

7.13.5 Nozzle Flows
Basic Equations

Nozzle flows are governed by the equations in Section 3.16 which for a steady adiabatic flow reduce to

ρuA = constant, (7.13.44)
u2

2
+ a2

γ − 1
= constant, (7.13.45)

p/ργ = constant. (7.13.46)

We then obtain from these (see Ref.[84] for derivation) the fundamental relations for generating exact solutions:(
A

A∗

)2

= 1
M

[
2

γ + 1

(
1 + γ − 1

2
M2
)](γ+1)/(γ−1)

, (7.13.47)

ρ

ρ0
=
(

1 + γ − 1
2

M2
) −1
γ−1

, (7.13.48)

p

p0
=
(

1 + γ − 1
2

M2
) −γ
γ−1

, (7.13.49)

T

T0
=
(

1 + γ − 1
2

M2
)−1

, (7.13.50)

where γ = 1.4 for air, A∗ is the critical area corresponding to sonic speed u = a, M = u/a, and ρ0, p0, and T0 are the
stagnation density, pressure, and temperature. It follows from Equation (7.13.47) that there exist two different Mach
numbers for a given area-ratio A

A∗ : subsonic and supersonic solutions (see Ref.[84]).
Differentiate the continuity equation (7.13.44),

1
ρ

dρ

dx
+ 1
u

du

dx
+ 1
A

dA

dx
= 0, (7.13.51)

and substitute the momentum equation,

ρu
du

dx
= −dp

dx
= a2 dρ

dx
, (7.13.52)

to obtain

1
u

du

dx
= − 1

1 −M2
1
A

dA

dx
. (7.13.53)

This shows that a subsonic flow is accelerated (du > 0) through a converging nozzle (dA < 0); and a supersonic flow
accelerated (du > 0) through a diverging nozzle (dA > 0). This is very interesting. I like it.

Now, suppose that a nozzle shape A(x) is given in x ∈ [0, 1], having the minimum (or throat) area at x = xthroat.
Then, there exist three types of solutions: subsonic-supersonic, fully subsonic, and subsonic-supersonic with a shock.
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Figure 7.13.4: Mach number: the unique subsonic-
supersonic flow.
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Figure 7.13.5: Pressure: the unique subsonic-
supersonic flow.

Subsonic-Supersonic Flow

This is a unique solution for a given nozzle shape: a subsonic inflow achieves M = 1 precisely at the throat x = xthroat
so that A∗ = A(xthroat), and then smoothly becomes supersonic and accelerates towards the exit. It should be noted
that the inflow Mach number is not zero but a small value. Theoretically, we see from Equation (7.13.47) that M → 0
when A → 0. That is, a reservoir exists at x → −∞. In a way, we are looking at only a small part of a big nozzle
coming out from a reservoir. Or it may be interpreted as a flow through the nozzle in [0, 1] caused by a pressure
difference applied to the inlet and outlet of the nozzle with a finite length.

Computation of Exact Solution:
We can numerically compute this unique flow solution at a set of N points {xi} = {x1 =
0, x2, x3, · · · , xN = 1} as follows:

1. Set A∗ = A(xthroat).

2. Compute M(xi) by solving Equation (7.13.47) for given A(xi) and A∗ for all i.
(subsonic for xi ∈ [0, xthroat]; supersonic for xi ∈ [xthroat, 1].)

3. Compute ρ(xi), p(xi), and T (xi) by Equations (7.13.48), (7.13.49), and (7.13.50).
Note that Equation (7.13.47) needs to be solved for the Mach number numerically. For this purpose, we may

employ the bisection method for the following equation,

f(M) =
(
A

A∗

)2

− 1
M

[
2

γ + 1

(
1 + γ − 1

2
M2
)](γ+1)/(γ−1)

= 0, (7.13.54)

with adaptive initial bounds: [0, 1] to find a subsonic solution or [1, 100] to find a supersonic solution. Of course, other
methods can be used, but I like the bisection method because it is very simple. In fact, I actually used it to obtain the
solution shown in Figures 7.13.4 and 7.13.4.

Fully Subsonic Flow

In this case, there exist an infinite number of solutions for a given nozzle shape; the exit pressure pe must be specified
to make the solution unique. Observe also that in this case a flow can never reach M = 1 (A∗ ̸= A(x) anywhere in
the nozzle). Therefore, A∗ is just a parameter determined by first computing Me from (for a specified pe)

pe
p0

=
(

1 + γ − 1
2

M2
e

) −γ
γ−1

, (7.13.55)

and then solving (
Ae
A∗

)2

− 1
Me

[
2

γ + 1

(
1 + γ − 1

2
M2
e

)](γ+1)/(γ−1)

= 0, (7.13.56)
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Figure 7.13.6: Mach number: a fully subsonic flow.
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Figure 7.13.7: Pressure: a fully subsonic flow.

for A∗. Here, obviously, Ae = A(xN ) = A(1.0), Me = M(xN ) = M(1.0), and pe = p(xN ) = p(1.0).
Note that the exit pressure pe must satisfy

pcrite ≤ pe < p0, (7.13.57)

where pcrite is the pressure corresponding to the ideal subsonic solution, i.e., the one with A∗ = A(xthroat) of Equation
(7.13.56), at the exit This pcrite can be computed by first solving Equation (7.13.56) with A∗ = A(xthroat) to obtain
M crit
e , and then substituting this Mach number M crit

e into Equation (7.13.49).

Computation of Exact Solution:
A fully subsonic flow solution can be computed numerically as follows:

1. Compute M crit
e by solving Equation (7.13.56) and A∗ = A(xthroat).

(Assume that the flow is subsonic.)

2. Compute pcrite (7.13.48).

3. Specify the exit pressure pe under the condition (7.13.57).

4. Compute Me from pe by Equation (7.13.49).

5. Re-compute A∗ by solving Equation (7.13.47) with A = Ae and M = Me.

6. Compute M(xi) by solving Equation (7.13.47) for given A(xi) and A∗ for all i.
(Note that the flow is subsonic everywhere.)

7. Compute ρ(xi), p(xi), and T (xi) by Equations (7.13.48), (7.13.49), and (7.13.50).

An example is given in Figures 7.13.6 and 7.13.7.

Shocked Flow

In shocked flows also, the exit pressure pe must be specified to make the solution unique. This time, the exit pressure,
pe, must satisfy

pps ≤ pexit < pcrite , (7.13.58)

where pps is a post-shock pressure given by

pps =
[
1 + γ − 1

2
M2
ps

] −γ
γ−1

, (7.13.59)

Mps =

√√√√√√ 1 + γ − 1
2

(
M crit
e

)2

γ
(
M crit
e

)2 − γ − 1
2

. (7.13.60)
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Figure 7.13.8: Mach number: a shocked flow.
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Figure 7.13.9: Pressure: a shocked flow.

This is a pressure obtained based on the assumption that there exists a shock exactly at the exit in the ideal subsonic-
supersonic flow, i.e., the flow with A∗ = A(xthroat). The condition (7.13.58) ensures the presence of a shock somewhere
between the throat (x = xthroat) and the exit.

Computation of Exact Solution:
A shocked flow solution can be computed numerically as follows:

1. Specify the exit pressure pe under the condition (7.13.58).

2. Compute Me from pe by Equation (7.13.49).

3. Compute and store the ideal solution Mideal(xi) by solving Equation (7.13.47) with A∗ = A(xthroat)
for all i.
(subsonic for xi ∈ [0, xthroat]; supersonic for xi ∈ [xthroat, 1.0].)

4. Re-compute A∗ by solving Equation (7.13.47) with A = Ae and M = Me.

5. From the exit (towards the throat), start computing the subsonic solution Msub(xi) by solving
Equation (7.13.47) for each A(xi).

6. In doing so, check if the condition,

Mpost-shock(xi−1) < Msub(xi) < Mpost-shock(xi), (7.13.61)

where Mpost-shock(xi) is a Mach number behind an assumed shock located at xi in the ideal subsonic-
supersonic flow given by

Mpost-shock(xi) =

√√√√√√ 1 + γ − 1
2

[Mideal(xi)]2

γ [Mideal(xi)]2 − γ − 1
2

, (7.13.62)

is satisfied. If it is, there is a shock between xi−1 and xi, and you define i = ishock and stop
calculating M(xi).

7. The solution is then given by, for i = 1, 2, 3, · · · , N ,

M(xi) =

{
Mideal(xi) if i < ishock,

Msub(xi) otherwise,
(7.13.63)

and ρ(xi), p(xi), and T (xi) are computed by Equations (7.13.48), (7.13.49), and (7.13.50).

