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COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the Xmaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima, a Computer Algebra System.
Some numerical results depend on the Lisp version used.
This chapter uses Version 5.19.0 (2009) using Lisp GNU
Common Lisp (GCL) GCL 2.6.8 (aka GCL).
http://maxima.sourceforge.net/
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1.1 What is Maxima?

Maxima is a powerful computer algebra system (CAS) which combines symbolic, numerical, and graphical abilities. See
the Maxima sourceforge webpage http://maxima.sourceforge.net/.

A cousin of the commercial Macsyma CAS (now available but without support ), Maxima is a freely available and open
source program which is being continuously improved by a team of volunteers. When compared with Mathematica or
Maple, Maxima has a more basic interface, but has the advantage in price (!). Students, teachers, and researchers can
“own” multiple copies for home, laptop, and desktop without the expense of buying licenses for each copy.

There are known “bugs” in the present version (a new version is available about three times each year), and the volunteer
developers and programming experts are dealing with these known bugs as time permits.

Maxima is not only “free” and will always stay that way, but also comes with a copy of the underlying source code (in
a dialect of the Lisp language), which a user can modify to suit her own research needs and then share with the Maxima
community of users.

A self-installing binary for Windows users is available, making it easy for Windows users to get a fast start.

Here is a more technical description of Maxima, taken from the Unix/Linus man document:

Maxima is a version of the MIT-developed MACSYMA system, modified to run under CLISP. It is an inter-
active expert system and programming environment for symbolic and numerical mathematical manipulation.
Written in Lisp, it allows differentiation, integration, solution of linear or polynomial equations, factoring of
polynomials, expansion of functions in Laurent or Taylor series, computation of Poisson series, matrix and
tensor manipulations, and two- and three-dimensional graphics.

Procedures may be written using an ALGOL-like syntax, and both Lisp-like functions and pattern matching
facilities are provided. Files containing Maxima objects may be read from and written to disk files. Pre-
written Maxima commands may be read from a file and executed, allowing batch-mode use.

Maxima is a complex system. It includes both known and unknown bugs. Use at your own risk. The Maxima
bug database is available at
http://sourceforge.net/tracker/?atid=104933&group_id=4933&func=browse.

New bug reports are always appreciated. Please include the output of the Maxima function build info() with
the report.

Information about the history of Maxima and its relation to Macsyma can be found in the last section of this chapter.

You should first familiarize yourself with the Maxima work environment by downloading and installing Maxima on your
computer, and starting up either the wxMaxima or the XMaxima interface.
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1.2 Which Maxima Interface Should You Use?

New users generally like to start with wxMaxima since there are convenient icons which help locate Maxima functions
for common tasks. wxMaxima allows the user to construct a combination text, calculation, and plot document which can
be saved and used as a homework submission, used as a tutorial for others and/or simply used as a “permanent” record
of work on some topic. For new users, the menus and buttons allow a gradual learning of Maxima syntax, by reading
what the menus and buttons do with an expression, and the user can pick up a knowledge of most of the “power tools” in
Maxima in this way. The reader should be warned, however, that no menu and button system can include every Maxima
function which might be either useful or needed for a particular task.

Experienced users tend to split between wxMaxima and Xmaxima, switching to Xmaxima because they already know
the names of common Maxima functions which help in getting the job done, and appreciate a simple stable interface
without distractions. Experienced users tend to become good “touch typists”, able to type most things without looking at
the keyboard and using both hands. Such experienced users usually find that it is faster to just type the name than to reach
for the mouse and manipulate the cursor to the right button. The Xmaxima interface is quite stable between new versions
of Maxima, whereas the wxMaxima interface is being actively developed and changes to the appearance and behavior
occur frequently during this period of rapid development.

Xmaxima is also a faster environment for testing and playing with code ideas, and the session record can be easily copied
and pasted into a Latex verbatim environment with zero hassle. The current version of wxMaxima does not provide this
hassle free transfer to a latex document (although one can save output as an image, but then one must go through the
hassle of converting to eps file image format if one is using the conventional latex to dvi to pdf route).

1.3 Using the wxMaxima Interface

From the wxMaxima webpage http://wxmaxima.sourceforge.net/wiki/index.php/Main_Page which could be ac-
cessed via

start, My Programs, Maxima-5.19.0, wxMaxima on the Web

one finds the information:

wxMaxima features include:
* 2D formatted math display: wxMaxima implements its

own math display engine to nicely display maxima output.
* Menu system: most Maxima commands are available through menus.

Most used functions are also available through a button
panel below the document.

* Dialogs: commands which require more that one argument can
be entered through dialogs so that there is no need to
remember the exact syntax.

* Create documents: text can be mixed with math
calculations to create documents. Documents can be

saved and edited again later.
* Animations: version 0.7.4 adds support for simple animations.

On that page is a link to a set of wxMaxima tutorials on the page
http://wxmaxima.sourceforge.net/wiki/index.php/Tutorials.

There you can download tutorials in the form of zip files, which, when unzipped, become wxMaxima document format
(wxm) files which can then be loaded into your wxMaxima work session.

10minute.zip contains a “ten minute” wxMaxima tutorial. usingwxmaxima.zip provides general information
about the cell structure of wxMaxima.
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Starting wxMaxima

One can use the Windows Start menu:

start, All Programs, Maxima-5.19.0, wxMaxima

During the Windows binary setup process you can select the options which place icons for both wxMaxima and XMaxima
on your desktop for a convenient start, and you can later copy any shortcut and paste it into your work folder for an
alternative start method.

Quitting wxMaxima

The quick way to quit is the two-key command Ctrl + q.

The Maxima Manual

To access the Maxima manual from within wxMaxima, you can use function key F1 or the menu item
Help, Maxima Help.

The Online wxMaxima Forum

You can access the wxMaxima online forum at the web page

http://sourceforge.net/forum/forum.php?forum_id=435775

which can be accessed using

Start, My Programs, Maxima-5.19.0, wxMaxima Online Forum

and search for topics of interest.

The Cell Structure of wxMaxima

In the second tutorial, Using wxMaxima, the cell structure of a wxMaxima document is explained (we will use parts of
that discussion here and we give only a rough idea of the actual appearance here):

The top of the cell bracket is actually a triangle. The following is a “text cell” which has no Maxima code.

-----
|
| Unlike "command-line Maxima"’ (such as XMaxima or Console mode)
| which works in a simple input-output manner, wxMaxima introduces
| the concept of a live mathematical document, in which you mix
| text, calculations and plots.
|
| Each wxMaxima document consists of a number of so called "cells".
| The cell is the basic building block of a wxMaxima document. Each cell has a
| bracket on the left border of the document, indicating where the cell
| begins and ends. Cells are of different types. You can have a "title
| cell", a "section cell", and a "text cell" like this one. The most
| important cell type is the "input cell".
---
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The next cell is an example of an input cell, which has the input prompt >> at the top. Note that we can include a text
comment within an input cell (which will be ignored by the Maxima computational engine) by putting the comment
between the delimiters /* and */ :

----
| >> /* this is an input cell - it holds Maxima code and can be
| evaluated by first left-clicking once anywhere in the cell and
| then using the two-key command SHIFT-ENTER. The code entered in this cell
| will be sent to Maxima when you press SHIFT-ENTER. Before
| wxMaxima sends code to Maxima, it checks if the contents
| of each code command in this input cell ends with a ’;’ or a ’$’.
| If it doesn’t, wxMaxima adds a ’;’ at the end. Maxima requires that
| each completed Maxima statement end with either ’;’ or ’$’.
| Note that this does not mean you have to have each statement on
| one line. An input cell could have the contents
| sin
| (
| x
| );
|
| and this would be accepted as a complete Maxima input, equivalent to
| sin(x);
|
| Any *output* wxMaxima gets from Maxima will be attached to the end of
| the input cell. Try clicking in this cell and pressing SHIFT-ENTER. */
|
| /* example Maxmima code: */
|
| print("Hello, world!")$
| integrate(xˆ2, x);
---

If you click once somewhere inside this cell the vertical left line changes to (if you have not changed the default) bright
red, indicating that the cell has been selected for some action. If you then press the two-key combination Shift + Enter,
the prompt >> will be replaced by (%i1), and the results of the two separate Maxima commands will be shown at the
bottom of the cell as:

| Hello, world!
| 3
| x
| (%o2) ---
| 3
----

except that the results are shown using pixel graphics with much better looking results than we show here.

There is no (%o1) since the print command was followed by the $ sign, which surpresses the normal default output.

If you have either a blank screen or a horizontal line present and just start typing, an input type cell is automatically
created. (You can instead, prior to typing, use the function key F7 to create a new input cell and can use the function key
F6 to create a new text cell).

In the current version of wxMaxima, if you change windows to some other task unrelated to wxMaxima, a junk input cell
may be created in wxMaxima containing something which looks like a percent sign >> % which you will see when you
come back to your wxMaxima window. If you want to have an input cell at that location, just backspace to get rid of the
weird symbol and continue.
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If you then want to delete this junk cell, (or any cell you might be working on) just left-click on the bottom of the cell
bracket (which will highlight the bracket) and press the Delete key (or else select Edit, Cell, Cut Cell).

An alternative method is to use the horizontal line as a vertical position cursor which acts on cells. If your cursor is still
inside a cell you want to delete, use the DOWN key to get the cursor out of the cell, and the horizontal black line appears.
At that point you can press the backspace (or delete) key twice to delete the cell above the black horizontal line. Or you
can press SHIFT-UP once to select that cell and then press DELETE. Using SHIFT-UP more than once will select a group
of cells for action.

In the author’s copy of wxMaxima (ie., using Windows XP), trying to use the usual Windows menu key combination
Alt + E, for example, does not actuate the wxMaxima Edit menu icon; one must left-click on that Edit icon at the top of
the screen to choose among the options.

The next cell is a “text cell” which does not need Maxima comment delimiters /* and */.

----
|
| Again, there is a triangle at the top of both text and
| input type cells which we don’t show. An open triangle is the
| default, but if you click on the triangle, it will turn solid
| black and a) for a text cell, the text content is hidden, and
| b) for an input type cell, the Maxima ouput of the cell is hidden.
| Clicking that solid black triangle again will restore the hidden
| portions to view.
|
| Editing cells is easy. To modify the contents of a cell,
| click into it (ie., left-click anywhere in the cell once).
| A cursor should appear and the left cell bracket should turn red,
| (in default style mode) indicating that the cell is ready to be edited.
|
| The usual Windows methods can be used to select parts of a cell.
| One method is to hold the left mouse button down while you drag
| over your selection. A second method combines the SHIFT key with
| other keys to make the selection. For example, left-click at
| a starting location. Then use the two-key command SHIFT-END to
| select to the end of the line (say) or SHIFT-RIGHTARROW to
| select part of the line. You can then use CTRL-C to copy your
| selection to the clipboard. You can then left-click somewhere
| else and use CTRL-V to paste the clipboard contents at that location.
| (This is the usual behvior: if you experience lack of correct pasting,
| you can temporarily revert to the longer process of using the
| Edit, Copy, and Edit, Paste menu items to get wxMaxima in the
| right spirit).
| The DOWN arrow key will step down one line at a time through the
| cell lines and then make a horizontal line under the cell. You can
| also simply left-click in the space between cells to create the
| active horizontal line, which you can think of as a sort of
| cursor for vertical position. With the horizontal line present,
| simply start typing to automatically create a new input type cell.
| Or press the function key F6 to create a new text type cell
| at that vertical location.
--

When you’re satisfied with the document you’ve created, save it using the two-key Ctrl + s command or the File, Save
menu command. Note that the output parts of input cells will not be saved. When you load your document later, you can
evaluate all cells by using the Edit, Cell, Evaluate all cells menu command or the shortcut two-key command Ctrl + r.
If the shortcut two-key command doesn’t work the first time, just repeat once and it should work. The present version of
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wxMaxima is a little cranky still. This will evaluate all the cells in the order they were originally created.

Some common Maxima commands are available through the seven menu icons: Maxima, Equations, Algebra, Calculus,
Simplify, Plot and Numeric. All of the menu choices which end with ..... will open a dialog, to help you formulate
your desired command. The resulting command will be inserted at the current horizontal cursor’s position or below the
currently active cell. The chosen command will also be evaluated.

Configuring the Buttons and Fonts

The bottom button panel can be configured through Edit, Configure, Options Tab, Button Panel, Full or Basic, and
the font type and size can be configured through Edit, Configure, Style Tab, Default Font, Choose Font, Times New
Roman, Regular, 12 , for 12 pt generic roman for example. This is smaller than the startup default font, and may be too
small for some users, but will allow more information to be seen per screen.

The default text cell background color is a six variable custom green that is nice. In the following, the italic box is left
unchecked unless mentioned otherwise. To change a color, click the color bar once. The author combines the 12 pt roman
choice with input labels in bold red, Maxima input in blue bold, text cell in bold black, strings in black bold italic, Maxima
questions in blue bold, and all of the following in bold black: output labels, function names, variables, numbers, special
constants, greek constants.

When you want to save your choices, select the Save button, which will write a file style.ini to the folder in which wx-
Maxima was started.

(The author uses a shortcut to wxMaxima placed in his c:\work2 windows xp folder, since that folder is where the
author expects saved wxm and xml files to be saved. By starting with the contents of that folder in view, the author can
then simply click on the wxMaxima shortcut link to begin work with wxMaxima in that folder.)

The author chose the Full bottom button option (the default is Basic), which draws twenty buttons in two rows at the
bottom of the screen. The top row contains the Simplify, Simplify(r), Factor, Expand, Simplify(tr), Expand(tr),
Reduce(tr), Rectform, Sum..., Product... buttons.
The bottom row contains the Solve..., Solve ODE..., Diff..., Integrate..., Limit..., Series..., Subst..., Map..., Plot2D...,
Plot2D... buttons.
Note that if you have made a selection before you left-click a button panel command or a menu command, that selection
will be used as the main (or only) argument to the command. Selection of a previous output or part of an input will work
in a similar manner. The selected button function will act on the input cell contents or selection and immediately proceed
with evaluation unless there is an argument dialog which must be completed.

Multiple Maxima Requests in One Input Cell

Here is a calculation of the cross sectional area a and volume v of a right circular cylinder in terms of the cross section
radius r and the height h (ignoring units). We first create an input cell as described above, by just starting to type the
following lines, ending each line with the ENTER key to allow entry of the following line.

|---
| >> (r : 10, h : 100)$
| a : %pi * rˆ2;
| v : a * h;
---

Note that we put two Maxima assignment statements on one line, using the syntax ( job 1, job 2 )$. Naturally, you can
put more than two statements between the beginning and ending parentheses. Thus far, the Maxima computational engine
has not been invoked. The left cell bracket will be bright red (in the default style), and you will have a blinking cursor in
the cell somewhere.
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If you now use the two-key command SHIFT-ENTER, all Maxima commands will be carried out and the ouputs will
show up (in the same order as the inputs) at the bottom of that input cell, looking like

----
| (%i1) (r : 10, h : 100)$
| a : %pi * rˆ2;
| v : a * h;
| (%o2) 100*%pi
| (%o3) 10000*%pi
---

with the horizontal (vertical location) line present underneath. The input prompt >> was replaced with the input number
(%i1). Output (%o1) was not printed to the screen because the first input ended with $.

Now just start typing to start the next input cell:

----
| >> [ a, v ], numer ;
---

With the cell bracket highlighted in red and the blinking cursor inside the cell, press SHIFT-ENTER to carry out the
operation, which returns the numerical value of the cross-sectional area a and the cylinder volume v as a list.

----
| (%i4) [ a, v ], numer ;
| (%o4) [314.1592653589793,31415.92653589793]

1.3.1 Rational Simplification with ratsimp and fullratsimp

A rational expression is a ratio of polynomials or a sum of such. A particular case of a rational expression is a polynomial
(whether expanded out or factored). ratsimp and fullratsimp can be useful tools for expressions, part of whose structure
is of this form. Here is a simple example. If you are using wxMaxima, just start typing the expression you see entered
below:

----
| >> (x+2)*(x-2)
---

When you type a leading parenthesis ’(’, the trailing parenthesis ’)’ also appears automatically. However, if you type
an ending parenthesis anyway, wxMaxima will not use it, but rather will properly end with one parenthesis. However,
you should pay attention to this feature at first so you understand how it works. Un-needed parentheses will result in a
Maxima error message.

Now press HOME and then SHIFT-END to select the whole expression, (x+2)*(x-2), then click on the Simplify button
at the bottom of the screen. Maxima will apply a default type of simplification using the function ratsimp, and the cell
contents evaluation will show

|(%i5) ratsimp((x+2)*(x-2));
| 2
|(%o5) x - 4

Thus the Simplify button uses ratsimp to simplify an expression. Instead of using the Simplify button, you could use
the menu selection: Simplify, Simplify Expression. The word “simplify” is being used here in a loose fashion, since
Maxima has no way of knowing what a particular user will consider a useful simplification.

A nice feature of wxMaxima is that you can left-click on a Maxima function name (in an input cell) like ratsimp and then
press the function key F1, and the Maxima manual will open up to the entry for that function.
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Note that if you had started with the input cell contents

----
| >> log( (x+2)*(x-2) ) + log(x)
---

and then highlighted just the (x+2)*(x-2) portion, followed by clicking on the Simplify button, you would get the same
input and output we see above. Thus Maxima will ignore the rest of the expression. On the other hand, if you highlighted
the whole expression and then clicked on Simplify, you would get

----
| (%i5) ratsimp(log((x+2)*(x-2))+log(x));
| 2
| (%o5) log(x - 4) + log(x)
---

fullratsimp

According to the Maxima manual

fullratsimp repeatedly applies ratsimp followed by non-rational simplification to an expression until no
further change occurs, and returns the result. When non-rational expressions are involved, one call to ratsimp
followed as is usual by non-rational (”general”) simplification may not be sufficient to return a simplified
result. Sometimes, more than one such call may be necessary. fullratsimp makes this process convenient.

Here is the Maxima manual example for fullratsimp, making use of the Xmaxima interface.

(%i1) expr: (xˆ(a/2) + 1)ˆ2*(xˆ(a/2) - 1)ˆ2/(xˆa - 1);

a/2 2 a/2 2
(x - 1) (x + 1)

(%o1) -----------------------
a

x - 1
(%i2) expr, ratsimp;

2 a a
x - 2 x + 1

(%o2) ---------------
a

x - 1
(%i3) expr, fullratsimp;

a
(%o3) x - 1
(%i4) rat (expr);

a/2 4 a/2 2
(x ) - 2 (x ) + 1

(%o4)/R/ -----------------------
a

x - 1

We see that fullratsimp returned a completely simplified result. rat(expr) converts expr to a canonical rational ex-
pression (CRE) form by expanding and combining all terms over a common denominator and cancelling out the greatest
common divisor of the numerator and denominator, as well as converting floating point numbers to rational numbers
within a tolerance of ratepsilon (see the Manual for more information about rat).
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1.4 Using the Xmaxima Interface

To start up Xmaxima, you can use the Windows Start Menu route

Start, All Programs, Maxima 5.19.0, xmaxima

or click on the desktop icon for Xmaxima. You can copy the desktop icon to the Clipboard and paste it into any work
folder for quick access.

If you are new to Maxima, go through the quick start tutorial in the bottom window of Xmaxima. You can either click on
the expression to have it evaluated, or you can enter the expression, followed by a semi-colon (;) in the upper window
and press enter to have Maxima carry out the operation. In the top Xmaxima window, note that the two key command
Alt+p will type in the previous entry, and you can keep entering Alt+p until you get the entry you want (to edit or simply
rerun).

Once you know what you are doing, you can close the bottom window of Xmaxima by using the Menu bar. On that menu
bar, choose Options, Toggle Browser Visibility. To use only keyboard commands to close the bottom window, use the
succession: Alt + e, RightArrow, Enter.

To quit Xmaxima, choose File, Exit on the menu bar (or Alt+f, x).

The second short introduction can be found on the Start,All Programs, Maxima 5.19.0, Introduction link. Written by
Cornell University (Dept. of Theoretical and Applied Mechanics) Professor Richard Rand
(http://tam.cornell.edu/), this is an excellent short introduction to many basic features of Maxima. The advice in
Rand’s introduction to exit Maxima by typing quit(); is relevant if you are using the “command line maxima” version,
aka “maxima console”.

One important thing to remember when using Xmaxima is to never press Enter (to execute code) with a space between
the semicolon (or the dollar sign) and the postion of the cursor. At least on the author’s Windows XP machine, Xmaxima
will “hang” and refuse to issue the next input prompt, and you will have to click on File, Restart on the Xmaxima menu
bar to start a new session. This type of error can creep in easily if you are copying code you have previously saved to a
text file, and have an extra space in the file. If you then select, copy, and paste that code fragment into Xmaxima, with the
space at the end intact, you should carefully backspace to either the semicolon or the dollar sign before pressing Enter.
The safest path is to make sure your original text selection for copy does not include a space beyond the dollar sign.

The Maxima Help Manual

The most important continuous source of information about Maxima syntax and reserved words is the Maxima Manual,
which you should leave open in a separate window. To open a separate Maxima Manual window from inside the XMax-
ima interface, click on the XMaxima menu item: Help, Maxima Manual ( you can use the shortcut Alt+h to open the
Help menu).

Move around this reference manual via either Contents or Index. For example, left-click Index and start typing
integrate. By the time you have typed in inte, you are close to the integrate entry, and you can either con-
tinue to type the whole word, or use the down arrow key to select that entry. Then press the Enter key. On the right side
will be the Maxima Manual entry for integrate.

To scroll the Maxima Manual page, double-click on the page, and then use the PageDown and PageUp keys and the
UpArrow and DownArrow keys. To return to the index entry panel, left click that panel, and type diff, which will take
you to the section of the Maxima Manual which explains how to evaluate a derivative.
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The Xmaxima Manual

If you look at the Xmaxima manual via Help, Xmaxima Manual (Web Browser) , your default browser will come up
with a somewhat out of date manual with the sections: 1. Command-line options, 2. Xmaxima Window, 3. Entering
commands, 4. Session control, 5. Openmath plots, 6. The browser, 7. Getting Help, and Concept Index.

The first section “1. Command-line options” is not relevant for Windows XP Xmaxima.

Xmaxima Font Choices

In Sec 2, Xmaxima Window, you will find the statement:

You can also choose different types and sizes for the fonts, in the section ‘Preferences’ of the Options menu;
those settings will be saved for future sessions.

The defaults are Times New Roman with size adjustment 3 for proportional fonts and Courier New with size adjustment
2 for fixed fonts. Using the menu with Options, Preferences, you can click on the typeface buttons to select a different
font type, and can click on the size number button to select another font size. You then should click the Apply and Quit
button.

Entering Your Expression

In Xmaxima, every input prompt, like (%i1), is waiting for an input which conforms to Maxima’s syntax expectations.
There is no such thing as a “text cell”, although you can include text comments anywhere as long as they are delimited
by the standard comment delimiters /* and */, which only need to occur at the very beginning and end of the
comment, even if the comment extends over many lines.

Here is the beginning of Sec.3, Entering Commands, from the Xmaxima manual. We have replaced some irrelevant or
obsolete material with updated instructions.

Most commonly, you will enter Maxima commands in the last input line that appears on the text Window.
That text will be rendered in weak green. If you press Enter, without having written a command-termination
character (either ; or $) at the end, the text will remain green and you can continue to write a multi-line
command. When you type a command-end character and press the Enter key, the text will become light blue
and a response from Maxima should appear in light black. You can also use the UpArrow or DownArrow
keys to move to a new line without sending the input for Maxima evaluation yet. If you want to clear part
of the current input from the beginning to some point, position your cursor at that point (even if the region
thereby selected spans several lines) and then use Edit, Clear input or the two-key command Ctrl+u.

If you move the cursor over the (%i1) input label, or any other label or output text (in black), you will not
be able to type any text there; that feature will prevent you from trying to enter a command in the wrong
place, by mistake. If you really want to insert some additional text to modify Maxima’s output, and which
will not be interpreted by Maxima, you can do that using cut and paste (we will cover that later).

You can also write a new input command for Maxima on top of a previous input line (in blue), for instance,
if you do not want to write down again everything but just want to make a slight change. Once you press
the Enter key, the text you modified will appear at the last input line, as if you had written it down there;
the input line you modified will continue the same in Xmaxima’s and Maxima’s memory, in spite of having
changed in the screen.
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For example, suppose you entered a: 45; in input line (%i1), and something else in (%i2).

(%i1) a:45;
(%o1) 45
(%i2) b:30;
(%o2) 30

You then move up over the (%i1) a: 45; and change the 5 to 8. You can then press End to get the cursor
at the end of the command, and then press Enter to submit the new (edited) command. At that point the
screen looks like:

(%i1) a:48;
(%o1) 45
(%i2) b:30;
(%o2) 30
(%i3) a:48;
(%o3) 48

But if you now enter (%i1); as input (%i4) and press Enter, the output (%o4) will be a: 45. The
screen will now look like:

(%i1) a:48;
(%o1) 45
(%i2) b:30;
(%o2) 30
(%i3) a:48;
(%o3) 48
(%i4) (%i1);
(%o4) a : 45

Maxima knows the current binding of both (%i1) (which is the output (%o4)) and a

(%i5) a;
(%o5) 48

If you navigate through the input lines history (see next section), you will also see that the first input keeps
its original value.

Speeding up Your Work with XMaxima

When you want to edit your previous command, use Alt+p to enter the previous input (or use enough repetitions of Alt+p
to retrieve the command you want to start with). If the code extends over several screen lines, and/or your editing will
include deleting lines, etc., delete the command-completion character at the end (; or $) first, and then edit, and then
restore the command completion character to run the edited code.

The use of the keyboard keys Home, End, PageUp, PageDown, Ctrl+Home, and Ctrl+End (as well as UpArrow and
DownArrow greatly speeds up working with Xmaxima

For example to rerun as is or to copy a command which is located up near the top of your current Xmaxima session, first
use Home to put the cursor at the beginning of the current line, then PageUp or Ctrl+Home to get up to the top region
fast.

If you simply want to rerun that command as is, use End to get the cursor at the end of the entry (past the command-
completion character), and simply press Enter to retry that command. The command will be evaluated with the state of
information Maxima has after the last input run. That entry will be automatically entered into your session (with new
output) at the bottom of your session screen. You can get back to the bottom using the Ctrl+End two-key command.
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Alternatively, if you don’t want the retry the exact same command, but something similar, then select the part of the code
you want to use as a starting point for editing and press Ctrl+c to copy your selection to the Window’s Clipboard. To
select, you can either drag over the code with the mouse while you hold down the left mouse button, or else hold down
the Shift key with your left hand and and combine with the End, the LeftArrow, and the DownArrow keys to help you
select a region to copy.

Once you have selected and copied, press Ctrl+End to have the cursor move to the bottom of your workspace where
XMaxima is waiting for your next input and press Ctrl+v to paste your selection. If the selection extends over multiple
lines, use the down cursor key to find the end of the selection. If your selection included the command-completion char-
acter, remove it (backspace over that final symbol) before starting to edit your copied selection.

You are then in the driver’s seat and can move around the code and make any changes without danger of Xmaxima pre-
emptively sending your work to the Maxima engine until you finally have completed your editing, and move to the very
end and provide the proper ending (either ; or $) and then press Enter to evaluate the entry.

Using the Input Lines History

If your cursor is positioned next to the active input prompt at the bottom of the screen (ie., where Ctrl+End places the
cursor), you can use the key combinations Alt+p and Alt+n to recover the previous or next command that you entered.
For example, if you press Alt+n, you will enter the first input (%i1), and if you continue to press Alt+n, you will get in
sucession (%i2), (%i3),...