An example is given in Figures 7.13.8 and 7.13.9.
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Entrance Exit
M 0.4517 2.1972
p 0.8694 0.0939

Table 7.13.1: Data for the subsonic-supersonic flow in Figures 7.13.4 and 7.13.4.

Entrance Exit
M 0.2972 0.2091
p 0.9405 0.9700

Table 7.13.2: Data for the fully subsonic flow in Figures 7.13.6 and 7.13.7. pe = 0.97 was specified.

Entrance Exit
M 0.4517 0.3909
p 0.8694 0.9000

Table 7.13.3: Data for the shocked flow in Figures 7.13.8 and 7.13.9. pe = 0.9 was specified. The shock was found to
be at x = 0.8.

Figure 7.13.10: Upper half of a quadratic nozzle (7.13.64) with Ae = 0.4 and At = 0.2.

Example

Consider a quadratic shape nozzle,

A(x) = 25
9

(Ae −At)
(
x− 2

5

)2

+At, (7.13.64)

where Ae and At are the exit area and the throat area respectively (Figure 7.13.10). Note that xthroat = 2/5. Applying
the algorithms described above, I obtained the results in Figures 7.13.6 to 7.13.9, and the data in Tables 7.13.1 to
7.13.3.

These exact solutions can be used to verify a numerical code for the quasi-1D Euler equations in Section 3.16. But
it is also possible to use these exact solutions as references in two-dimensional calculations. Generate a two-dimensional
grid based on the area function (only the upper half of the nozzle will suffice because of the symmetry), and perform
a two-dimensional CFD calculation on it for one of the exact solutions described above. Then, we may compare the
numerical solution with the exact solution at the centerline of the nozzle. In this case, the exact solution is no longer
strictly exact. But it should be close for a smooth nozzle with Ae ≈ At.

I like the nozzle flow very much because it is useful also in magnetohydrodynamic flows: the solution can be used
without any modification for aligned flows (the magnetic field parallel to the stream line) [42], and also with minor
modifications for transverse flows (the magnetic field perpendicular to the stream line) [85].

7.13.6 Ringleb’s Flow

Ringleb’s flow is an exact solution to the Euler equations for γ = 1.4 obtained by Ringleb in 1940 [126]. It is often
used to measure the accuracy of an Euler code (see Ref.[26] and references therein). This flow is obtained as a solution
(a stream function ψ) of the hodograph equation (6.4.45), so that the physical location (x, y) is given in terms of the
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Figure 7.13.11: A computational grid for Ringleb’s flow,
generated with a uniform spacing in θ rather than V , with
parameters ψmin = 0.69, ψmax = 1.2, Vmin = 0.5.

V=Vmin
Inflow

s = s

s = s

Outflow
y = 0 (symmetric line, u= 0)

min

max
M < 1

M=
1

M > 1

Figure 7.13.12: Ringleb’s flow: a flow around the edge
of a flat plate or a flow in a channel, being smoothly
accelerated from subsonic to supersonic. The supersonic
region can be avoided by taking sufficiently large values
of ψ.

physical variables (V, θ), i.e., the flow speed and angle (see Ref.[139] for details):

ψ = sin θ
V

, (7.13.65)

x(ψ, V ) = 1
ρ

[
1

2V 2 − ψ2
]

+ L

2
, (7.13.66)

y(ψ, V ) = ± ψ

ρV

√
1 − V 2ψ2, (7.13.67)

where ρ and L are functions of V :

ρ = b5, (7.13.68)

L = 1
b

+ 1
3b3 + 1

5b5 − 1
2

ln
(

1 + b

1 − b

)
, (7.13.69)

b =
√

1 − 0.2V 2, (7.13.70)

and the pressure p is given by p = b7. The isotachs (lines of constant speed) are circles given by(
x− L

2

)2

+ y2 =
(

1
2ρV 2

)2

. (7.13.71)

Note that the variables have been nondimensionalized by the stagnation values; and so they should be understood
actually as

x

l
,

y

l
,

ψ

c0l
,

V

c0
,

ρ

ρ0
,

p

p0
, (7.13.72)

where l is a reference length, ρ0, p0, and c0 are the stagnation density, pressure, and the speed of sound respectively.
Now, choose some values for ψmin, ψmax, Vmin, and allow V to increase up to a limit of the domain, e.g., y = 0,

thus Equation (7.13.67) giving Vmax = 1/ψ. Then, we will have a domain like those in Figures 7.13.11 and 7.13.12;
we can generate its boundary points very easily.
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Figure 7.13.13: Flow speed, density, and pressure have
the same contours .

Figure 7.13.14: Flow angle θ.

Generation of Boundary Points:
The following generates NR points on the right boundary, NT points on the top boundary, NL points
on the left boundary, NB points on the bottom boundary (with corner points being shared, i.e., the total
number of points on the whole boundary is NL +NR +NB +NT − 4).

1. Right Boundary:
Generate (xi, yi) by Equations (7.13.66) and (7.13.67) with ψ = ψmin and
Vi ∈ [Vmin, 1/ψmin], i = 1, 2, 3, · · · , NR.

2. Top Boundary:
Generate (xi, yi) by Equations (7.13.66) and (7.13.67) with V = Vmin and
ψi ∈ [ψmin, ψmax], i = 1, 2, 3, · · · , NT .

3. Left Boundary:
Generate (xi, yi) by Equations (7.13.66) and (7.13.67) with ψ = ψmax and
Vi ∈ [Vmin, 1/ψmax], i = 1, 2, 3, · · · , NL.

4. Bottom Boundary:
Generate (xi, yi) by Equations (7.13.66) and (7.13.67) with V = 1/ψi and
ψi ∈ [ψmin, ψmax], i = 1, 2, 3, · · · , NB . (yi should be zero for all i here.)

Note that we might want to reverse the node ordering in the step 2, so that boundary points are generated and
ordered counterclockwise over the entire boundary. Also, note that a uniform distribution of points in [Vmin, 1/ψmin]
does not lead to the uniform distribution in the physical plane (points will be clustered near the midpoint). First,
generate a uniform grid in θ ∈ [sin−1(ψminVmin), π/2], and then convert it to Vi by Vi = sin θi

ψmin
. This will generate a

smoother grid in the physical plane such as the one shown in Figure 7.13.11.
Once we generate boundary points, we can generate a computational grid over the domain by connecting them in

some way (structured or unstructured). Or you can directly generate a structured grid by applying the above boundary-
point generation algorithm to the interior points with varying stream function values over the interval [ψmin, ψmax].

Whatever kind of grid you generate, you would want to run an Euler code on it with the appropriate boundary
conditions: uniform inflow at the top boundary; wall boundary conditions on the left and right boundaries; outflow
condition on the bottom boundary. Then, of course, you would certainly want to compute the error by comparing the
numerical solution with the exact solution.



7.13. EULER EQUATIONS 251

Figure 7.13.15: Velocity component, u = −V cos θ. Figure 7.13.16: Velocity component, v = −V sin θ.

Computation of Exact Solution:
The exact solution at a given location (xp, yp) can be computed as follows.

1. Numerically solve Equation (7.13.71) for V with the bounds [Vmin, 1/ψmin].

2. Compute b by Equation (7.13.70), and then ρ, p, and L.

3. Compute ψ by Equation (7.13.66) in the form,

ψ =

√
1

2V 2 − ρ

(
xp − L

2

)
. (7.13.73)

4. Compute θ by Equation (7.13.65) in the form,

θ = sin−1(ψV ), θ ∈ [−π/2, π/2]. (7.13.74)

5. Compute the velocity (u, v) = −V (cos θ, sin θ) where the negative sign is put to make the upper
boundary the inflow).

6. Compute the actual Mach number (if you wish) by

M =
√

1.4 V√
1.4 p/ρ

= V√
p/ρ

, (7.13.75)

where the factor
√

1.4 is needed because V , p, and ρ are in fact V/c0, p/p0, and ρ/ρ0.

For solving Equation (7.13.71), we may employ the fixed-point iteration: write the equation as

V k+1 =
√

1
2ρk
√

(x− Lk/2)2 + y2
, (7.13.76)

where ρk and Lk are evaluated with the previous value V k, then iterate on V k starting with V 1 = (Vmin + 1/ψmin)/2
until |V k+1 − V k| < 10−15, for example. I like this method because it is very simple.

I like Ringleb’s flow very much because in particular the flow accelerates from subsonic to supersonic very smoothly
without shocks. That is, it can be very useful to verify the accuracy of an Euler code simultaneously for both subsonic
and supersonic flows. A sample program, which was used to generate the grid in Figure 7.13.11 and the solution in
Figures 7.13.13, 7.13.14, 7.13.15, and 7.13.16, is available at http://www.cfdbooks.com.

http://www.cfdbooks.com
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Shock Wave

M∞ > 1

Figure 7.13.17: Supersonic flow over a cylinder: the shock
is locally normal to the streamline along the centerline in-
dicated by the dashed line.

7.13.7 Supersonic Flow over a Cylinder (Stagnation Pressure)
The formula that relates the upstream Mach number M∞ and stagnation pressure (p0)∞ to the stagnation pressure
p0 behind the shock is given by

p0

(p0)∞
=
[
1 + 2γ

γ + 1
(M2

∞ − 1)
]−1/(γ−1) [ (γ + 1)M2

∞
(γ − 1)M2

∞ + 2

]γ/(γ−1)

, (7.13.77)

(see Ref.[84] for details). This will give the exact pressure at the stagnation point of a cylinder behind a bow shock
created by a supersonic flow (the bow shock is a normal shock at the line of symmetry). This is useful, for example,
when I want to see how accurately my Euler code can compute a supersonic flow over a cylinder (so that there will be
a bow shock in front of it) by comparing a computed pressure at the front stagnation point of the cylinder with the
exact value. For this purpose, I like to use the nondimensionalization by the stagnation values in Section 3.11 because
it allows me to directly compare the computed pressure value with the exact value.

7.13.8 Normal/Oblique Shock Waves
Propagating Normal Shock Wave

I like propagating normal shock waves, especially the one running to the right at the speed Vs into the gas at rest (this
state is denoted by R),

WR = [ρR, uR, pR]t = [1, 0, 1/γ]t. (7.13.78)

It is nice that once I specify the shock speed Vs(> 0), then all upstream quantities, WL = [ρL, uL, pL]t, are automat-
ically determined (by the Rankine-Hugoniot relation) as follows:

pL =
[
1 + 2γ

γ + 1
(
V 2
s − 1

)] 1
γ
, (7.13.79)

ρL =
1 + γ + 1

γ − 1
pL

γ + 1
γ − 1

+ pL

, (7.13.80)

uL = γpL − 1

γ
√

1 + γ+1
2γ (γpL − 1)

. (7.13.81)

This can be used in the same form also in two and three dimensions with v = w = 0. It is very useful. Note that it is
very important to be able to compute a moving shock because the predicted shock speed could be wrong if a method
is not conservative.
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Shock Wave

Vs

L R

Figure 7.13.18: Normal shock wave: propagating Vs > 0,
or stationary Vs = 0.

Steady Normal Shock Wave

I like steady normal shock waves. In fact, it is very easy to cook up one: specify the upstream state, WL,

WL = [ρL, uL, pL]t =
[
1, 1, 1

γM2
L

]t
, (7.13.82)

where ML > 1, then the downstream state, WR = [ρR, uR, pR]t is automatically determined in terms of ML,

ρR = (γ + 1)M2
L

(γ − 1)M2
L + 2

, (7.13.83)

uR = 1
ρR

= (γ − 1)M2
L + 2

(γ + 1)M2
L

, (7.13.84)

pR =
[
1 + 2γ

γ + 1
(M2

L − 1)
]

1
γM2

L

. (7.13.85)

Besides, if we express the two states in terms of the conservative variables, UL and UR, then they look rather simple:

UL = [ρL, ρLuL, ρLEL]t =
[
1, 1, 1

γ(γ − 1)M2
L

+ 1
2

]t
, (7.13.86)

UR = [ρR, ρRuR, ρRER]t =
[
ρR, 1,

pR
γ − 1

+ u2
R

2

]t
, (7.13.87)

where ρR, pR, and uR are given by Equations (7.13.83), (7.13.84), and (7.13.85). Of course, this steady shock solution
can be used in the same form also in two and three dimensions with v = w = 0.

Oblique Shock Waves

We can easily create an oblique shock solution in a square domain by setting a free stream on the left at an angle α
coming towards the bottom wall, thus creating a oblique shock at the bottom-left corner. Specify the upstream angle
α and a desired oblique shock angle θs (see Figure 7.13.19), and then we can determine the corresponding upstream
Mach number by

M∞ =

√
2

sin(θs + α) cos(θs + α) [(γ + 1) tan(θs) − (γ − 1) tan(θs + α)]
, (7.13.88)

where it is safe to use the values that satisfy θs + α < 60◦ (this is a rough estimate not a precise condition) so that
only the weak solution, i.e., the one with the supersonic downstream, is allowed. If we specify this Mach number and
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M∞ > 1
α

Shock Wave

θs

Figure 7.13.19: Oblique shock wave.

ρ∞ = 1 and p∞ = 1/γ, for example, then we can determine the downstream state M2, ρ2, and p2 by

M2 = 1
sin θs

√√√√√√ 1 + γ − 1
2

M2
∞ sin2(θs + α)

γM2
∞ sin2(θs + α) − γ − 1

2

, (7.13.89)

ρ2 = (γ + 1)M2
∞ sin2(θs + α)

(γ − 1)M2
∞ sin2(θs + α) + 2

, (7.13.90)

p2 = 1 + 2γ
γ + 1

(M2
∞ sin2(θs + α) − 1). (7.13.91)

(see Ref.[84] for details). It is very nice that the domain is a square; it will be very easy to generate a grid and also to
implement a numerical scheme.

7.14 Riemann Problems for the Euler Equations

The Riemann problem is an initial value problem with a single discontinuity that initially separates two constant
states, the left and right states. In particular, the Riemann problem with zero velocity on both states describes a shock
tube problem in gas dynamics: interactions of gases at two different states suddenly made to interact in a tube, e.g.,
by a diaphragm raptured at t = 0. I like Riemann problems for two reasons. First, it can be solved exactly even for
nonlinear equations such as the Euler equations. I find it very interesting that the problem can be solved exactly for
highly nonlinear equations with discontinuous initial data, which sounds very difficult in general. Second, it can be
thought of as a building block of finite-volume methods. For example, two adjacent control volumes (computational
cells) define a Riemann problem at the control-volume boundary, and the solution to the Riemann problem gives the
flux at the control-volume boundary that is required to compute the residual in finite-volume methods.

7.14.1 Basic Equations
The 1D Euler equations have three characteristic fields:

λ1 = u− c, λ2 = u, λ3 = u+ c. (7.14.1)

λ1-field and λ3-field are genuinely nonlinear and therefore have nonlinear waves (shocks/rarefactions), but λ2-field is
linearly degenerate and so has a contact wave only. See Section 1.23.

In the following equations, whenever they have double signs, the negative sign is associated with waves in λ1-field
and the positive sign is associated with waves in λ3-field. Also note that the subscript 0 indicates an undisturbed state.
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Shocks

The Rankine-Hugoniot relation across a shock is given by

p− p0 = ± ρ0c0

√
1 + γ + 1

2γ

(
p

p0
− 1
)

(u− u0), (7.14.2)

ρ

ρ0
=

1 + γ + 1
γ − 1

p

p0
γ + 1
γ − 1

+ p

p0

. (7.14.3)

These are obtained directly from the Rankine-Hugoniot relation in Section 1.22 (See Ref.[159] for derivation). Equation
(7.14.2) defines a curve in (p, u)-space, and it is called the Hugoniot curve. The shock speed Vs is given by

Vs = u0 ± c0

√
1 + γ + 1

2γ

(
p

p0
− 1
)
. (7.14.4)

Note that Equation (7.14.2) defines a curve that passes through a point (p0, u0) and only the branch where p > p0
is physically admissible. This is typically called the entropy condition: the entropy cannot decrease across the shock.
You will actually see that p > p0 for s > s0 by deriving the entropy jump, s − s0 = cv[ln(p/ργ) − ln(p0/ρ

γ
0)] from

the above equations. The other branch, where p < p0, is often called the non-physical branch of the Hugoniot curve.
Such a change is caused by a rarefaction wave.