Alternatively, if the active input prompt is (%i10) and you press Alt+p repeatedly, you will get inputs (%i9), (%i8),
(%i7), ...

Searching for a String in Your Previous Inputs

Those same two-key combinations can also be used to search for a previous input lines containing a particular string.
Suppose you have one or more previous lines that included (among other functions) sin(something). At the last input
prompt, type sin and then use either of the two-key commands Alt+p or Alt+n repeatedly until the particular input line
containing the instance of sin you are looking for appears. You can then either immediately rerun that input line (press
End to get the cursor at the end of the input and then press Enter) or you can edit the input line using RightArrow and
LeftArrow, Home, and End to move around, and finally complete your editing and press Enter. In summary, you first
write down the string to search, and then Alt+p, to search backwards, or Alt+n to search forward. Pressing those key
combinations repeatedly will allow you to cycle through all the lines that contain the string. If you want to try a different
string in the middle of the search, you can delete the current input, type the new string, and start the search again.

Cutting and Pasting

You can cut or copy a piece of text that you select, from anywhere on the text window (ie., the main top window of
Xmaxima); not only from the input lines but also from the output text in black. To select the text, you can drag the cursor
with the mouse while you keep its left button depressed, or you can hold the Shift key with one finger, while you move
the cursor with the mouse or with the arrow keys.

Once you have selected the text, you can either cut it, with Edit, cut or the shortcut Ctrl+x, or copy it to an internal buffer
using Edit, copy or Ctrl+c. The text that has been cut or copied most recently can be pasted anywhere, even in the output
fields, using Edit, paste or Ctrl+v.

There is a command similar to ‘cut’, called ‘kill’, accessed via either Edit, kill or Ctrl+k, with two major differences: it
only works in input fields (blue or green) and instead of cutting a text that was selected, it will cut all the text from the
cursor until the end of the input line.
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The command Edit, Clear input or Ctrl+u is similar to Edit, kill, but it will only work on the last input line (ie the
current input line) and will clear all from the beginning of that input line to the cursor position.

To paste the last text that you have cut with either ‘kill’ or ‘clear input’, you should use the ‘yank’ command Edit, yank
or Ctrl+y. If you use the Clear Input command, Ctrl+u, you can immediately restore the line with the yank command
Ctrl+y in a sort of “UnDo”.

Other Keyboard Shortcuts

Other useful key combinations are:
Ctrl+f, the same as RightArrow,
Ctrl+b, the same as LeftArrow,
Ctrl+p, the same as UpArrow,
Ctrl+n, the same as DownArrow,
Either Ctrl+a or Home moves to the left end of the current line (to the left of (%xn)),
Either Ctrl+e or End moves to the right end of the current line,
Ctrl+Home moves to the first character at the top of the text window,
Ctrl+End, moves to the last character at the bottom of the text window.

Save Xmaxima Session Record as a Text File

The menu command Edit, Save Console to File will bring up a dialog which allows you to select the folder and file name
with the default extension .out, and Xmaxima will save the current session screen, as it appears to you, to a text file with
that name. This can be a convenient way to keep a record of your work, particularly if you use the day’s date as part
of the name. You can then open that text file with any text editor, such as Notepad2, and edit it as usual, and you can
also change the name of the file. This session record is not in the form of inputs which you could use immediately with
Xmaxima, although you could copy and paste command inputs one at a time into a later Xmaxima session.

Save All Xmaxima Inputs as Lisp Code for Later Use in Maxima

The menu command File, Save Expressions to File will open a dialog which will save every input as Lisp code with a
file name like sat.bin or sat.sav. Although you can read such a file with a normal text editor, its main use to to rerun all
the inputs in a later session by using load(”sat.bin”), for example. All the variable assignments and function definitions
will be absorbed by Maxima, but you don’t see any special output on the screen. Instead of that menu route, you could
just type the input save("C:/work2/sat1.bin",all); to create the Lisp code record of session inputs.

Save All Xmaxima Inputs in a Batch File Using stringout

If you type the input stringout("c:/work2/sat1.mac",input);, the inputs will be saved in the form of
Maxima syntax which can later be batched into a later Maxima session. In a later session, you type the input
batch("c:/work2/sat1.mac"); and on the screen will appear each input line as well as what each output is in
detail. (Or you could use the menu route File, Batch File, which will open a dialog which lets you select the file).

Quiet Batch Input

If you use the menu route File, Batch File Silently, you will not see the record of inputs and outputs in detail, but all the
bindings and definitions will be absorbed by Maxima. There will be no return value and no indication which file has been
loaded, so you might prefer typing load("c:/work2/sat1.mac");, or batchload("c:/work2/sat1.mac"); just
to have that record in your work.
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1.5 Creating and Using a Startup File: maxima-init.mac

You can create a startup file which will be read by Maxima at the start (or restart) of a new Maxima session. If you either
have not already created your startup file or have not interactively changed the binding of maxima_userdir, you can find
where Maxima expects to find a startup file as follows. We purposely start Xmaxima from a link to ..bin/xmaxima.exe
on the desktop, so Xmaxima has no clue where our work folder is.

(%i1) maxima_userdir;
(%o1) C:/Documents and Settings/Edwin Woollett/maxima

Before we show the advantages of using your startup file, let’s show what you need to do to load one of your *.mac files
in your work folder into Maxima without that startup file helping out. In my work folder c:/work2 is a file qfft.mac,
(available with Ch. 11 material on the author’s web page) and here is an effort to load the file in Xmaxima.

(%i2) load(qfft);
Could not find ‘qfft’ using paths in file_search_maxima,file_search_lisp.
-- an error. To debug this try debugmode(true);

(%i3) load("qfft.mac");
Could not find ‘qfft.mac’ using paths in file_search_maxima,file_search_lisp.
-- an error. To debug this try debugmode(true);

(%i4) load("c:/work2/qfft.mac");
type qfft_syntax(); to see qfft and qift syntax

(%o4) c:/work2/qfft.mac

On the other hand, if we have a link to ..bin/xmaxima.exe sitting in our work folder c:/work2 and we start Xmaxima
using that folder link we get

(%i2) load(qfft);
Could not find ‘qfft’ using paths in file_search_maxima,file_search_lisp.
-- an error. To debug this try debugmode(true);

(%i3) load("qfft.mac");
type qfft_syntax(); to see qfft and qift syntax

(%o3) qfft.mac

which shows one of the virtues of starting up Xmaxima using a link in your work folder.

Now that you know where Maxima is going to look for your startup file, make sure such a folder exists and create a file
named maxima-init.mac in that folder. You can have Maxima display a simple message when it reads your startup file
as an added check on what exactly is going on. For example, you could have the line disp (”Hi, Cindy”)$.

After saving the current version of that file in the correct folder, that message should appear after the Maxima version and
credits message.

Below is the author’s startup file, in which he has chosen to tell Maxima to look in the c:/work2 folder for *.mac or
*.mc files, as well as the usual search paths. The chapter 1 utility file mbe1util.mac is loaded into the session.

/* this is c:\Documents and Settings\Edwin Woollett\maxima\maxima-init.mac */
/* last edit: 7-28-09 */
maxima_userdir: "c:/work2" $
maxima_tempdir : "c:/work2"$
file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$
file_search_lisp : append(["c:/work2/###.lisp"],file_search_lisp )$
load(mbe1util)$
print(" mbe1util.mac functions ", functions)$
disp("Maxima is the Future!")$

Naturally, you need to replace c:/work2 by the path to your own work folder.
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With this startup file in place, here is the opening screen of Maxima, using the link to Xmaxima in my work folder to start
the session, and setting input (%i1) to be a request for the binding of maxima_userdir:

Maxima 5.19.0 http://maxima.sourceforge.net
Using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.

mbe1util.mac functions [qplot(exprlist, prange, [hvrange]), rtt(e),
ts(e, v), to_atan(e, y, x), to_atan2(e, y, x), totan(e, v), totan2(e, v),
mstate(), mattrib(), mclean(), fll(x) ]

Maxima is the Future!

(%i1) maxima_userdir;
(%o1) c:/work2

Now it is easy to load in the package qfft.mac, and see the large increase in the number of user defined functons.

(%i2) load(qfft)$
(%i3) functions;
(%o3) [qplot(exprlist, prange, [hvrange]), rtt(e), ts(e, v), to_atan(e, y, x),
to_atan2(e, y, x), totan(e, v), totan2(e, v), mstate(), mattrib(), mclean(),
fll(x), nyquist(ns, fs), sample(expr, var, ns, dvar), vf(flist, dvar),
current_small(), setsmall(val), _chop%(ex), fchop(expr), fchop1(expr, small),
_fabs%(e), kg(glist), spectrum1(glist, nlw, ymax),
spectrum(glist, nlw, ymax, [klim]), spectrum_eps(glist, nlw, ymax, fname,
[klim])]

We can use the utility function mclean() to remove those qfft functions.

(%i4) mclean();
----- clean start

(%o0)
(%i1) functions;
(%o1) [qplot(exprlist, prange, [hvrange]), rtt(e), ts(e, v), to_atan(e, y, x),
to_atan2(e, y, x), totan(e, v), totan2(e, v), mstate(), mattrib(), mclean(),
fll(x)]

If we had instead used kill ( all ) , the intial set of utilities loaded in from mbe1util.mac would have also vanished.

(%i2) kill(all);
(%o0) done
(%i1) functions;
(%o1) []

Of course you could then use a separate load(mbe1util) command to get them back.
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1.6 Maxima Expressions, Numbers, Operators, Constants and Reserved Words

The basic unit of information in Maxima is the expression. An expression is made up of a combination of operators,
numbers, variables, and constants. Variables should have names which are not reserved words (see below), and can
represent any type of data structue; there is no requirement to “declare” a variable to be of a certain type.

Numbers in Maxima

Maxima uses

• Integers, such as 123456,

• Rational numbers, such as 3/2, ratios of integers,

• Floats and bigfloats such as 1.234, 1.234e-6, and 1.234b5,

• Complex numbers, such as 4 + 2*%i and a + b*%i. Maxima assumes the symbols a and b represent real
numbers by default.

Operators in Maxima

The table below lists some Maxima operators in order of priority, from lowest to highest.
The input xˆ2+3 means x2 + 3, and not x2+3. The exponentiation has higher precedence than addition. The input
2ˆ3ˆ4 stands for 2ˆ(3ˆ4). Parentheses can be used to force order of operations, or simply for clarity.

(%i1) xˆ2+3;
2

(%o1) x + 3
(%i2) 2ˆ3ˆ4;
(%o2) 2417851639229258349412352
(%i3) 2ˆ(3ˆ4);
(%o3) 2417851639229258349412352
(%i4) (2ˆ3)ˆ4;
(%o4) 4096

Since the operator ∗ has precedence over +, a + b ∗ c means a + (b ∗ c), rather than (a + b) ∗ c.

Operator Description
+ addition
− subtraction
∗ multiplication
/ division
− negation
ˆ exponentiation
. non-commutative multiplication
ˆˆ non-commutative exponentiation
! factorial
!! double factorial

Table 1: Operators in Order of Increasing Precedence
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Constants in Maxima

The following table summarizes predefined constants.

Constant Description
%e Base of the natural logarithms (e)
%i The square root of (−1) (i)
%pi The transcendental constant pi (π)
%phi The golden mean (1 +

√
5)/2

%gamma The Euler-Mascheroni constant
inf Real positive infinity (∞)
minf Real negative infinity (−∞)

Table 2: Maxima Predefined Constants

Here are the numerical values to 16 digit precision.

(%i5) float( [%e,%pi,%phi,%gamma] );
(%o5) [2.718281828459045, 3.141592653589793, 1.618033988749895,

0.57721566490153]

Reserved Words

There are a number of reserved words which, if used as variable or function names, might be confusing to both the user
and Maxima. Their use might cause a possibly cryptic syntax error. Here are some of the “well known” and “less well
known but short” reserved words Of course there are many other Maxima function names, global option variables, and

af else ic2 plog
and elseif if psi
av erf ift product
args ev ilt put
array exp in rat
at f90 ind rem
bc2 fft inf rk
carg fib inrt some
cf fix integrate step
cint for is sum
col from li then
cov gcd limit thru
cv gd min und
del get next unless
diag go not vers
diff hav op while
do ic1 or zeta

Table 3: Some Simple Reserved Words

system option variables which you might also try to avoid when naming your own variables and function. One quick way
to check on “name conflicts” is to keep the html Maxima help manual up in a separate window, and have the Index panel
available to type in a name you want to use. The painful way to check on name conflicts is to wait for Maxima to give
you a strange error message as to why what you are trying to do won’t work. If you get strange results, try changing the
names of your variables and or functions.
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An important fact is that Maxima is case sensitive, so you can avoid name conflicts by capitalizing the names of your user
defined Maxima functions. Your Solve will not conflict with Maxima’s solve. This is a dumb example, but illustrates the
principle:

(%i6) Solve(x):= xˆ2;
2

(%o6) Solve(x) := x
(%i7) Solve(3);
(%o7) 9

Of course, it takes more typing effort to use capitalized function names, which is why they are not popular among power
users.

1.7 Input and Output Examples

In the following we are using the Xmaxima interface.

As discussed in Sec. 1.3.1, a rational expression is a ratio of polynomials or a sum of such. A special case is a polynomial.
A rational expression is a special case of what is called an expression in Maxima.

Here we write a rational expression without binding it to any particular symbol.

(%i1) x/(xˆ3+1);
x

(%o1) ------
3

x + 1

The input line is typed in a “one dimensional” version and, if the input completion character is a semi-colon ; then Xmaxima displays
the expression in a text based two-dimensional notation. You can force one-dimensional output if you set display2d to false:

(%i2) display2d:false$
(%i3) %o1;
(%o3) x/(xˆ3+1)
(%i4) display2d:true$
(%i5) %o1;

x
(%o5) ------

3
x + 1

When you want to show a piece of code to the Maxima mailing list, it is recommended that you show the output in the one-dimensional
form since otherwise, in the received message, exponents can appear in a shifted position which may be hard to interpret.