Rarefactions

Integral relation across a rarefaction is given by

u± 2
γ − 1

c = u0 ± 2
γ − 1

c0, (7.14.5)

p− p0 = ± ρ0c0
γ − 1

2γ
1 − (p/p0)

1 − (p/p0)
γ−1
2γ

(u− u0). (7.14.6)

These equations are obtained from the isentropic relations and the Riemann invariant u+ 2c
γ−1 = constant (See Ref.[159]

for derivation). Equation (7.14.6) defines a curve in (p, u)-space, and it is called the Poisson curve. Of course, only the
branch where p < p0 is physically admissible. Then, a curve describing all admissible jumps is obtained by connecting
the Poisson and Hugoniot curves at (p0, u0), which will be the main tool for solving a Riemann problem. Across the
rarefaction, the solution does not jump but varies smoothly: u and c vary linearly, and p and ρ are given by

p = p0

(
c

c0

) 2γ
γ−1

, (7.14.7)

ρ = ρ0

(
p

p0

) 1
γ

. (7.14.8)

7.14.2 Construction of a Riemann Problem

I like the Riemann problem because it is simple. In fact, it is very easy to construct one. For example, if I want to
create a flow where a shock travels to the right, a contact wave follows to the right, and a rarefaction wave travels to
the left (see Figure 7.14.1), I can create it as follows.
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Figure 7.14.1: The Riemann problem I want to create: λ3-shock (S3), the contact
(C2), and λ1-rarefaction (R1).

Construction of a Riemann Problem:

1. Specify the right state WR = [ρR, uR, pR]t.

2. Specify p∗(> pR), and determine u∗ by the shock relation (7.14.2), i.e.,

u∗ = uR + p∗ − pR

ρRcR

√
1 + γ+1

2γ

(
p∗

pR
− 1
) , (7.14.9)

and determine ρ∗
R by Equation (7.14.3), i.e.,

ρ∗
R = ρR

1 + γ + 1
γ − 1

p∗

pR
γ + 1
γ − 1

+ p∗

pR

. (7.14.10)

3. Specify ρ∗
L. Across the contact, the velocity and the pressure do not change: u∗

L = u∗
R = u∗ and

p∗
L = p∗

R = p∗.

4. Specify pL(> p∗), and determine ρL by Equation (7.14.8), i.e.,

ρL = ρ∗
L

(
pL
p∗

) 1
γ

, (7.14.11)

and the velocity by Equation (7.14.6), i.e.,

uL = u∗ + 2γ
(γ − 1)ρLcL

1 − (p∗/pL)
γ−1
2γ

1 − (p∗/pL)
(p∗ − pL). (7.14.12)

This completes the construction of a Riemann problem.
For the Riemann problem created above, the shock speed is given by

VS3 = uR + cR

√
1 + γ + 1

2γ

(
p∗

pR
− 1
)
, (7.14.13)

the contact speed by

VC2 = u∗, (7.14.14)

and the tail and head speeds of the rarefaction by

V tail
R1

= u∗
L − c∗

L, V head
R1

= uL − cL. (7.14.15)
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These wave speeds may be useful when we choose the quantities like p∗ so that we create a problem with a desired
shock speed, for example. By the way, in order to compute the solution inside the rarefaction wave, first compute the
velocity (which varies linearly), and then compute all others:

u(ξ) = ξ − ξ∗
L

ξL − ξ∗
L

uL + ξ − ξL
ξ∗
L − ξL

u∗, c(ξ) = u(ξ) − ξ, (7.14.16)

p(ξ) = pL

(
c(ξ)
cL

) 2γ
γ−1

, ρ(ξ) = ρL

(
p(ξ)
pL

) 1
γ

, (7.14.17)

where ξL = uL − cL and ξ∗
L = u∗ − c∗

L. Note that you can construct any Riemann problem you want. For example, if
I stop after determine W∗

R and set WL = W∗
R, then I end up with a Riemann problem with a single shock; or if I set

ρ∗
L = ρ∗

R, then there will be no contact waves.

7.14.3 Exact Riemann Solver
I like solving a given Riemann problem also. Sometimes the solution doesn’t even exist, and that’s fun. Given a set of
initial data, WL = [ρL, uL, pL]t and WR = [ρR, uR, pR]t, I will try to find a solution as follows.

Exact Riemann Solver:

1. Find the pressure p∗ in the middle by solving the equation,

p∗ = mRpL +mLpR +mLmR(uL − uR)
mL +mR

, (7.14.18)

where for Q = L or R, and

mQ =



ρQcQ

√
1 + γ + 1

2γ

(
p∗

pQ
− 1
)

if p
∗

pQ
> 1 : shock,

ρQcQ
γ − 1

2γ

1 − p∗

pQ

1 −
(
p∗

pQ

) γ−1
2γ

if p
∗

pQ
< 1 + ϵ : rarefaction.

(7.14.19)

Note that ϵ, say ϵ = 10−15 for double precision, is necessary to avoid the zero division. This must
be solved iteratively as the right hand side depends on p∗.

2. Compute u∗ by the equation,

u∗ = mLuL +mRuR + (pL − pR)
mL +mR

. (7.14.20)

3. Compute ρ∗
L and ρ∗

R by

ρ∗
Q =



ρQ

1 + γ + 1
γ − 1

p∗

pQ
γ + 1
γ − 1

+ p∗

pQ

if p
∗

pQ
> 1 : shock,

ρQ

(
p∗

pQ

) 1
γ

if p
∗

pQ
< 1 : rarefaction,

(7.14.21)

where Q = L or R. Now, the middle states have been completely determined, and this completes
the solution of a Riemann problem.

Some remarks are in order. First, if a rarefaction wave is detected, the solution inside the wave can be computed
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by Equations (7.14.16) and (7.14.17). Second, it may happen that

uL + 2
γ − 1

cL < uR + 2
γ − 1

cR, (7.14.22)

then the pressure p∗ will be negative and thus a solution does not exist. We need to check this condition and make
sure that a solution exists, before solving a Riemann problem. Third, the intermediate pressure equation (7.14.18) is
obtained by solving the following system for p∗,

p∗ − pL = −mL(u∗ − uL), λ1-shock/rarefaction, (7.14.23)
p∗ − pR = mR(u∗ − uR), λ3-shock/rarefaction. (7.14.24)

These are the shock/rarefaction relations across the right-running and left-running waves respectively. Solving this for
u∗ gives the equation to determine u∗ for a given p∗, i.e., Equation (7.14.20). Fourth, to solve Equation (7.14.18),
any iterative method, such as the fixed-point iteration, Newton’s method, or the bisection method can be employed.
In doing so, it is good to have an upper bound and a lower bound for the solution p∗:

Upper bound: p∗ =

[
γ−1

2 (uL − uR) + (cL + cR)

cL (pL)
1−γ
2γ + cR (pR)

1−γ
2γ

] 2γ
γ−1

, (7.14.25)

Lower bound: p∗ = mRpL +mLpR +mLmR(uL − uR)
mL +mR

, (7.14.26)

where mL = ρLcL and mR = ρRcR. The upper bound comes from a solution for two rarefaction waves (the intersection
of the two Poisson curves); the lower bound comes from a linearization, i.e., the solution of Equations (7.14.23) and
(7.14.24) with mL = ρLcL and mR = ρRcR. Fifth, the condition (7.14.22) indicates that the intersection between
the two Poisson curves (i.e., the upper bound) goes down to the negative part of the p-axis in the (p, u)-space.

Here are some examples where I assume a domain [−5, 5] for all problems and denote the final time by tf .
(a) Sod’s Problem 1 (Figures 7.14.2):

I like this problem. This is a famous shock tube problem by Sod [144].

WL = [ρL, uL, pL]t = [1.0, 0, 1.0]t, (7.14.27)
WR = [ρR, uR, pR]t = [0.125, 0, 0.1]t, (7.14.28)
tf = 1.7. (7.14.29)

(b) Sod’s Problem 2 (Figures 7.14.3):
I like this one also. This is another famous shock tube problem by Sod [144].

WL = [ρL, uL, pL]t = [1.0, 0, 1.0]t, (7.14.30)
WR = [ρR, uR, pR]t = [0.01, 0, 0.01]t, (7.14.31)
tf = 1.4. (7.14.32)

I like this one particularly because it contains a sonic point in the rarefaction wave and some schemes create a
small gap there.

(c) Sonic Rarefaction (Figures 7.14.4):
This is a sonic rarefaction and some schemes cannot break the initial discontinuity at all.

WL = [ρL, uL, pL]t = [3.857, 0.92, 10.333]t, (7.14.33)
WR = [ρR, uR, pR]t = [1.000, 3.55, 1.000]t, (7.14.34)
tf = 0.7. (7.14.35)

(d) Slowly Moving Shock (Figures 7.14.5):
For this one, many schemes produce oscillations behind the shock [4].

WL = [ρL, uL, pL]t = [3.86, −0.81, 10.33]t, (7.14.36)
WR = [ρR, uR, pR]t = [1.00, −3.44, 1.00]t, (7.14.37)
tf = 1.7. (7.14.38)
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Figure 7.14.2: Solutions for Sod’s problem 1.

(e) Left-Moving Waves in a Right-Moving Supersonic Flow:
I like this one,

WL = [ρL, uL, pL]t = [1.4, 1.1, 1]t, (7.14.39)
WR = [ρR, uR, pR]t = [1.4, 110, 100]t, (7.14.40)

thus ML = MR = 1.1. This is an interesting case where both states are supersonic to the right but some waves
will propagate to the left. This is indeed confusing because we tend to assume that all waves propagate to the
right if both states are supersonic to the right. That is true for scalar conservation laws but not for systems. See
it for yourself using your Euler code, or see Ref.[86] for details.

7.15 Incompressible Navier-Stokes Equations

I like incompressible Navier-Stokes equations because it does have exact solutions. Although often limited to sim-
ple geometries, these exact solutions can be useful for CFD code verification. Of course, I like Stokes’ equations also
because there exist a variety of exact solutions as mentioned in Section 4.25. Especially in two dimensions, the theory
of complex variables can be applied to generate various exact solutions. There are also various exact solutions available
for the axisymmetric Stokes flows as we will see in this section. Note that I like those exact solutions of the Stokes
equations where the convective terms vanish because then the solutions are also exact for the Navier-Stokes equations.
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Figure 7.14.3: Solutions for Sod’s problem 2.
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Figure 7.14.4: Solutions for a sonic rarefaction.
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Figure 7.14.5: Solutions for a slowly moving shock.
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Figure 7.15.1: Unsteady solution for the 2D incompressible Navier-Stokes equations.
The velocity field at t = 0.0 for k = 0.5π and ν = 0.01. The velocity will be damped
out as time goes on.
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7.15.1 Smooth 2D Time-Dependent Solution
The two-dimensional incompressible Navier-Stokes equations,

ux + vy = 0, (7.15.1)
ut + uux + vuy = −px + ν(uxx + uyy), (7.15.2)
vt + uvx + vvy = −py + ν(vxx + vyy), (7.15.3)

have the exact solution given by

u(x, y, t) = − cos(kx) sin(ky) e−2νk2t, (7.15.4)

v(x, y, t) = sin(kx) cos(ky) e−2νk2t, (7.15.5)

p(x, y, t) = −1
4

[cos(2kx) + cos(2ky)] e−4νk2t, (7.15.6)

where k is an arbitrary constant [22, 33]. This solution can also be expressed in terms of the vorticity ω = vx − uy
and the stream function ψ,

ω(x, y, t) = 2k cos(kx) cos(ky) e−2νk2t, (7.15.7)

ψ(x, y, t) = 1
k

cos(kx) cos(ky) e−2νk2t, (7.15.8)

which is exact for the equation set (4.22.1) and (4.22.3), i.e.,

ωt + uωx + v ωy = ν (ωxx + ωyy) , (7.15.9)
ψxx + ψyy = −ω, (7.15.10)

where u = ψy and v = −ψx. I like this solution very much because it is a rather simple solution for such a complicated
nonlinear system. See Figure 7.15.1 for the velocity field generated by this solution. It is very interesting, isn’t it?

7.15.2 Smooth 3D Time-Dependent Solution
The three-dimensional incompressible Navier-Stokes equations,

ux + vy + wz = 0, (7.15.11)
ut + uux + vuy + wuz = −px + ν(uxx + uyy + uzz), (7.15.12)
vt + uvx + vvy + wvz = −py + ν(vxx + vyy + vzz), (7.15.13)

wt + uwx + vwy + wwz = −pz + ν(wxx + wyy + wzz), (7.15.14)

have the exact solution given by

u(x, y, t) = −a [eax sin(ay + dz) + eaz cos(ax+ dy)] e−d2νt, (7.15.15)
v(x, y, t) = −a [eay sin(az + dx) + eax cos(ay + dz)] e−d2νt, (7.15.16)
w(x, y, t) = −a [eaz sin(ax+ dy) + eay cos(az + dx)] e−d2νt, (7.15.17)

p(x, y, t) = −a2

2
[
e2ax + e2ay + e2az + 2 sin(az + dx) cos(ay + dz)

+2 sin(ay + dz) cos(ax+ dy) + 2 sin(ax+ dy) cos(az + dx)] e−2d2νt,

(7.15.18)

where a and d are arbitrary constants [35]. I like this solution very much because it is, again, a very simple solution
for such a complicated nonlinear system of equations.

7.15.3 Couette Flow
Consider a constant-density flow between two infinite plates that are h apart with the upper plate moving at speed U
relative to the lower. Also, we assume that the upper plate is held at temperature T1 and the lower plate at T0. I like
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Figure 7.15.2: Couette or Couette-Poiseuille flow: dp/dx = 0 or dp/dx ̸= 0.

this setting because it brings a dramatic simplification to the incompressible Navier-Stokes equations. In this situation,
naturally, x-derivative of any quantity is zero as well as the y-component of the velocity is zero everywhere. Also the
pressure is constant everywhere since the flow does not accelerate in any direction. Then, the continuity equation is
trivially satisfied (all terms drop out), and we have the momentum and energy equations as follows,

0 = µuyy, (7.15.19)
0 = κTyy + µ(uy)2. (7.15.20)

where µ is the viscosity coefficient and κ is the heat conductivity. This is very nice. We can easily obtain the exact
solutions: integrate the momentum equation to obtain the velocity, and then integrate the energy equation to obtain
the temperature as follows,

u(y) = U
y

h
, (7.15.21)

T (y) = T0 + (T1 − T0)y
h

− µU2

2κ

[(y
h

)2
− y

h

]
. (7.15.22)

This simple flow is called the Couette flow. It can be a nice and simple test case for a two-dimensional Navier-Stokes
code in a rectangular domain with a periodic boundary condition in x-direction, i.e., no in-flow and out-flow. Note
that the velocity is a linear function of y. Most practical incompressible Navier-Stokes codes should be able to produce
the exact velocity profile since they are typically designed to be exact for linear solutions.

7.15.4 Unsteady Couette Flow
The Couette flow can be made unsteady by oscillating the upper plate with the following time-dependent speed,

u(h) = U cos(ωt), (7.15.23)

where ω is a constant which defines the frequency. In this case, the momentum equation is given by

ut = µuyy. (7.15.24)

This problem was solved in Section 6.1.5 by the separation of variable with complex variables. The solution is

u(y, t) = Q [sinh(ky) cos(ky) sinh(kd) cos(kd) + cosh(ky) sin(ky) cosh(kd) sin(kd)] cos(ωt)
+Q [sinh(ky) cos(ky) cosh(kd) sin(kd) − cosh(ky) sin(ky) sinh(kd) cos(kd)] sin(ωt), (7.15.25)

where

Q = U

cosh2(kd) − cos2(kd)
, k =

√
ω

2µ
. (7.15.26)

I like this one because the solution does not decay in time and oscillates forever, preserving the same amplitude. It
would be interesting to see how long a numerical scheme can simulate this solution accurately, of course with a periodic
boundary condition in x-direction.
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Figure 7.15.3: Hagen-Poiseuille flow.

7.15.5 Couette-Poiseuille Flow
I like flows with constant pressure gradient because it is often possible to obtain the exact solution. For example, I like
the Couette-Poiseuille flow, which is the Couette flow with an added constant pressure gradient, dp/dx = constant.
The momentum equation and the energy are then given by

0 = −px + µuyy, (7.15.27)
0 = kTyy + µ(uy)2. (7.15.28)

We can integrate these equations straightforwardly and obtain

u(y) = U
y

h
+ h2

2µ

(
−dp

dx

)[
y

h
−
(y
h

)2
]
, (7.15.29)

T (y) = T0 + (T1 − T0)y
h

− µ3

12k

(
dp

dx

)−2 [
V (y) − V (0) − {V (h) − V (0)} y

h

]
, (7.15.30)

where

V (y) = (uy)4 =
[
U

h
+ h

2µ

(
−dp

dx

)(
1 − 2y

h

)]4

. (7.15.31)

It is more complicated than the solution of the Couette flow, but the flow itself is very simple. If your incompressible
Navier-Stokes code is accurate enough to preserve quadratic solutions, it should be able to produce the exact velocity
profile.