The output (%o6) is a symbolic expression which can be manipulated as a data structure. For example, you can add it to itself. The
Maxima symbol % refers to the last output line.

(%i6) % + %;
2 x

(%o6) ------
3

x + 1

Notice the automatic simplification carried out by default. Maxima could have left the result as a sum of two terms, but instead
recognised that the summands were identical and added them together producing a one term result. Maxima will automatically (in
default behavior) perform many such simplifications.

Here is an example of automatic simplification of a trig function:

(%i7) sin(x - %pi/2);
(%o7) - cos(x)
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1.8 Maxima Power Tools at Work

1.8.1 The Functions apropos and describe

Function apropos

apropos("foo") returns a list of core Maxima names which have foo appearing anywhere within them. For example,
apropos ("exp") returns a list of all the core flags and functions which have exp as part of their names, such as
expand, exp, and ratexpand. Thus if you can only remember part of the name of something, you can use this command
to find the correct complete name. Here is an example:

(%i1) apropos ("exp");
(%o1) [askexp, auto_mexpr, besselexpand, beta_expand, cfexpand, comexp,
domxexpt, dotexptsimp, errexp, errexp1, errexp2, errexp3, exp, exp-form,
expand, expandwrt, expandwrt_denom, expandwrt_factored, expandwrt_nonrat,
expansion, expint, expintegral_chi, expintegral_ci, expintegral_e,
expintegral_e1, expintegral_ei, expintegral_hyp, expintegral_li,
expintegral_shi, expintegral_si, expintegral_trig, expintexpand, expintrep,
explicit, explose, expon, exponentialize, expop, expr, exprlist, expt,
exptdispflag, exptisolate, exptsubst, Expt, facexpand, factorial_expand,
gamma_expand, logexpand, macroexpand, macroexpand1, macroexpansion, matrixexp,
poisexpt, psexpand, radexpand, ratexpand, ratsimpexpons, sexplode,
solveexplicit, sumexpand, taylor_logexpand, texput, trigexpand,
trigexpandplus, trigexpandtimes, tr_exponent, tr_warn_fexpr]

Function describe

describe(e), describe(e, exact), describe(e, inexact)
describe(e) is equivalent to describe(e, exact) and prints to the screen the manual documentation of e.

describe(e, inexact) prints to the screen a numbered list of all items documented in the manual which contain “e” as part
of their name. If there is more than one list element, Maxima asks the user to select an element or elements to display.

SHORTCUTS:
At the interactive prompt, ? foo (with a space between ? and foo) and NO ENDING SEMICOLON (just press Enter)
is equivalent to either describe(foo) or describe(foo, exact), and ?? foo (with a space between ?? and foo) and NO
ENDING SEMICOLON (just press Enter) is equivalent to describe(foo, inexact).

In the latter case, the user will be asked to type either a set of space separated numbers to select some of the list elements,
such as 2 3 5 followed by Enter, or the word all followed by Enter, or the word none followed by Enter.

Here is an example of interactive use of the single question mark shortcut.

(%i2) ? exp
-- Function: exp (<x>)

Represents the exponential function. Instances of ‘exp (<x>)’ in
input are simplified to ‘%eˆ<x>’; ‘exp’ does not appear in
simplified expressions.

‘demoivre’ if ‘true’ causes ‘%eˆ(a + b %i)’ to simplify to ‘%eˆ(a
(cos(b) + %i sin(b)))’ if ‘b’ is free of ‘%i’. See ‘demoivre’.

‘%emode’, when ‘true’, causes ‘%eˆ(%pi %i x)’ to be simplified.
See ‘%emode’.

‘%enumer’, when ‘true’ causes ‘%e’ to be replaced by 2.718...
whenever ‘numer’ is ‘true’. See ‘%enumer’.
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There are also some inexact matches for ‘exp’.
Try ‘?? exp’ to see them.

(%o2) true

1.8.2 The Function ev and the Properties evflag and evfun

Function ev

ev is a “jack-of-all-trades swiss army knife” which is frequently useful, occasionally dangerous, and complex to describe.

In brief, the syntax is

ev ( expr, options );
or more explicitly,

ev (expr, arg_1, ..., arg_n)

with the interactive mode shortcut

expr, options ;
or again more explicitly

expr, arg_1, ..., arg_n ;

The interactive mode shortcut form cannot be used inside user defined Maxima functions or blocks.

The Manual description of ev begins

Evaluates the expression expr in the environment specified by the
arguments arg_1, ..., arg_n. The arguments are switches (Boolean flags),
assignments, equations, and [Maxima] functions. ev returns the result
(another expression) of the evaluation.

One option has the form V : e, or V = e, which causes V to be bound to the value of e during the evaluation of expr.
If more than one argument to ev is of this type, then the binding is done in parallel, as shown in the following example.

(%i1) x+y, x = a+y;
(%o1) 2 y + a
(%i2) %, y = 2;
(%o2) a + 4
(%i3) x+y, x = a+y, y = 2;
(%o3) y + a + 2
(%i4) x+y, [x = a+y, y = 2];
(%o4) y + a + 2

If V is a non-atomic expression, then a substitution rather than a binding is performed.

This example illustrates the subtlety of the way ev in designed to work, and shows that some experimentation should be
carried out to gain confidence in the result returned by ev.

The next example of ev shows its use to check the correctness of solutions returned by solve.

(%i1) eqns : [-2*x -3*y = 3, -3*x +2*y = -4]$
(%i2) solns : solve (eqns);

17 6
(%o2) [[y = - --, x = --]]

13 13
(%i3) eqns, solns;
(%o3) [3 = 3, - 4 = - 4]
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Our final example shows the use of rectform and ratsimp to make explicit the fourth roots of −1 returned by solve.

(%i1) solve ( aˆ4 + 1 );
1/4 1/4 1/4 1/4

(%o1) [a = (- 1) %i, a = - (- 1) , a = - (- 1) %i, a = (- 1) ]
(%i2) % , rectform, ratsimp;

sqrt(2) %i - sqrt(2) sqrt(2) %i + sqrt(2)
(%o2) [a = --------------------, a = - --------------------,

2 2
sqrt(2) %i - sqrt(2) sqrt(2) %i + sqrt(2)

a = - --------------------, a = --------------------]
2 2

(%i3) %ˆ4, ratsimp;
4 4 4 4

(%o3) [a = - 1, a = - 1, a = - 1, a = - 1]

Both rectform and ratsimp are Maxima functions which have the property evfun (see next entry), which means that
ev(expr, rectform, ratsimp) is equivalent to ratsimp ( rectform ( ev(expr) ) ) .

Property evflag

When a symbol x has the evflag property, the expressions ev(expr, x) and expr, x (at the interactive prompt) are
equivalent to ev(expr, x = true). That is, x is bound to true while expr is evaluated.
The expression declare(x, evflag) gives the evflag property to the variable x.
The flags which have the evflag property by default are the following:

algebraic, cauchysum, demoivre, dotscrules, %emode, %enumer, exponentialize,
exptisolate, factorflag, float, halfangles, infeval, isolate_wrt_times,
keepfloat, letrat, listarith, logabs, logarc, logexpand, lognegint, lognumer,
m1pbranch, numer_pbranch, programmode, radexpand, ratalgdenom, ratfac,
ratmx, ratsimpexpons, simp, simpsum, sumexpand, and trigexpand.

Even though the Boolean switch numer does not have the property evflag, it can be used as if it does.

(%i4) [exponentialize,float,numer,simp];
(%o4) [false, false, false, true]
(%i5) properties(exponentialize);
(%o5) [system value, transfun, transfun, transfun, transfun, transfun,

transfun, evflag]
(%i6) properties(numer);
(%o6) [system value, assign property]
(%i7) properties(float);
(%o7) [system value, transfun, transfun, transfun, transfun, transfun,

evflag, transfun, transfun]
(%i8) properties(simp);
(%o8) [system value, evflag]

Here are some examples of use.

(%i9) [ ev (exp(3/29), numer ), ev (exp(3/29), float) ];
(%o9) [1.108988430411017, 1.108988430411017]
(%i10) [ ev (exp (%pi*3/29), numer), ev (exp (%pi*3/29), float) ];

0.10344827586207 %pi
(%o10) [1.384020049155809, %e ]
(%i11) 2*cos(w*t) + 3*sin(w*t), exponentialize, expand;

%i t w - %i t w
3 %i %e %i t w 3 %i %e - %i t w

(%o11) - ------------- + %e + --------------- + %e
2 2

(For the use of the “key word” expand in this context, see below.)
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Property evfun

When a Maxima function F has the evfun property, the expressions ev(expr, F) and expr, F (at the interactive
prompt) are equivalent to F ( ev (expr)).
If two or more evfun functions F, G, etc., are specified, then ev ( expr, F, G ) is equivalent to G ( F ( ev(expr) ) ).

The command declare(F, evfun) gives the evfun property to the function F.
The functions which have the evfun property by default are the following very useful and single argument funtions: bfloat,
factor, fullratsimp, logcontract, polarform, radcan, ratexpand, ratsimp, rectform, rootscontract, trigexpand, and
trigreduce.

Note that rat, and trigsimp do not, by default, have the property evfun.

Some of the other “key words” which can be used with ev are expand, nouns, diff, integrate (even though they are not
obviously boolean switches and do not have the property evflag).

(%i12) [diff,expand,integrate,nouns];
(%o12) [diff, expand, integrate, nouns]
(%i13) properties(expand);
(%o13) [transfun, transfun, transfun, transfun, transfun]
(%i14) (a+b)*(c+d);
(%o14) (b + a) (d + c)
(%i15) (a+b)*(c+d),expand;
(%o15) b d + a d + b c + a c
(%i16) ev((a+b)*(c+d),expand);
(%o16) b d + a d + b c + a c

The undocumented property transfun apparently has something to do with translation to Lisp.

1.8.3 The List functions and the Function fundef

functions

functions is the name of a list maintained by Maxima and this list is printed to the screen (as would any list) with the
names of the current available non-core Maxima functions (either user defined interactively or defined by any packages
loaded into the current session). Here is the example we saw previously based on the author’s startup file:

(%i1) functions;
(%o1) [qplot(exprlist, prange, [hvrange]), rtt(e), ts(e, v), to_atan(e, y, x),
to_atan2(e, y, x), totan(e, v), totan2(e, v), mstate(), mattrib(), mclean(),
fll(x)]

fundef

fundef(name) prints out the definition of a non-core Maxima function (if currently known by Maxima). Here is an
example related to the previous example which said that Maxima knew about a function called rtt.

(%i2) fundef(rtt);
(%o2) rtt(e) := radcan(trigrat(trigsimp(e)))
(%i3) fundef(cos);
cos is not the name of a user function.
-- an error. To debug this try debugmode(true);
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1.8.4 The Function kill and the List values

kill

kill(a,b) will eliminate the objects a and b. Special cases are kill(all) and kill(allbut(x,y)). Here is an example which
removes our user defined Maxima function rtt.

(%i1) kill(rtt);
(%o1) done
(%i2) functions;
(%o2) [qplot(exprlist, prange, [hvrange]), ts(e, v), to_atan(e, y, x),
to_atan2(e, y, x), totan(e, v), totan2(e, v), mstate(), mattrib(), mclean(),
fll(x)]

values

values is another list maintained by Maxima which contains the names of currently assigned scalar values which have
been set by the user interactively or by packages which have been loaded. Here is a simple example.

(%i3) [ a:2, b:5, e: xˆ2/3 ];
2
x

(%o3) [2, 5, --]
3

(%i4) values;
(%o4) [a, b, e]

1.8.5 Examples of map, fullmap, apply, grind, and args

Let f be an unbound symbol. When f is then mapped onto a list or expression, we can see what will happen if we map a
Maxima function on to the same kind of object.

(%i1) map(’f, [x, y, z] );
(%o1) [f(x), f(y), f(z)]
(%i2) map(’f, x + y + z);
(%o2) f(z) + f(y) + f(x)
(%i3) map(’f, [a*x,b*exp(y),c*log(z)]);

y
(%o3) [f(a x), f(b %e ), f(c log(z))]
(%i4) map(’f, a*x + b*exp(y) + c*log(z) );

y
(%o4) f(c log(z)) + f(b %e ) + f(a x)

The use of map with the Maxima function ratsimp allows a separate simplification to be carried out on each term of the
following expression.

(%i5) e : x/(xˆ2+x)+(yˆ2+y)/y ;
2

y + y x
(%o5) ------ + ------

y 2
x + x

(%i6) e, ratsimp;
(x + 1) y + x + 2

(%o6) -----------------
x + 1

(%i7) map(’ratsimp,e);
1

(%o7) y + ----- + 1
x + 1
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We create a list of equations from two lists using map.

(%i8) map( "=", [x,y,z],[a,b,c] );
(%o8) [x = a, y = b, z = c]

We compare map and fullmap when appied to an expression.

(%i9) expr : 2*%pi + 3*exp(-4);
- 4

(%o9) 2 %pi + 3 %e
(%i10) map(’f, expr);

- 4
(%o10) f(2 %pi) + f(3 %e )
(%i11) fullmap(’f, expr);

f(- 4)
(%o11) f(2) f(%pi) + f(3) f(%e)

apply

The Maxima function apply can be used with a list only (not an expression).

(%i12) apply(’f, [x,y,z]);
(%o12) f(x, y, z)
(%i13) apply("+",[x,y,z]);
(%o13) z + y + x
(%i14) dataL : [ [1,2], [2,4] ]$
(%i15) dataM : apply(’matrix, dataL );

[ 1 2 ]
(%o15) [ ]

[ 2 4 ]
(%i16) grind(%)$
matrix([1,2],[2,4])$

The function grind allows one dimensional display suitable for copying into another input line. The last example above
created a Maxima matrix object from a nested list. Maxima has many tools to work with matrix objects. To achieve one
dimensional display of such matrix objects (saving space), you can use display2d:false. To go from a Maxima
matrix object to a nested list, use args.