7.15.6 Hagen-Poiseuille Flow
The Hagen-Poiseuille flow is an incompressible flow through a pipe of radius R driven by a constant pressure gradient
in the z-direction in cylindrical coordinates. The only non-zero velocity component is uz and all variables are functions
of r only, i.e., uz = uz(r). Then, the continuity equation is satisfied identically, and the momentum equation is given
by

0 = dp

dz
+ µ

1
r

d

dr

(
r
duz
dr

)
. (7.15.32)

Here, I like the fact that dp/dz is constant because it makes it very easy to integrate this equation. Simply integrating
twice and applying the boundary conditions, i.e., uz(R) = 0 and uz(0) is finite, we obtain

uz(r) = 1
4µ

(
−dp

dz

)
(R2 − r2). (7.15.33)

The velocity distribution is therefore parabolic, just like that of the Couette-Poiseuille flow. Oh, I forgot to work out a
temperature distribution. Did you say that you wanted to derive it by yourself? OK, I’ll leave it to you.
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Figure 7.15.4: Axially moving co-centric cylinders.

7.15.7 Axially Moving Co-centric Cylinders
Consider an incompressible flow between axially moving cylinders at constant speeds (see Figure 7.15.4). For this flow,
clearly, the velocity components (ur, uθ, uz) are such that uz = uz(r) and ur = uθ = 0. So, the continuity equation
is satisfied identically, and the momentum and energy equations become

0 = 1
r

d

dr

(
r
duz
dr

)
, (7.15.34)

0 = 1
r

d

dr

(
kr
dT

dr

)
+ µ

(
duz
dr

)2

. (7.15.35)

Assume that the inner cylinder moves at uz(r0) = U0 with a constant temperature T0 and the outer cylinder moves
at uz(r1) = U1 with a constant temperature T1. Using these as the boundary conditions, we integrate the momentum
and energy equations and obtain the following set of exact solutions:

uz(r) = U1
ln(r/r0)
ln(r1/r0)

+ U0
ln(r1/r)
ln(r1/r0)

, (7.15.36)

T (r) = − µ

2k

[
U1 − U0

ln(r1/r0)

]2

ln(r/r1) ln(r/r0) + T1 − T0

ln(r1/r0)
ln r + T0 ln r1 − T1 ln r0

ln(r1/r0)
. (7.15.37)

I like this solution because it is straightforward to generate a computational grid in the domain (i.e., a structured grid
can be easily created between the two boundaries). Incidentally, there are lots of logarithms in the solutions, but many
of them are identical. So, for example, ln(r1/r0) needs to be evaluated just once and we use this value elsewhere.

7.15.8 Rotating Co-centric Cylinders
Consider an incompressible flow between rotating co-centric cylinders: the inner cylinder has radius r0, angular velocity
ω0, and temperature T0, while the outer cylinder has r1, ω1, and T1 respectively. Note that the only non-zero velocity
component is uθ, and all variables are functions of r only. Then, the continuity equation is trivially satisfied, and the
momentum equations and the energy equation are simplified as follows,

0 = −dp

dr
+ ρu2

θ

r
, (7.15.38)

0 = d2uθ
dr2 + d

dr

(uθ
r

)
, (7.15.39)

0 = k

r

d

dr

(
r
dT

dr

)
+ µ

(
duθ
dr

− uθ
r

)2

. (7.15.40)
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Figure 7.15.5: Rotating co-centric cylinders.

These are so simple that we can integrate them analytically to get the exact solutions:

uθ = r0ω0
r1/r − r/r1

r1/r0 − r0/r1
+ r1ω1

r/r0 − r0/r

r1/r0 − r0/r1
, (7.15.41)

T − T0

T1 − T0
= µr2

0ω
2
0

k(T1 − T0)
r4

1(1 − ω1/ω0)2

r4
1 − r4

0

(
1 − r2

0
r2

)[
1 − ln(r/r0)

ln(r1/r0)

]
+ ln(r/r0)

ln(r1/r0)
. (7.15.42)

Oh, I forgot to calculate the pressure. Well, you can get the pressure easily (if you wish) by integrating the momentum
equation (7.15.38). I think that it can be a good exercise. By the way, unlike the previous cases, in this flow the
pressure varies across the shear layer. This is because the domain is curved: the pressure gradient is needed to balance
the centrifugal force, or equivalently, to create the centripetal force.

7.15.9 Flat Plate Boundary Layer
The flat plate boundary layer solution is a solution to the boundary layer equations,

∂u

∂x
+ ∂v

∂y
= 0, (7.15.43)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 , (7.15.44)

for a flow over a semi-infinite flat plate that extends x → ∞ (Figure 7.15.6). First, to satisfy the continuity equation,
we introduce the stream function ψ,

ψ = U∞x√
Rex

f(η), (7.15.45)

where U∞ is the free stream velocity, and

η = y

x

√
Rex, Rex = U∞x

ν
, (7.15.46)

so that the velocity components are given by
u

U∞
= f ′, (7.15.47)

v

U∞
= 1

2
√
Rex

(ηf ′ − f). (7.15.48)

Therefore, the velocity component u depends only on η, i.e., self-similar. This is very nice. The solution is valid at any
location on the flat plate (possibly far enough from the leading edge). On the other hand, v depends both on η and
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Figure 7.15.6: Flow over a flat plate.

x. This may not sound very nice, but it makes sense. The boundary layer grows rapidly from the leading edge, but it
will not grow so much in the downstream (x → ∞) simply because there are no reasons for that. In order to compute
the velocity components, we have to find f(η) by solving the momentum equation which is written now in terms of f ,

f ′′′ + 1
2
ff ′′ = 0, (7.15.49)

with the boundary conditions,

u(x, 0) = v(x, 0) = 0 −→ f(0) = f ′(0) = 0, (7.15.50)
u(x,∞) = U∞ −→ f ′(∞) = 1. (7.15.51)

To solve this numerically, we rewrite this as a system of ordinary differential equations (ODE):

dF
dη

= G(F), (7.15.52)

where

F =


f

f1

f2

 , G(F)


f1

f2

−1
2
ff2

 , (7.15.53)

with

f(0) = f1(0) = 0, (7.15.54)
f1(∞) = 1. (7.15.55)

Note that f1(∞) = 1 is not really at η → ∞ because f1 becomes 1 at some large finite value of η, say η = 10. To
solve this system, some people employ the shooting method where they integrate Equation (7.15.52) from η = 0 to
η = ∞ with an initial guess for f2(0), see if f1(∞) = 1 is satisfied after the integration, and if it is not, update f2(0)
and repeat the calculation until they get f1(∞) = 1. This is not very simple to me; it doesn’t make me feel like that I
like it.

In fact, I know how to solve it in just two steps (no iterations!). As pointed out in Ref.[120], it is easily verified that
if g(η) is the solution of Equation (7.15.49), i.e., if it satisfies g′′′ + 1

2gg
′′ = 0, with g(0) = g′(0) = 0 and g′′(0) = Cg2

for an arbitrary constant Cg2 , then

f = αg(αη), α = 1√
g′(∞)

, (7.15.56)

is the solution of Equation (7.15.49) that satisfies the desired boundary condition f ′(∞) = 1. So, this means that the
correct initial condition for f2 is given by

f2(0) = f ′′(0) = α3g′′(0) = α3Cg2 . (7.15.57)

That is, integrating with this initial condition, you get what you want in one shot. So, here is a two step method. The
following computes the velocity (u, v) at a given location (x, y) = (xp, yp), η = ηp.
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Figure 7.15.8: Viscous Stagnation Flow in 3D.

Computation of Exact Solution:
To really call this ‘exact’, you have to solve the ODE by a very high-order method with extremely small
steps (e.g., the 4th-order Runge-Kutta method with ∆η = 10−5). Note also that we set Cg2 = 1.

1. Numerically solve Equation (7.15.52) with f(0) = f1(0) = 0 and f2(0) = 1, say, up to η = 20; call
this solution g(η) and set α = 1/

√
g′(20).

2. Numerically solve Equation (7.15.52) with f(0) = f1(0) = 0 and f2(0) = α3, up to the desired
location η = ηp.

3. Compute the velocity there by
u

U∞
= f1(ηp), (7.15.58)

v

U∞
= 1

2
√
Rexp

(ηf1(ηp) − f(ηp)). (7.15.59)

Honestly speaking, I like to skip the first step. So, I have computed (by using the 4th-order Runge-Kutta method
with ∆η = 5.0 × 10−6 and integrating the ODE up to η = 100) the value of g′(η):

g′(100) = 2.085409176437910, (7.15.60)

and thus

f2(0) = α3 =
(

1/
√
g′(100)

)3
= 0.3320573362151946. (7.15.61)

So, I can skip the first step from now on, and just perform the second step using this value. This is a very nice
and simple one step method. I like it so much that I coded the algorithm and have made the code available at
http://www.cfdbooks.com. I hope that you like it.