(%i17) args(dataM);
(%o17) [[1, 2], [2, 4]]

1.8.6 Examples of subst, ratsubst, part, and substpart

subst

To replace x by a in an expression expr, you can use either of two forms.

subst ( a, x, expr );
or

subst ( x = a, expr );

To replace x by a and also y by b one can use

subst ( [ x = a, y = b ], expr );

x and y must be atoms (ie., a number, a string, or a symbol) or a complete subexpression of expr. When x does not have
these characteristics, use ratsubst( a, x, expr ) instead.
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Some examples:

(%i1) e : f*xˆ3 + g*cos(x);
3

(%o1) g cos(x) + f x
(%i2) subst ( x = a, e );

3
(%o2) cos(a) g + a f
(%i3) e1 : subst ( x = a + b, e );

3
(%o3) cos(b + a) g + (b + a) f
(%i4) e2 : subst ( a + b = y, e1 );

3
(%o4) g cos(y) + f y
(%i5) e3 : f*xˆ3 + g*cos(y);

3
(%o5) g cos(y) + f x
(%i6) e4 : subst ( [x = a+b, y = c+d],e3 );

3
(%o6) cos(d + c) g + (b + a) f
(%i7) subst ([a+b = r, c+d = p],e4 );

3
(%o7) f r + g cos(p)

ratsubst

(%i8) e : a*f(y) + b*g(x);
(%o8) a f(y) + b g(x)
(%i9) e1 : ratsubst( cos(y),f(y),e );
(%o9) a cos(y) + b g(x)
(%i10) e2 : ratsubst( xˆ3*sin(x),g(x),e1 );

3
(%o10) a cos(y) + b x sin(x)

part and substpart

The Maxima functions part and substpart are best defined by a simple example.

(%i11) e : a*log(f(y))/(b*exp(f(y)));
- f(y)

a %e log(f(y))
(%o11) --------------------

b
(%i12) length(e);
(%o12) 2
(%i13) [part(e,0),part(e,1),part(e,2)];

- f(y)
(%o13) [/, a %e log(f(y)), b]
(%i14) substpart("+",e,0);

- f(y)
(%o14) a %e log(f(y)) + b
(%i15) length(part(e,1));
(%o15) 3
(%i16) [part(e,1,0),part(e,1,1),part(e,1,2),part(e,1,3)];

- f(y)
(%o16) [*, a, %e , log(f(y))]
(%i17) length(part(e,1,3));
(%o17) 1
(%i18) [part(e,1,3,0),part(e,1,3,1)];
(%o18) [log, f(y)]
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(%i19) substpart(sin,e,1,3,0);
- f(y)

a %e sin(f(y))
(%o19) --------------------

b
(%i20) length( part(e,1,3,1) );
(%o20) 1
(%i21) [part(e,1,3,1,0), part(e,1,3,1,1)];
(%o21) [f, y]
(%i22) substpart(x,e,1,3,1,1);

- f(y)
a log(f(x)) %e

(%o22) --------------------
b

By judicious use of part and substpart, we see that we can modify a given expression in all possible ways.

1.8.7 Examples of coeff, ratcoef, and collectterms

collectterms

Use the syntax

collectterms ( expr, arg1, arg2, ...)

This Maxima function is best explained with an example. Consider the expression:

(%i1) ex1 : a1*(b + c/2)ˆ2 + a2*(d + e/3)ˆ3 , expand;
3 2 2

a2 e a2 d e 2 3 a1 c 2
(%o1) ----- + ------- + a2 d e + a2 d + ----- + a1 b c + a1 b

27 3 4

How can we return this expanded expression to the original form? We first use collectterms, and then factor with map.

(%i2) collectterms(ex1,a1,a2);
3 2 2

e d e 2 3 c 2
(%o2) a2 (-- + ---- + d e + d ) + a1 (-- + b c + b )

27 3 4
(%i3) map(’factor, %);

3 2
a2 (e + 3 d) a1 (c + 2 b)

(%o3) ------------- + -------------
27 4

Maxima’s core simplification rules prevent us from getting the 33 = 27 into the numerator of the first term, and also
from getting the 22 = 4 into the numerator of the second term, unless we are willing to do a lot of substpart piecework
(usually not worth the trouble).

coeff

The syntax

coeff ( expr, x, 3 )

will return the coefficient of xˆ3 in expr.
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The syntax

coeff ( expr, x )

will return the coefficient of x in expr.
x may be an atom or a complete subexpression of expr, such as sin(y), a[j], or (a+b). Sometimes it may be
necessary to expand or factor expr in order to make xˆn explicit. This preparation is not done automatically by coeff.

(%i4) coeff(%, a2);
3

(e + 3 d)
(%o4) ----------

27
(%i5) coeff(%, e + 3*d, 3);

1
(%o5) --

27

ratcoef (also ratcoeff)

The function ratcoef (or ratcoeff) has the same syntax as coeff (except that n should not be negative), but expands and
rationally simplifies the expression before finding the coefficient, and thus can produce answers different from coeff,
which is purely syntactic.

(%i6) ex2 : (a*x + b)ˆ2;
2

(%o6) (a x + b)
(%i7) coeff(ex2,x);
(%o7) 0
(%i8) ratcoeff(ex2,x);
(%o8) 2 a b
(%i9) ratcoef(ex2,x);
(%o9) 2 a b
(%i10) ratcoeff(ex2, x, 0);

2
(%o10) b
(%i11) ratcoef(ex2, x, 0);

2
(%o11) b

Both coeff and ratcoef can be used with equations (as well as expressions).

(%i12) eqn : (a*sin(x) + b*cos(x))ˆ3 = c*sin(x)*cos(x);
3

(%o12) (a sin(x) + b cos(x)) = c cos(x) sin(x)
(%i13) ratcoef(eqn,sin(x),0);

3 3
(%o13) b cos (x) = 0
(%i14) ratcoef(eqn,sin(x));

2 2
(%o14) 3 a b cos (x) = c cos(x)
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1.8.8 Examples of rat, diff, ratdiff, ratexpand, expand, factor, gfactor and partfrac

Maxima provides tools which allow the user to write an expression in multiple forms. Consider the tenth order polynomial
in x given by

(%i1) e:(x + 3)ˆ10;
10

(%o1) (x + 3)

We can use diff ( expr, x ) to find the first derivative of expr, and diff ( expr, x, 2 ) to find the second derivative of expr,
and so on.

(%i2) de1 : diff ( e, x );
9

(%o2) 10 (x + 3)

Because this expression is a polynomial in x, we can also use ratdiff ( expr, x ):

(%i3) de1r : ratdiff ( e, x );
9 8 7 6 5 4 3

(%o3) 10 x + 270 x + 3240 x + 22680 x + 102060 x + 306180 x + 612360 x
2

+ 787320 x + 590490 x + 196830
(%i4) factor ( de1r );

9
(%o4) 10 (x + 3)

We show three tools for expansion of this polynomial.

(%i5) rat(e);
10 9 8 7 6 5 4

(%o5)/R/ x + 30 x + 405 x + 3240 x + 17010 x + 61236 x + 153090 x
3 2

+ 262440 x + 295245 x + 196830 x + 59049
(%i6) ratexpand (e);

10 9 8 7 6 5 4
(%o6) x + 30 x + 405 x + 3240 x + 17010 x + 61236 x + 153090 x

3 2
+ 262440 x + 295245 x + 196830 x + 59049

(%i7) expand (e);
10 9 8 7 6 5 4

(%o7) x + 30 x + 405 x + 3240 x + 17010 x + 61236 x + 153090 x
3 2

+ 262440 x + 295245 x + 196830 x + 59049
(%i8) factor (%);

10
(%o8) (x + 3)

If you want the lowest powers displayed first, you have to change the setting of powerdisp to true.

(%i9) powerdisp;
(%o9) false
(%i10) powerdisp : true$
(%i11) %o7;

2 3 4 5
(%o11) 59049 + 196830 x + 295245 x + 262440 x + 153090 x + 61236 x

6 7 8 9 10
+ 17010 x + 3240 x + 405 x + 30 x + x

(%i12) powerdisp : false$
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Next we consider a sum of rational expressions:

(%i13) expr: (x - 1)/(x + 1)ˆ2 + 1/(x - 1);
x - 1 1

(%o13) -------- + -----
2 x - 1

(x + 1)
(%i14) expand ( expr );

x 1 1
(%o14) ------------ - ------------ + -----

2 2 x - 1
x + 2 x + 1 x + 2 x + 1

(%i15) ratexpand ( expr );
2

2 x 2
(%o15) --------------- + ---------------

3 2 3 2
x + x - x - 1 x + x - x - 1

We see that ratexpand wrote all fractions with a common denominator, whereas expand did not. In general, rat and
ratexpand is more efficient at expanding rational expressions. Here is a very large expression with many %pi’s which
can be simplified easily by the “rat tribe”, but expand takes a very long time and returns a mess.

(%i16) e :
((2/%pi-1)*(((%pi/2-1)/(%pi-1)-1)*((6*(2/%pi-2*(4-%pi)/%pi)/%pi-(6*(2*(4-%pi)

/%pi-(%pi-2)/(%pi/2-1))/(%pi-1)-6*((%pi-2)/(%pi/2-1)-2)*(%pi/2-1)
/(%pi*(%pi-1)))/(2*((2/%pi-1)*(%pi/2-1)/(2*(%pi-1)) +2)))
/(((%pi/2-1)/(%pi-1)-1)/(2*((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))+2))+2)
-(6*(2*(2*%pi-5)/%pi-2/%pi)/%pi-(6*(2/%pi-2*(4-%pi)/%pi)/%pi
-(6*(2*(4-%pi)/%pi-(%pi-2)/(%pi/2-1))/(%pi-1)-6*((%pi-2)/(%pi/2-1)-2)
*(%pi/2-1)/(%pi*(%pi-1)))/(2*((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))+2)))
/(2*(((%pi/2-1)/(%pi-1)-1)/(2*((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))+2))+2)))
/(2*(2-1/(4*(((%pi/2-1)/(%pi-1)-1)/(2*((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))+2))
+2)))*(((%pi/2-1)/(%pi-1)-1)/(2*((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))
+2))+2)))/((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))+2)+(6*(2*(4-%pi)/%pi-(%pi-2)
/(%pi/2-1))/(%pi-1)-6*((%pi-2)/(%pi/2-1)-2)*(%pi/2-1)/(%pi*(%pi-1)))
/((2/%pi-1)*(%pi/2-1)/(2*(%pi-1))+2))/2+6*((%pi-2)/(%pi/2-1)-2)/%pi)
*(xˆ3-x)/6 + 2*x$

(%i17) ratsimp (e);
2 3 3 2

(128 %pi - 520 %pi + 528) x + (194 %pi - 248 %pi + 400 %pi - 528) x
(%o17) -----------------------------------------------------------------------

3 2
97 %pi - 60 %pi - 60 %pi

(%i18) rat (e);
(%o18)/R/

2 3 3 2
(128 %pi - 520 %pi + 528) x + (194 %pi - 248 %pi + 400 %pi - 528) x
-----------------------------------------------------------------------

3 2
97 %pi - 60 %pi - 60 %pi
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(%i19) ratexpand (e);
3 3

528 x 128 %pi x
(%o19) -------------------------- + ---------------------

3 2 2
97 %pi - 60 %pi - 60 %pi 97 %pi - 60 %pi - 60

3 2
520 x 528 x 194 %pi x

- --------------------- - -------------------------- + ---------------------
2 3 2 2

97 %pi - 60 %pi - 60 97 %pi - 60 %pi - 60 %pi 97 %pi - 60 %pi - 60
248 %pi x 400 x

- --------------------- + ---------------------
2 2

97 %pi - 60 %pi - 60 97 %pi - 60 %pi - 60

There is a more general form expand (expr, p, n) available to control which parts of fractions are expanded and how (see
the Manual index entry for expand). There is also a more general form for rat (expr, x_1, ..., x_n).

gfactor

The “g” in gfactor comes from factorization over the Gaussian integers.

(%i20) gfactor ( xˆ2 + 1 );
(%o20) (x - %i) (x + %i)

partfrac

We have earlier emphasized the usefulness of ratsimp. A Maxima function which in some cases can be considered
the “opposite” of ratsimp in its results is partfrac, which has the syntax partfrac ( expr, var ), and which
expands expr in partial fractions with respect to var. Here is the example presented in the Manual.

(%i21) e : 1/(1+x)ˆ2 - 2/(1+x) + 2/(2+x);
2 2 1

(%o21) ----- - ----- + --------
x + 2 x + 1 2

(x + 1)
(%i22) e, ratsimp;

x
(%o22) - -------------------

3 2
x + 4 x + 5 x + 2

(%i23) partfrac (%, x);
2 2 1

(%o23) ----- - ----- + --------
x + 2 x + 1 2

(x + 1)
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1.8.9 Examples of integrate, assume, facts, and forget

An important symbolic tool is indefinite integration, much of which is performed algorithmically. The original integration
package, written by Joel Moses, incorporates the non-algebraic case of the Risch integration algorithm, and the package
is called sin.lisp ( “sin” is a mnemonic from “Symbolic INtegrator” ).

Consider the indefinite integral of a rational expression:

(%i1) e : x/(xˆ3 + 1);
x

(%o1) ------
3

x + 1
(%i2) ie : integrate (e, x);

2 x - 1
2 atan(-------)

log(x - x + 1) sqrt(3) log(x + 1)
(%o2) --------------- + ------------- - ----------

6 sqrt(3) 3

Indefinite integration can usually be checked by differentiating the result:

(%i3) diff (ie, x);
2 2 x - 1 1

(%o3) ------------------ + -------------- - ---------
2 2 3 (x + 1)

(2 x - 1) 6 (x - x + 1)
3 (---------- + 1)

3

This answer, as it stands, is not identical to the starting integrand. The reason is that Maxima merely differentiates term
by term. Maxima automatically applies only those simplification rules which are considered “obvious” and “always de-
sirable”. A particular simplification rule might make one expression smaller but might make another expression larger. In
such cases, Maxima leaves the decision to the user.