7.15.10 Viscous Stagnation Flow
For Stokes’ equations, we cannot define the velocity potential in general, but we have the stream function for axisym-
metric flows. Here is a simple and interesting one:

ψ = −1
2
x2y2, (7.15.62)

http://www.cfdbooks.com
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in (x, y)-plane with the x-axis as the axis of symmetry. Streamlines are plotted in Figure 7.15.8. Yes, it represents a
stagnation flow. And it is a viscous stagnation flow. Consider the velocity components,

u = 1
y

∂ψ

∂y
= −x2, v = −1

y

∂ψ

∂x
= xy, (7.15.63)

which shows that the velocity vanishes at the wall (x = 0). It thus satisfies the no-slip condition in contrast to the
inviscid stagnation flow where v ̸= 0 at x = 0. So, it is a viscous flow. For the viscous stagnation flow, it can be easily
shown that the vorticity is not zero:

ω = ∂v

∂x
− ∂u

∂y
= y

2
, (7.15.64)

except along the line of symmetry (y = 0). This is the reason that the velocity potential cannot be defined. I like the
fact that the velocity components are quadratic function of space. I would expect that a third-order accurate scheme
will produce exact results for the viscous stagnation flow. How about the pressure? You can find the pressure by
integrating the momentum equations (4.28.2) and (4.28.3):

p = pw − 2µx, (7.15.65)

where pw denotes the pressure at the wall. So, the pressure is a linear function of space. This is interesting. Recall
that in the inviscid stagnation flow, the velocity is linear and the pressure is quadratic.

If you compare the solution above with the inviscid stagnation flow solution in Section 7.12.1, you find that the
viscous solution does not match the inviscid one as x → ∞. In order to obtain the viscous solution that matches the
inviscid one, it is necessary to solve ordinary differential equations. See Ref.[120, 169] for details.

By the way, if you asked "Where is the stagnation point?", that would be a good question. I like it. If the stagnation
point is defined as a point where the velocity is zero, then the entire wall will be the stagnation point in the viscous
stagnation flow. But if the stagnation point is defined as a point from which the streamlines separate apart (the
direction of surface streamlines cannot be defined), then the stagnation point will be at the origin (x, y) = (0, 0),
which matches the stagnation point in the inviscid stagnation flow. I like that. In fluid dynamics, I think we actually
almost always take the latter definition; otherwise the word "stagnation point" will not be very useful in practical
applications.

7.15.11 Stokes’ Flow over a Sphere
Stokes’ flow over a sphere is an exact solution to the steady Stokes equations (see Section 4.25), which may be
expressed by

div v = 0, (7.15.66)

div grad ω = 0, (7.15.67)

where ω = curl v. We may introduce spherical coordinates (r, ϕ, θ) with axisymmetry with respect to ϕ (i.e., ∂ϕ = 0),
and write the continuity equation as

1
r2
∂(r2ur)
∂r

+ 1
r sin θ

∂(uθ sin θ)
∂θ

= 0. (7.15.68)

Then, we can define the stream function as

ur = 1
r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ
∂ψ

∂r
, (7.15.69)

to automatically satisfy the continuity equation. In terms of the stream function, the other equation (7.15.67) becomes(
∂2

∂r2 + 1
r2

∂2

∂θ2 − 1
r2 tan θ

∂

∂θ

)
ψ = 0. (7.15.70)

Now consider a uniform flow with the speed U (in the direction of z) over a sphere of radius R at the origin, i.e.,

∂ψ

∂r
= ∂ψ

∂θ
= 0, on the sphere, r = R,

ψ → 1
2
Ur2 sin2 θ + constant, as r → ∞.

(7.15.71)
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Figure 7.15.9: Pressure p − p∞ of the Stokes’ flow over
a sphere.

Figure 7.15.10: Streamlines of the Stokes’ flow over a
sphere.

Stokes discovered the following exact solution,

ψ = 1
4
UR2 sin2 θ

(
R

r
− 3r
R

+ 2r2

R2

)
, (7.15.72)

so that the velocity components are

ur = U cos θ
(

1 + R3

2r3 − 3R
2r

)
, (7.15.73)

uθ = −U sin θ
(

1 − R3

4r3 − 3R
4r

)
, (7.15.74)

the pressure is found from the momentum equation, grad p = µ div grad v, to be

p(r, θ) − p∞ = −3µRU
2r2 cos θ, (7.15.75)

(see Figures 7.15.9 and 7.15.10), the viscous stress on the sphere is given by

τrθ(r, θ) = µ

(
1
r

∂ur
∂θ

+ ∂uθ
∂r

− uθ
r

− 3R3

2r3
µU sin θ

r

)
, (7.15.76)

and therefore the drag force F is found by combining the viscous drag and the pressure drag,

F = −
∫ π

0
τrθ(R, θ) sin θ(2πR2 sin θdθ) −

∫ π

0
p(R, θ) cos θ(2πR2 sin θdθ)

= 4πµUR+ 4πµUR

= 6πµUR. (7.15.77)

I like this solution. The streamline pattern is similar to the inviscid flow over a cylinder, but here the fluid is at
rest on the cylinder while the inviscid one is not (slip boundary). In fact, the pressure contours are very different from
those for the inviscid flow. It is very interesting. By the way, this solution is exact only for the Stokes equations, not
for the Navier-Stokes equations.
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7.16 Compressible Navier-Stokes Equations

7.16.1 Compressible Couette Flow
An exact solution is available for the compressible Navier-Stoke equations for the Couette flow (Figure 7.15.2) [84].
With the same assumptions as made in Section 7.15.3, the continuity equation is again trivially satisfied, and the
momentum equation and the energy equation are simplified as follows,

0 = d

dy

(
µ
du

dy

)
, (7.16.1)

0 = d

dy

(
κ
dT

dy

)
+ µ

(
du

dy

)2

. (7.16.2)

Note that the pressure is constant everywhere (no acceleration) but the density and the temperature change in the
y-direction. We also assume

µ = µ(T ), κ = κ(T ), (7.16.3)

i.e., the viscosity µ and the heat conductivity κ are functions of T only. Moreover, we assume that the Prandtl number
Pr is constant,

Pr = cpµ

κ
= constant. (7.16.4)

Now, first, we integrate the momentum equation (7.16.1) once to get,

µ
du

dy
= µ

du

dy

∣∣∣∣
y=0

= τw, (7.16.5)

where τw denotes the shear stress at the bottom wall. Then, integrating once more, we obtain

u(y) = τw

∫ y

0

dy

µ(T )
. (7.16.6)

We will find that this is a very nice relation when we use it later to eliminate the same integral arising in an energy
integral. Also, remember that we will integrate Equation (7.16.5) (in a slightly different way) to finally obtain the
velocity distribution.

We now consider integrating the energy equation. First, we note that

d

dy

(
µu
du

dy

)
= u

d

dy

(
µ
du

dy

)
+ µ

(
du

dy

)2

= µ

(
du

dy

)2

, (7.16.7)

where the momentum equation has been used in the last step. Using this, we can write the energy equation (7.16.2)
as

0 = d

dy

(
κ
dT

dy
+ µu

du

dy

)
, (7.16.8)

so that it can be easily integrated once,

κ
dT

dy
+ µu

du

dy
= κ

dT

dy

∣∣∣∣
y=0

+ µu
du

dy

∣∣∣∣
y=0

= −qw, (7.16.9)

where qw is the heat flux at the bottom wall (into the wall when qw < 0) and the no-slip condition u(0) = 0 has been
applied. This can be integrated once more by introducing the Prandtl number which is constant,

µ
d

dy

(
cpT

Pr
+ u2

2

)
= −qw, (7.16.10)
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thus,

cp(T − Tw)
Pr

+ u2

2
= −qw

∫ y

0

dy

µ(T )
. (7.16.11)

It is nice here that the integral on the right hand side can be eliminated by Equation (7.16.6):

cp(T − Tw)
Pr

+ u2

2
= −qwu

τw
. (7.16.12)

It is very nice that the integral is gone. Just for convenience, we eliminate also Tw from above as follows: evaluate it
at y = d (the upper plate),

cp(T∞ − Tw)
Pr

+ U2
∞
2

= −qwU∞

τw
, (7.16.13)

where the subscript ∞ denotes the state at the upper plate, then subtract Equation (7.16.12) from this to get

cp(T − T∞)
Pr

+ u2 − U2
∞

2
= −qw(u− U∞)

τw
, (7.16.14)

which can be arranged into the following form,

T

T∞
= 1 + qw

τwU∞
(γ − 1)PrM2

∞

(
1 − u

U∞

)
+ γ − 1

2
PrM2

∞

(
1 − u2

U2
∞

)
, (7.16.15)

where we have used cp = γR/(γ − 1). Finally, in order to obtain the velocity distribution, we assume a power low