In this example, the starting integrand can be recovered by ”rational simplification” using the ratsimp function.

(%i4) %, ratsimp;
x

(%o4) ------
3

x + 1

We met ratsimp and fullratsimp (Sec. 1.3.1) in our brief discussion of the buttons and menu system of wxMaxima,
where the Simplify button made use of ratsimp, a reflection of the frequent use you will make of this function. You can
think of the word ratsimp being a mnenomic using the capitalised letters in RATional SIMPlification.

If you try to use ratdiff on the above indefinite integration result, you get an obscure error message:

(%i5) ratdiff (ie, x);
‘ratdiff’ variable is embedded in kernel
-- an error. To debug this try debugmode(true);

The error message is returned because ratdiff (expr, x) can only be used for expressions which are either a polynomial in
x or a ratio of polynomials in x.
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integrate consults the assume database when making algebraic decisions. The content of that database is returned by
facts();. You can sometimes avoid questions from integrate if you first provide some assumptions with assume.
Here is an example of a definite integral in which we start with no assumptions, and need to answer a question from
integrate.

(%i1) facts();
(%o1) []
(%i2) integrate(x*exp(-a*x)*cos(w*x),x,0,inf);
Is a positive, negative, or zero?

p;
2 2

w - a
(%o2) - -----------------

4 2 2 4
w + 2 a w + a

We can now tell Maxima that the parameter a should be treated as a positive number. We thereby avoid the question.

(%i3) ( assume(a > 0), facts() );
(%o3) [a > 0]
(%i4) integrate(x*exp(-a*x)*cos(w*x),x,0,inf);

2 2
w - a

(%o4) - -----------------
4 2 2 4

w + 2 a w + a

You can now tell Maxima to forget that assumption.

(%i5) (forget(a > 0), facts() );
(%o5) []

1.8.10 Numerical Integration and Evaluation: float, bfloat, and quad qags

Let’s try a harder integral, this time a definite integral which is expressed by Maxima in terms of a “special function”.

(%i1) is : integrate( exp(xˆ3),x,1,2 );
1 1

(sqrt(3) %i - 1) (gamma_incomplete(-, - 8) - gamma_incomplete(-, - 1))
3 3

(%o1) ----------------------------------------------------------------------
6

(%i2) float(is);
(%o2) 0.16666666666667 (- 719.2849028287006 %i
- 1.0 (0.66608190774162 - 3.486369946257051 %i) - 412.6003937374765)
(1.732050807568877 %i - 1.0)

(%i3) expand(%);
(%o3) 275.5109837634787
(%i4) ival:%;
(%o4) 275.5109837634787

You can look up the gamma_incomplete(a,z) definition in the Maxima manual, where you will find a reference to
the incomplete upper gamma function A&S 6.5.2, which refers to Eq. 6.5.2 in Handbook of Mathematical Functions,
Edited by Milton Abramowitz and Irene A. Stegun, Dover Publications, N.Y., 1965.

We know that since we are integrating along the real x axis from 1 to 2, our integrand in (%i1) is real, so that the
numerical value of this integral must be a real number. In using float, we see that the real answer will be obtained by
cancellation of imaginary pieces, so we may have some roundoff errors.
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Let’s check the accuracy of using float here by comparing that answer to the answer returned by the use of bfloat together
with fpprec set to 20.

(%i5) bfloat(is),fpprec:20;
(%o5) 1.6666666666666666667b-1 (1.7320508075688772935b0 %i - 1.0b0)
(- 1.0b0 (6.6608190774161802181b-1 - 3.4863699462570511861b0 %i)
- 7.1928490282826659929b2 %i - 4.1260039373722578387b2)

(%i6) expand(%),fpprec:20;
(%o6) 5.7824115865893569814b-19 %i + 2.7551098376331160126b2
(%i7) tval20: realpart(%);
(%o7) 2.7551098376331160126b2
(%i8) abs(ival - tval20);
(%o8) 1.670912297413452b-10

We see that the numerical answer found using float only has twelve digit accuracy. Let’s look at the numerical values of
the gamma_incomplete functions involved here as returned by float:

(%i9) float(gamma_incomplete(1/3,-8));
(%o9) - 719.2849028287006 %i - 412.6003937374765
(%i10) float(gamma_incomplete(1/3,-1));
(%o10) 0.66608190774162 - 3.486369946257051 %i

Finally, let’s use a pure numerical integration routine , quad_qags, which returns a list consisting of
[answer, est-error, num-integrand-eval, error-code].

(%i11) quad_qags(exp(xˆ3),x,1,2);
(%o11) [275.5109837633116, 3.2305615936931465E-7, 21, 0]
(%i12) abs(first(%) - tval20);
(%o12) 2.842170943040401b-14

and we see that the use of quad_qags for a numerical value was more accurate than the comination of integrate and
float.

1.8.11 Taylor and Laurent Series Expansions with taylor

When computing exact symbolic answers is intractable, one can often resort to series approximations to get approxi-
mate symbolic results. Maxima has an excellent Taylor series program. As an example, we can get truncated series
representations for sin(x) and cos(x) as follows. According to the Maxima manual

taylor (expr, x, a, n) expands the expression expr in a truncated Taylor or Laurent series in the variable x
around the point x = a, containing terms through (x− a)n.

Here we expand around the point x = 0.

(%i1) taylor( sin(x),x,0,5 );
3 5

x x
(%o1)/T/ x - -- + --- + . . .

6 120
(%i2) taylor( cos(x),x,0,5);

2 4
x x

(%o2)/T/ 1 - -- + -- + . . .
2 24

A truncated series in denoted by the ”/T/” symbol next to the line label and also by the trailing dots. Maxima retains
certain information about such expansions, such as the “quality” of the approximation, so when several series expansions
are combined, no terms are computed beyond the degree of the approximation. In our example, our starting expansions
are only good through terms of order x5, so if we multiply the expansions, any terms smaller (in order of magnitude) than
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x5 are neglected.

Here we use %th(n), which refers to the n’th to last line.

(%i3) % * %th(2);
3 5

2 x 2 x
(%o3)/T/ x - ---- + ---- + . . .

3 15

The name “taylor” is only an artifact of history, since the Maxima function taylor can handle expansions of functions
with poles and branch points and automatically generates Laurent series when appropriate as shown here:

(%i4) taylor( 1/ (cos(x) - sec(x))ˆ3, x,0,5 );
2 4

1 1 11 347 6767 x 15377 x
(%o4)/T/ - -- + ---- + ------ - ----- - ------- - -------- + . . .

6 4 2 15120 604800 7983360
x 2 x 120 x
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1.8.12 Solving Equations: solve, allroots, realroots, and find root

The solve function is described in the Maxima manual

Function: solve (expr, x)
Function: solve (expr)
Function: solve ([eqn_1, ..., eqn_n], [x_1, ..., x_n])
Solves the algebraic equation expr for the variable x and returns a list of solution equations for x. If expr
is not an equation, the equation expr = 0 is assumed in its place. x may be a function (e.g. f(x)), or other
non-atomic expression except a sum or product. x may be omitted if expr contains only one variable. expr
may be a rational expression, and may contain trigonometric functions, exponentials, etc.

Example 1

Here we look for solutions of the equation x6 = 1 or x6 − 1 = 0. Once we have found candidate solutions, we check
them one at a time.

(%i1) eqn : xˆ6 - 1 = 0$
(%i2) solns : solve(eqn);

sqrt(3) %i + 1 sqrt(3) %i - 1 sqrt(3) %i + 1
(%o2) [x = --------------, x = --------------, x = - 1, x = - --------------,

2 2 2
sqrt(3) %i - 1

x = - --------------, x = 1]
2

(%i3) for i thru length(solns) do
disp ( ev( eqn, solns[i], ratsimp ) )$

0 = 0
0 = 0
0 = 0
0 = 0
0 = 0
0 = 0

One often uses solve in the hope of finding useful symbolic expressions for roots of an equation. It may still be illuminat-
ing to look at the numerical values of the roots returned by the polynomial root finder allroots, which we do for the above
example:

(%i4) fpprintprec:8$
(%i5) nsolns : allroots(xˆ6 - 1);
(%o5) [x = 0.866025 %i + 0.5, x = 0.5 - 0.866025 %i, x = 0.866025 %i - 0.5,

x = - 0.866025 %i - 0.5, x = 1.0, x = - 1.0]
(%i6) for i thru length(nsolns) do

disp ( ev( xˆ6 - 1, nsolns[i],expand ))$
- 4.4408921E-16 %i - 5.55111512E-16
4.4408921E-16 %i - 5.55111512E-16
4.4408921E-16 %i - 5.55111512E-16

- 4.4408921E-16 %i - 5.55111512E-16
0.0
0.0

The numerical roots found by allroots satisfy the starting equation to within floating point errors.
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Example 2

You can use solve to look for solutions to a set of equations. Here we find four sets of solutions satisfying two simultaneous
equations, and we check the solutions.

(%i1) fpprintprec:8$
(%i2) eqns : [4*xˆ2 - yˆ2 - 12 = 0, x*y - x - 2 = 0]$
(%i3) solns : solve(eqns,[x,y]);
(%o3) [[x = 2, y = 2], [x = 0.520259 %i - 0.133124,
y = 0.0767838 - 3.6080032 %i], [x = - 0.520259 %i - 0.133124,
y = 3.6080032 %i + 0.0767838], [x = - 1.7337518, y = - 0.153568]]
(%i4) eqns,solns[1],ratsimp;
(%o4) [0 = 0, 0 = 0]
(%i5) for i:2 thru 4 do

disp ( ev (eqns, solns[i],expand) )$
[1.77635684E-15 - 6.66133815E-16 %i = 0, - 2.22044605E-16 = 0]
[6.66133815E-16 %i + 1.77635684E-15 = 0, - 2.22044605E-16 = 0]

[- 1.13954405E-6 = 0, - 9.38499825E-8 = 0]
(%i6) solns[4];
(%o6) [x = - 1.7337518, y = - 0.153568]

We only use ratsimp on the first (integral) solution, which is an exact solution. For the numerical solutions, we use
instead expand. The second and third (numerical) solutions have an accuracy of about 15 digits. The fourth (numerical)
solution has about five digit accuracy.

Example 3: realroots

A Maxima user asked (on the Mailing List) how to find the value of r implied by the equation

275.0 * exp(-r) + 275.0 * exp(-2*r) + 275.0 * exp(-3*r)
+ 275.0 * exp(-4*r) + 5275.0 * exp(-5*r) = 4750.0

Straightforward use of solve does not return an explicit solution. Here is an approach suggested by Maxima developer
Stavros Macrakis.

First use rat to convert approximate numbers (275.0) to exact (275), replace exp(r) by z, and then try solve.

(%i1) fpprintprec:8$
(%i2) eqn : 275.0 * exp(-r) + 275.0 * exp(-2*r) + 275.0 * exp(-3*r)

+ 275.0 * exp(-4*r) + 5275.0 * exp(-5*r) - 4750.0 = 0$
(%i3) rat(eqn),ratprint:false;
(%o3)/R/

r 5 r 4 r 3 r 2 r
4750 (%e ) - 275 (%e ) - 275 (%e ) - 275 (%e ) - 275 %e - 5275

- ------------------------------------------------------------------- = 0
r 5

(%e )
(%i4) zeqn : ratsubst(z,exp(r),%);

5 4 3 2
4750 z - 275 z - 275 z - 275 z - 275 z - 5275

(%o4) - ------------------------------------------------- = 0
5

z
(%i5) soln : solve(zeqn);

5 4 3 2
(%o5) [0 = 190 z - 11 z - 11 z - 11 z - 11 z - 211]

We see that solve returned a list containing one element: a simplified form of our polynomial (in z) equation, but was
unable to return an algebraic solution. We must then consider an approximate solution, and suppose we are only interested
in real roots z, in which case we can use realroots.



39

(%i6) rr : realroots(soln[1]);
35805935

(%o6) [z = --------]
33554432

(%i7) zeqn, rr, ratsimp;
1011365300358912057317883590855138

(%o7) - ------------------------------------- = 0
2354155174380926220896751357249338375

(%i8) %, numer;
(%o8) - 4.29608596E-4 = 0

We see that the returned real root is not very accurate, so we override the default value of rootsepsilon (which is one part
in 107)

(%i9) rr : realroots( soln[1],1.0e-16);
38446329182573765

(%o9) [z = -----------------]
36028797018963968

(%i10) zeqn, rr, numer;
(%o10) - 6.5731657E-13 = 0

If z = er, then ln(z) = ln(er) = r. We then get an accurate numerical answer for r via

(%i11) rval : log(rhs(rr[1])),numer;
(%o11) 0.0649447
(%i12) eqn, r = rval;
(%o12) - 1.70530257E-12 = 0

Example 4: Using find root

Let’s go thru the first manual example for find root, which has the syntax

find_root ( expr, var, a, b )

which assumes expr is a function of var, and Maxima is to look for a numerical root of the equation expr = 0 in the
range a <= var <= b.

Here we find the value of x such that sin(x) - x/2 = 0. The function solve cannot cope with this type of nonlinear
problem.

(%i1) e : sin(x) - x/2;
x

(%o1) sin(x) - -
2

(%i2) solve(e);
(%o2) [x = 2 sin(x)]
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Let’s use plot2d for a quick look at this expression for positive x.

(%i3) plot2d(e,[x,0,2*%pi],
[style,[lines,5]],[ylabel," "],
[xlabel," sin(x) - x/2 " ],
[gnuplot_preamble,"set zeroaxis lw 2"])$

which produces the plot:
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 sin(x) - x/2 

Figure 1: sin(x)− x/2

We see from the plot that there is a root in the range 0 < x < %pi . We can now ask find root to locate this root
numerically.