µ

µ∞
=
(
T

T∞

)ω
, (7.16.16)

where ω = 0.76 is a good approximation for air, and insert this into the momentum equation (7.16.5) and integrate
to get

τwy

µ∞
=

∫ u

0

µ

µ∞
du =

∫ u

0

(
T

T∞

)ω
du

=
∫ u

0

[
1 + qw

τwU∞
(γ − 1)PrM2

∞

(
1 − u

U∞

)
+ γ − 1

2
PrM2

∞

(
1 − u2

U2
∞

)]ω
du. (7.16.17)

This can be integrated analytically (using the beta function), but the result will be very complicated. For code
verification purpose, it suffices to take ω = 1 and qw = 0. Then, finally, we obtain the following implicit expression for
the velocity distribution,

y

d

[
1 + γ − 1

3
PrM2

∞

]
= u

U∞

[
1 + γ − 1

2
PrM2

∞

(
1 − 1

3
u2

U2
∞

)]
, (7.16.18)

where τw has been determined by the boundary condition u(d) = U∞ and eliminated. This can be solved numerically.
The velocity profiles in Figure 7.16.1 were obtained by the fixed-point iteration: compute V k+1 (k = 1, 2, 3, . . .), at a
desired location y, by

V k+1 =
η
[
1 + γ−1

3 PrM2
∞
]

1 + γ−1
2 PrM2

∞
[
1 − 1

3 (V k)2
] , (7.16.19)

until |V k+1 − V k| < 10−15, where V k = uk/U∞, η = y/d, and the initial guess V 1 may be set any value between
0 and 1. Temperature can be calculated by Equation (7.16.15) for a given velocity profile, and density can then be
calculated by the equation of state. Of course, I like this solution. It is very nice that the domain is very simple but
the solution is not trivial. If you want a solution for a more general case, e.g., qw ̸= 0 or ω ̸= 1, you can derive it
analytically. Good luck.
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Figure 7.16.1: Velocity profile for the compressible Couette flow with Pr = 0.73, γ = 1.4; M∞ = 20 (thick
solid line), M∞ = 3 (dashed line), M∞ = 0, i.e., incompressible flow (thin solid line). Note that this is
exact only when the viscosity obeys the power law (7.16.16) with ω = 1.

7.16.2 Viscous Shock Structure
Another useful exact solution to the compressible Navier-Stokes equations is the viscous shock structure solution. It
is a viscous version of the steady shock wave solution in Section 7.13.8, i.e., a smoothly varying solution rather than a
discontinuous solution. Consider the steady one-dimensional compressible Navier-Stokes equations:

d

dx

 ρu

ρu2 + p− τ

ρuH − τu+ q

 = 0, (7.16.20)

where

τ = 4
3
µ
du

dx
, q = − γµ

Pr(γ − 1)
d(p/ρ)
dx

. (7.16.21)

Integrating the Navier-Stokes equations (7.16.20), we obtain ρu

ρu2 + p− τ

ρuH − τu+ q

 = constant. (7.16.22)

Then, we apply this equation inside and outside the viscous shock to get

ρu = (ρu)o, (7.16.23)

ρu2 + p− τ = (ρu2 + p)o, (7.16.24)

ρuH − τu+ q = (ρuH)o, (7.16.25)

where the subscript o denotes the outside state and the inside state has no subscript. Note that τ = q = 0 outside
the viscous shock where the solution is constant. Note also that the terms on the right hand side are all constant; we
define them as

m = (ρu)o, C2 = (ρu2 + p)o, C3 = (ρuH)o, (7.16.26)
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so that Equation (7.16.23) becomes ρu = m and can be substituted into other equations. We therefore obtain from
Equations (7.16.24) and (7.16.25)

τ = mu+ p− C2, (7.16.27)

q = 1
2
mu2 − m

γ − 1
p

ρ
− C2u+ C3. (7.16.28)

By Equations (7.16.21), we obtain

du

dx
= 1

Ku

(
mu+ m

u

p

ρ
− C2

)
, (7.16.29)

d(p/ρ)
dx

= 1
KT

(
1
2
mu2 − m

γ − 1
p

ρ
− C2u+ C3

)
, (7.16.30)

where

Ku = 4
3
µ, KT = − γµ

Pr(γ − 1)
. (7.16.31)

If we assume that all variables have been nondimensionalized as in Section 4.14.3, then p/ρ = T/γ, and therefore
these equations can be written as

du

dx
= 1

Cu

(
mu+ mT

γu
− C2

)
, (7.16.32)

dT

dx
= γ

CT

(
1
2
mu2 − m

γ − 1
T

γ
− C2u+ C3

)
, (7.16.33)

where

Cu = 4
3
µ
M∞

Re∞
, CT = − γµ

Pr(γ − 1)
M∞

Re∞
. (7.16.34)

This is a system of nonlinear ordinary differential equations for u and T (the viscosity µ depends on T ). It can be
integrated numerically in a straightforward manner. In what follows, we employ this nondimensionalized system.

To integrate the system, we first choose the Mach number on the left side of the shock ML, and set up the left
and right states as follows:

ρL = 1,

uL = ML,

pL = 1/γ,

TL = γpL/ρL,

ρR = (γ + 1)M2
L

(γ − 1)M2
L + 2

,

uR = ρLML/ρR,

pR = 1
γ

[
1 + 2γ

γ + 1
(M2

L − 1)
]
,

TR = γpR/ρR.

(7.16.35)

Note again that all variables are assumed to have been nondimensionalized as in Section 4.14.3. The constants are
computed by the left (or the right) state:

m = ρLuL, C2 = muL + pL, C3 = uL

(
γpL
γ − 1

+ 1
2
muL

)
. (7.16.36)

We are now ready to integrate the system. Suppose we wish to compute the solution at every node in a one-dimensional
grid defined by the set of coordinates {xk} = x1, x2, x3, . . . , xN (x1 < x2 < . . . < xN ), where N is the number of
nodes in the grid. We consider integrating the system from the right state. First, we numerically integrate the system
from x = xN to x = xN−1 with the initial values: u(xN ) = uR + ϵ where ϵ is a small number (e.g., ϵ = 1.0E-10)
and T (xN ) = TR with a very small step ∆x compared with xN − xN−1. Then, we do the same between two adjacent
nodes, k and k− 1, where k = N − 1, . . . , 3, 2, with the solutions at x = xk as the initial values. For example, we may
employ the classical fourth-order Runge-Kutta scheme with ∆x = xk−xk−1

1000 between the two nodes, k and k− 1. Note
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Figure 7.16.2: Exact viscous shock solution: Pr = 3/4, Re∞ = 25, M∞ = 3.5, γ = 1.4, T∞ = 400(K).
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that the last step in the integration between two nodes needs to be adjusted to finish exactly at x = xk−1. Figure
7.16.2 shows the exact solution computed as described for N = 200. A sample program, which was used to generate
the solution in Figure 7.16.2, is available at http://www.cfdbooks.com. I hope you like it.

I like the viscous shock structure solution very much for two reasons. First, the solution is not really physical. The
flow inside the shock wave is unlikely to be in equilibrium, and therefore the Navier-Stokes system is not a valid model.
However, it is still useful for verifying the accuracy of a Navier-Stokes solver. Second, the small number ϵ is essential
to obtaining a meaningful solution. In fact, if ϵ = 0, the computation will fail. Nothing will happen because the right
hand side of the system (7.16.32) and (7.16.33) are exactly zero. We will not be able to reach the correct left state
of the shock. This is very interesting. The location of the shock depends on the magnitude of ϵ. You might want
to experiment with varying ϵ to see how it affects the shock location (or the existence). This solution has been used
successfully for accuracy verification by many researchers [106, 110, 175].

7.16.3 Manufactured Solutions
We can manufacture exact solutions for the compressible Navier-Stokes equations. In fact, many people do. See
Refs.[83, 91, 133] for examples. In particular, I like the idea of using exact solutions of the incompressible Navier-
Stokes Equations as manufactured solutions for the compressible Navier-Stokes Equations: substitute an incompressible
solution into the compressible equations and generate an appropriate source term. This way, we can have an exact
solution which looks like a physical flow. For example, in Ref.[118], the Couette-Poiseuille solution described in
Section 7.15.5 was used for verifying the accuracy of a high-order compressible Navier-Stokes code. You want to try it
now? Then, pick any incompressible flow solution from Section 7.15, and generate an appropriate source term for the
compressible Navier-Stokes equations (possibly by using a math software or by computing the source term numerically).

http://www.cfdbooks.com
http://www.cradle-cfd.com
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