(%i4) xr : find_root(e,x,0.1,%pi);
(%o4) 1.895494267033981
(%i5) e, x = xr;
(%o5) 0.0

Example 5: Helping solve Find the Exact Roots

Let’s find the values of x which satisfy the equation

a (1− sin(x)) = 2bcos(x) (1.1)

As this equation stands, solve is not able to make progress.

(%i1) eqn : a*(1-sin(x)) - 2*b*cos(x) = 0$
(%i2) solve ( eqn, x );

2 b cos(x) - a
(%o2) [sin(x) = - --------------]

a
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There are several ways one can help out solve to get the solutions we want.

Method 1 is to convert the trig functions to their complex exponential forms using exponentialize.

(%i3) eqn, exponentialize;
%i x - %i x

%i (%e - %e ) %i x - %i x
(%o3) a (---------------------- + 1) - b (%e + %e ) = 0

2
(%i4) solns : solve ( %, x );

2 %i b a
(%o4) [x = - %i log(---------- + ----------),

2 b - %i a 2 b - %i a
a 2 %i b

x = - %i log(---------- - ----------)]
2 b - %i a 2 b - %i a

(%i5) solns : solns, rectform, ratsimp;
2 2

%pi 4 b - a 4 a b
(%o5) [x = ---, x = - atan2(---------, ---------)]

2 2 2 2 2
4 b + a 4 b + a

(%i6) eqn, solns[1], ratsimp;
(%o6) 0 = 0
(%i7) eqn, solns[2], ratsimp;
(%o7) 0 = 0
(%i8) x2 : atan2(aˆ2 - 4*bˆ2, 4*a*b)$
(%i9) eqn, x = x2, ratsimp;

4 2 2 4 2 3
a sqrt(16 b + 8 a b + a ) - 4 a b - a

(%o9) - ------------------------------------------ = 0
2 2

4 b + a
(%i10) scanmap( ’factor, % );
(%o10) 0 = 0

Method 2 is to enlarge the system of equations to include the trig identity

cos2x + sin2x = 1 (1.2)

which one would hope would be used creatively by solve to find the solutions of our equation.

Let’s replace cos(x) by the symbol c and likewise replace sin(x) by the symbol s, and start with a pair of
equations.

(%i1) eqns : [a*(1-s) - 2*b*c = 0, cˆ2 + sˆ2 - 1 = 0]$
(%i2) solns : solve ( eqns, [s,c] );

2 2
4 b - a 4 a b

(%o2) [[s = 1, c = 0], [s = - ---------, c = ---------]]
2 2 2 2

4 b + a 4 b + a
(%i3) eqns, solns[1], ratsimp;
(%o3) [0 = 0, 0 = 0]
(%i4) x1soln : solve ( sin(x) = 1, x );
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o4) [x = ---]

2
(%i5) eqn, x1soln, ratsimp;
(%o5) 0 = 0
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(%i6) eqns, solns[2], ratsimp;
(%o6) [0 = 0, 0 = 0]
(%i7) tan(x) = s/c, solns[2], ratsimp;
(%o7) tan(x) = -(4*bˆ2-aˆ2)/(4*a*b)
(%i8) x2soln : solve (%, x), ratsimp;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

2 2
4 b - a

(%o8) [x = - atan(---------)]
4 a b

Bearing in mind that arctan(−x) = −arctan(x), we get the same set of solutions using method 2.

1.8.13 Non-Rational Simplification: radcan, logcontract, rootscontract, and radexpand

The wxMaxima interface has the Simplify(r) button allows uses the radcan function on a selection. The “r” stands for
radcan although you could just as well think ”radical”, since it is equivalent to the wxMaxima menu choice Simplify,
Simplify Radicals. You can also think of the work radcan as a mnenomic constructed from the capitalised letters in
“RADical CANcellation”, but this does not hint at the full power of this function.

The manual asserts that radcan is useful in simplifying expressions containing logs, exponentials, and radicals. Here is
an expression containing exponentials which radcan simplifies.

(%i1) expr : (exp(x)-1)/(exp(x/2)+1);
x

%e - 1
(%o1) ---------

x/2
%e + 1

(%i2) expr, ratsimp;
x

%e - 1
(%o2) ---------

x/2
%e + 1

(%i3) expr, radcan;
x/2

(%o3) %e - 1

We see that radcan is able to simplify this expression containing exponentials, whereas ratsimp cannot.

Here is some Xmaxima work showing the differences between the use of ratsimp, radcan, and logcontract on an
expression which is a sum of logs.

(%i4) logexpr : log ( (x+2)*(x-2) ) + log(x);
(%o4) log((x - 2) (x + 2)) + log(x)
(%i5) logexpr, ratsimp;

2
(%o5) log(x - 4) + log(x)
(%i6) logexpr, fullratsimp;

2
(%o6) log(x - 4) + log(x)
(%i7) logexpr, radcan;
(%o7) log(x + 2) + log(x) + log(x - 2)
(%i8) %, logcontract;

3
(%o8) log(x - 4 x)
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(%i9) logexpr, logcontract;
3

(%o9) log(x - 4 x)

We see that use of logcontract provided the same quality of simplification as the two step route radcan followed by
logcontract.

Here we expolore the use of radcan and rootscontract to simplify square roots:

(%i10) sqrt(2)*sqrt(3), radcan;
(%o10) sqrt(2) sqrt(3)
(%i11) sqrt(2)*sqrt(3), rootscontract;
(%o11) sqrt(6)
(%i12) sqrt(6)*sqrt(3), radcan;
(%o12) 3 sqrt(2)
(%i13) sqrt(6)*sqrt(3), rootscontract;
(%o13) 3 sqrt(2)
(%i14) sqrt(6)/sqrt(3), radcan;
(%o14) sqrt(2)
(%i15) sqrt(6)/sqrt(3), rootscontract;
(%o15) sqrt(2)

radexpand

The Maxima manual describes the option variable radexpand which can have the values true (the default), all, or false.
The setting of radexpand controls the automatic simplifications of radicals.

In the default case (radexpand set to true), sqrt(xˆ2) simplifies to abs(x). This is because, by default, all symbols,
in the absence of special declarations, are considered to represent real numbers. You can declare that all symbols should
(unless declared otherwise) be considered to represent complex numbers using the domain flag, which has the default
value real.

(%i16) sqrt(xˆ2);
(%o16) abs(x)
(%i17) domain:complex$
(%i18) sqrt(xˆ2);

2
(%o18) sqrt(x )
(%i19) domain:real$
(%i20) sqrt(xˆ2);
(%o20) abs(x)

Next we show the simplifications which occur to the expression sqrt(16*xˆ2) for the three possible values of radex-
pand.

(%i21) radexpand;
(%o21) true
(%i22) sqrt(16*xˆ2);
(%o22) 4 abs(x)
(%i23) radexpand:all$
(%i24) sqrt(16*xˆ2);
(%o24) 4 x
(%i25) radexpand:false$
(%i26) sqrt(16*xˆ2);

2
(%o26) sqrt(16 x )
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1.8.14 Trigonometric Simplification: trigsimp, trigexpand, trigreduce, and trigrat

Here are simple examples of the important trig simplification functions trigsimp, trigexpand, trigreduce, and trigrat.

trigsimp converts trig functions to sines and cosines and also attempts to use the identiy cos(x)2 + sin(x)2 = 1.

(%i1) trigsimp(tan(x));
sin(x)

(%o1) ------
cos(x)

(%i2) sin(x+y), trigexpand;
(%o2) cos(x) sin(y) + sin(x) cos(y)
(%i3) x+3*cos(x)ˆ2 - sin(x)ˆ2, trigreduce;

cos(2 x) cos(2 x) 1 1
(%o3) -------- + 3 (-------- + -) + x - -

2 2 2 2
(%i4) trigrat ( sin(3*a)/sin(a+%pi/3) );
(%o4) sqrt(3) sin(2 a) + cos(2 a) - 1

The manual entry for trigsimp advises that trigreduce, ratsimp, and radcan may be able to further simplify the result.
The author has the following function defined in mbe1util.mac, which is loaded in during startup.

rtt(e) := radcan ( trigrat ( trigsimp (e)))$

This function can be equivalent to trigreduce if only sines and cosines are present, but otherwise may return different
forms, as we show here, comparing the opposide effects of trigexpand and trigreduce. Note that trigexpand expands
trig functions of sums of angles and/or trig functions of multiple angles (like 2*x at the “top level”, and the user should
read the manual description to see options available.

(%i5) e: sin(x+y), trigexpand;
(%o5) cos(x) sin(y) + sin(x) cos(y)
(%i6) e, trigreduce;
(%o6) sin(y + x)
(%i7) rtt (e);
(%o7) sin(y + x)
(%i8) e : tan(x+y), trigexpand;

tan(y) + tan(x)
(%o8) -----------------

1 - tan(x) tan(y)
(%i9) e, trigreduce;

tan(y) tan(x)
(%o9) - ----------------- - -----------------

tan(x) tan(y) - 1 tan(x) tan(y) - 1
(%i10) %, ratsimp;

tan(y) + tan(x)
(%o10) - -----------------

tan(x) tan(y) - 1
(%i11) rtt (e);

sin(y + x)
(%o11) ----------

cos(y + x)
(%i12) trigsimp( tan(x+y) );

sin(y + x)
(%o12) ----------

cos(y + x)
(%i13) e : cosh(x + y), trigexpand;
(%o13) sinh(x) sinh(y) + cosh(x) cosh(y)
(%i14) e, trigreduce;
(%o14) cosh(y + x)



45

(%i15) rtt (e);
- y - x 2 y + 2 x

%e (%e + 1)
(%o15) ---------------------------

2
(%i16) expand(%);

y + x - y - x
%e %e

(%o16) ------- + ---------
2 2

In the following, note the difference when using trigexpand(expr) compared with ev ( expr, trigexpand ).
This difference is due to the fact that trigexpand has both the evfun and the evflag properties.

(%i1) e1 : trigexpand( tan(2*x + y) );
tan(y) + tan(2 x)

(%o1) -------------------
1 - tan(2 x) tan(y)

(%i2) e2 : tan (2*x + y), trigexpand;
2 tan(x)

tan(y) + -----------
2

1 - tan (x)
(%o2) --------------------

2 tan(x) tan(y)
1 - ---------------

2
1 - tan (x)

(%i3) rtt (e1);
sin(y + 2 x)

(%o3) ------------
cos(y + 2 x)

(%i4) rtt (e2);
sin(y + 2 x)

(%o4) ------------
cos(y + 2 x)

(%i5) trigsimp (e1);
cos(2 x) sin(y) + sin(2 x) cos(y)

(%o5) - ---------------------------------
sin(2 x) sin(y) - cos(2 x) cos(y)

(%i6) trigsimp (e2);
2

(2 cos (x) - 1) sin(y) + 2 cos(x) sin(x) cos(y)
(%o6) - -----------------------------------------------

2
2 cos(x) sin(x) sin(y) + (1 - 2 cos (x)) cos(y)
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1.8.15 Complex Expressions: rectform, demoivre, realpart, imagpart, and exponentialize

Sec. 6.2 of the Maxima manual has the introduction

A complex expression is specified in Maxima by adding the real part of the expression to %i times the imag-
inary part. Thus the roots of the equation xˆ2 - 4*x + 13 = 0 are 2 + 3*%i and 2 - 3*%i. Note that
simplification of products of complex expressions can be effected by expanding the product. Simplification
of quotients, roots, and other functions of complex expressions can usually be accomplished by using the
realpart, imagpart, rectform, polarform, abs, carg functions.

Here is a brief look at some of these functions, starting with exponentialize.

(%i1) cform : [cos(x),sin(x),cosh(x)], exponentialize;
%i x - %i x %i x - %i x x - x

%e + %e %i (%e - %e ) %e + %e
(%o1) [-----------------, - ----------------------, -----------]

2 2 2
(%i2) cform, demoivre;

x - x
%e + %e

(%o2) [cos(x), sin(x), -----------]
2

(%i3) cform, rectform;
x - x

%e + %e
(%o3) [cos(x), sin(x), -----------]

2
(%i4) realpart ( cform );

x - x
%e + %e

(%o4) [cos(x), sin(x), -----------]
2

(%i5) imagpart ( cform );
(%o5) [0, 0, 0]

1.8.16 Are Two Expressions Numerically Equivalent? zeroequiv

The function zeroequiv( expr, var ) uses a series of randomly chosen values of the variable var to test if expr is equiva-
lent to zero. Although there are cases where dontknow is returned (see the manual cautions), this function can be useful
if you arrange that expr is the difference of two other expressions which you suspect are numerically equivalent (or not).

As a pedagogical example consider showing that

cos2(x− 1) =
1
2

(sin(2) sin(2 x) + cos(2) cos(2x) + 1) (1.3)

is true. Although it is not difficult to show the equivalence using the standard Maxima tools (see Sec. 10.3.6 in Ch.10),
we use here zeroequiv.

(%i1) e1:cos(x-1)ˆ2;
2

(%o1) cos (x - 1)
(%i2) e2 : (sin(2)*sin(2*x)+cos(2)*cos(2*x)+1)/2;

sin(2) sin(2 x) + cos(2) cos(2 x) + 1
(%o2) -------------------------------------

2
(%i3) zeroequiv ( e1-e2, x );
(%o3) true

An alternative (and complementary) approach is to plot both expressions e1 and e2 on the same plot.
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1.9 User Defined Maxima Functions: define, fundef, block, and local

A Maxima function can be defined using the := operator. The left side of the function definition should be the name
of the function followed by comma separated formal parameters enclosed in parentheses. The right side of the Maxima
function definition is the “function body”. When a Maxima function is called, the formal parameters are bound to the call
arguments, any “free” variables in the function body take on the values that they have at the time of the function call, and
the function body is evaluated. You can define Maxima functions which are recursive to an “arbitrary” depth (of course
there are always practical limits due to memory, speed,...). After a Maxima function is defined, its name is added to the
Maxima list functions.

Problems may sometimes arise when passing to a Maxima function (as one of the calling arguments) an expression which
contains a variable with the same name as a formal parameter used in the function body (name conflicts).

1.9.1 A Function Which Takes a Derivative

In this section we discuss a question sent in to the Maxima Mailing List (which we paraphrase).

I want to make the derivative of a function a function itself.
Naively, I tried the following.
First define a Maxima function f(x) as a simple polynomial.
Next define a second Maxima function fp(x) ("f-prime")
which will take the first derivative of f(x).

Then try to use fp(x) to get the derivative of f at x =1.

This did not work, as shown here:
------------------------------------------------
(%i1) f(x):= -2*xˆ3 + 3*xˆ2 + 12*x - 13$
(%i2) fp(x):= diff(f(x),x)$
(%i3) fp(1);
diff: second argument must be a variable; found 1
#0: fp(x=1)
-- an error. To debug this try debugmode(true);

---------------------------------------------
What can I do?
Thanks

The error message returned by Maxima in response to input %i3 means that Maxima determined that the job requested
was to return the result of the operation diff( f(1), 1 ). In other words, “variable substitution” occurred before
differentiation, whereas, what is wanted is first differentiation, and then variable substitution.

Let’s pick a simpler function, and compare three ways to try to get this job done.

(%i1) f(y) := yˆ3;
3

(%o1) f(y) := y
(%i2) f(z);

3
(%o2) z
(%i3) f1(x) := diff ( f(x), x);
(%o3) f1(x) := diff(f(x), x)
(%i4) f2(x) := ’’(diff ( f(x), x));

2
(%o4) f2(x) := 3 x
(%i5) define ( f3(x), diff ( f(x), x) );

2
(%o5) f3(x) := 3 x
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(%i6) [f1(z), f2(z), f3(z) ];
2 2 2

(%o6) [3 z , 3 z , 3 z ]
(%i7) [f1(1), f2(1), f3(1) ];
diff: second argument must be a variable; found 1
#0: f1(x=1)
-- an error. To debug this try debugmode(true);

(%i8) [f2(1), f3(1)];
(%o8) [3, 3]

As long as we request the derivative of f(z), where z is treated as an undefined variable (ie., z has not been bound to
a number, in which case numberp(z) will return false), all three definitions give the correct result. But when we
request the derivative at a specific numerical point, only the last two methods give the correct result without errors, and
the first (”delayed assignment operator method”) does not work.

Note that the “quote-quote method” requires two single quotes, and we need to surround the whole expression with
parentheses: ’’(...). This “quote-quote” method is available only in interactive use, and will not work inside another
function, as you can verify. The conventional wisdom denigrates the quote-quote method and advises use of the define
method.

The define function method can not only be used interactively, but also when one needs to define a function like this
inside another Maxima function, as in

(%i9) dplay(g,a,b) := block ( [val1,val2 ],
local (dg),

define ( dg(y), diff (g(y), y)),
val1 : g(a) + dg(a),
val2 : g(b) + dg(b),
display (val1,val2),
val1 + val2)$

(%i10) g(x) := x;
(%o10) g(x) := x
(%i11) dplay(g,1,1);

val1 = 2

val2 = 2

(%o11) 4
(%i12) g(x) := xˆ2;

2
(%o12) g(x) := x
(%i13) dplay(g,1,2);

val1 = 3

val2 = 8

(%o13) 11
(%i14) dg(3);
(%o14) dg(3)

You can find the manual discussion of the quote-quote operator near the top of the index list where misc. symbols are
recorded. There you find the comment “Applied to the operator of an expression, quote-quote changes the operator from
a noun to a verb (if it is not already a verb).”

The use of local inside our Maxima function dplay prevents our definition of the Maxima function dg from leaking out
into the top level context and keeps the knowledge of dg inside dplay and any user defined Maxima functions which are
called by dplay, and inside any user defined Maxima functions which are called by those functions, etc...
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Maxima developer Stavros Macrakis has posted a good example which emphasizes the difference between the delayed
assignment operator := and the define function. This example uses Maxima’s print function.

(%i1) f1(x):=print (x)$
(%i2) define ( f2(x), print (x) )$
x

Notice that the delayed assignment definition for f1 did not result in the actual operation of print(x), whereas the define
definition of f2 resulted in the operation of print(x), as you can see on your screen after input %i2. Quoting from
Macrakis:

In the case of ’:=’, both arguments are unevaluated. This is the normal way function definitions work in
most programming languages.

In the case of ’define’, the second argument is evaluated normally [in the process of absorbing the defi-
nition], not unevaluated. This allows you to *calculate* a definition.

We can see the difference between f1 and f2 by using fundef, which returns what Maxima has accepted as a definition in
the two cases.

(%i3) fundef (f1);
(%o3) f1(x) := print(x)
(%i4) fundef (f2);
(%o4) f2(x) := x

Let’s now compare these definitions at runtime. f1 will print its argument to the screen, but f2 will not, since in the latter
case, all reference to Maxima’s print function has been lost.

(%i5) f1(5);
5
(%o5) 5
(%i6) f2(5);
(%o6) 5

Macrakis continues:

’define’ is useful for calculating function definitions which will later be applied to arguments. For exam-
ple, compare:

(%i7) define (f(x), optimize (horner (taylor (tanh(x),x,0,8),x)));
2 x (%1 (%1 (42 - 17 %1) - 105) + 315)

(%o7) f(x) := block([%1], %1 : x , ------------------------------------)
315

(%i8) f(0.1);
(%o8) 0.099667994603175
(%i9) g(x) := optimize (horner (taylor (tanh(x),x,0,8),x));
(%o9) g(x) := optimize(horner(taylor(tanh(x), x, 0, 8), x))
(%i10) g(0.1);
Variable of expansion cannot be a number: 0.1
#0: g(x=0.1)
-- an error. To debug this try debugmode(true);

g(.1) => ERROR (because it is trying to do taylor(tanh(.1),.1,0,8) ).



50

1.9.2 Lambda Expressions

Lambda notation is used to define unnamed “anonymous” Maxima functions. Lambda expressions allow you to define
a special purpose function which will not be used in other contexts (since the function has no name, it cannot be used later).

The general syntax is
lambda ( arglist, expr1, expr2, ...,exprn )
where arglist has the form [x1, x2, ...,xm] and provide formal parameters in terms of which the expr1, expr2,...
can be written, (use can also be made of %% to refer to the result of the previous expression exprj). When this function
is evaluated, unbound local variables x1,x2,... are created, and then expr1 through exprn are evaluated in turn.
The return value of this function is exprn.

(%i1) functions;
(%o1) [qplot(exprlist, prange, [hvrange]), rtt(e), ts(e, v), to_atan(e, y, x),
to_atan2(e, y, x), totan(e, v), totan2(e, v), mstate(), mattrib(), mclean(),
fll(x)]
(%i2) f : lambda([x,y],xˆ2 + yˆ3);

2 3
(%o2) lambda([x, y], x + y )
(%i3) f (1,1);
(%o3) 2
(%i4) f(2,a);

3
(%o4) a + 4
(%i5) apply ( f, [1,2] );
(%o5) 9
(%i6) functions;
(%o6) [qplot(exprlist, prange, [hvrange]), rtt(e), ts(e, v), to_atan(e, y, x),
to_atan2(e, y, x), totan(e, v), totan2(e, v), mstate(), mattrib(), mclean(),
fll(x)]
(%i7) map ( ’sin, [1,2,3] );
(%o7) [sin(1), sin(2), sin(3)]
(%i8) map ( lambda([x],xˆ2 + sin(x) ),[1,2,3] );
(%o8) [sin(1) + 1, sin(2) + 4, sin(3) + 9]
(%i9) lambda ([x],x+1 )(3);
(%o9) 4

1.9.3 Recursive Functions; factorial, and trace

Here is an example which does the same jub as the Maxima function factorial. We turn on trace to watch the recursion
process.

(%i1) myfac(n) := if n = 0 then 1 else n*myfac(n-1)$
(%i2) map (’myfac, [0,1,2,3,4] );
(%o2) [1, 1, 2, 6, 24]
(%i3) [0!,1!,2!,3!,4!];
(%o3) [1, 1, 2, 6, 24]
(%i4) map (’factorial, [0,1,2,3,4] );
(%o4) [1, 1, 2, 6, 24]
(%i5) trace (myfac);
(%o5) [myfac]
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(%i6) myfac(4);
1 Enter myfac [4]
2 Enter myfac [3]
3 Enter myfac [2]
4 Enter myfac [1]
5 Enter myfac [0]
5 Exit myfac 1

4 Exit myfac 1
3 Exit myfac 2

2 Exit myfac 6
1 Exit myfac 24
(%o6) 24
(%i7) untrace(myfac);
(%o7) [myfac]
(%i8) [myfac(4),factorial(4),4!];
(%o8) [24, 24, 24]

Legendre Polynomial

As a second example of a recursive definition of a Maxima function, one can define the Legendre polynomial Pn(x) via
a recursive relation that relates three different n values (for a given x). We can check our design by using the Maxima
function legendre p (n,x), which is part of the orthogonal polynomial package orthopoly.lisp.

(%i1) p(n,x) := if n=0 then 1 elseif n=1 then x else
expand( ( (2*n-1)/n )*x*p(n-1,x) - ((n-1)/n)*p(n-2,x) )$

(%i2) [p(0,x),p(1,x),p(2,x),p(3,x)];
2 3

3 x 1 5 x 3 x
(%o2) [1, x, ---- - -, ---- - ---]

2 2 2 2
(%i3) map ( lambda([nn], p (nn,x) ),[0,1,2] );

2
3 x 1

(%o3) [1, x, ---- - -]
2 2

(%i4) map ( lambda([nn], expand (legendre_p (nn,x))),[0,1,2] );
2

3 x 1
(%o4) [1, x, ---- - -]

2 2

1.9.4 Non-Recursive Subscripted Functions (Hashed Arrays)

“Undeclared arrays” are called “hashed arrays” and they grow dynamically as more “array elements” are assigned values
or otherwise defined. Here is a non-recursive simple subscripted function having one subscript k and one formal argument
x.

(%i1) f[k](x) := xˆk + 1;
k

(%o1) f (x) := x + 1
k

(%i2) arrays;
(%o2) [f]
(%i3) makelist ( f[nn](y),nn,0,3 );

2 3
(%o3) [2, y + 1, y + 1, y + 1]
(%i4) arrayinfo(f);
(%o4) [hashed, 1, [0], [1], [2], [3]]
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(%i5) map ( lambda ( [m], f[m](y) ), [0,1,2,3] );
2 3

(%o5) [2, y + 1, y + 1, y + 1]

Here is a example which uses Maxima’s anonymous lambda function to define a subscripted function which does the
same job as above.

(%i1) h[nn] := lambda ([xx], xxˆnn + 1);
nn

(%o1) h := lambda([xx], xx + 1)
nn

(%i2) arrays;
(%o2) [f, h]
(%i3) arrayinfo(h);
(%o3) [hashed, 1]
(%i4) h[2];

2
(%o4) lambda([xx], xx + 1)
(%i5) arrayinfo(h);
(%o5) [hashed, 1, [2]]
(%i6) h[2](y);

2
(%o6) y + 1
(%i7) map ( lambda ( [mm], h[mm](x) ),[0,1,2,3] );

2 3
(%o7) [2, x + 1, x + 1, x + 1]
(%i8) arrayinfo(h);
(%o8) [hashed, 1, [0], [1], [2], [3]]

1.9.5 Recursive Hashed Arrays and Memoizing

We again design a homemade factorial “function”, this time using a “hashed array” having one “index” n.

(%i1) arrays;
(%o1) []
(%i2) a[n] := n*a[n-1]$
(%i3) a[0] : 1$
(%i4) arrays;
(%o4) [a]
(%i5) arrayinfo(a);
(%o5) [hashed, 1, [0]]
(%i6) a[4];
(%o6) 24
(%i7) arrayinfo(a);
(%o7) [hashed, 1, [0], [1], [2], [3], [4]]
(%i8) a[n] := n/2$
(%i9) a[4];
(%o9) 24
(%i10) a[7];

7
(%o10) -

2
(%i11) arrayinfo(a);
(%o11) [hashed, 1, [0], [1], [2], [3], [4], [7]]

We see in the above example that elements 1 through 4 were computed when the call a[4] was first made. Once
the array elements have been computed, they are not recomputed, even though our definition changes. Note that after
(%i8) a[n] := n/2$, our interogation (%i9) a[4]; does not return our new definition, but the result of the
original calculation. If you compute a[50] using our first recursive factorial definition, all values a[1] through a[50]
are remembered. Computing a[51] then takes only one step.
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1.9.6 Recursive Subscripted Maxima Functions

We here use a “subscripted function” to achieve a recursive definition of a Legendre polynomial Pn(x). (The author
thanks Maxima developer Richard Fateman for this example.)

(%i1) ( p[n](x) := expand(((2*n-1)/n)*x*p [n-1](x) - ((n-1)/n)*p [n-2](x) ),
p [0](x) := 1, p [1](x) := x ) $

(%i2) makelist( p[m](x),m,0,4 );
2 3 4 2

3 x 1 5 x 3 x 35 x 15 x 3
(%o2) [1, x, ---- - -, ---- - ---, ----- - ----- + -]

2 2 2 2 8 4 8
(%i3) arrays;
(%o3) [p]
(%i4) arrayinfo(p);
(%o4) [hashed, 1, [0], [1], [2], [3], [4]]
(%i5) [p[3](x),p[3](y)];

3 3
5 x 3 x 5 y 3 y

(%o5) [---- - ---, ---- - ---]
2 2 2 2

(%i6) map ( lambda([nn], p[nn](x)),[0,1,2,3] );
2 3

3 x 1 5 x 3 x
(%o6) [1, x, ---- - -, ---- - ---]

2 2 2 2

Note that the input line %i1 has the structure
( job1, job2, job3 )$. This is similar to using one input line to bind values to several variables.

(%i7) ( a:1, b:2/3, c : cos(4/3) )$

If you want a visual reminder of the bindings, then the [job1,job2,..] notation is more appropriate.

(%i8) [ a:1, b:2/3, c : cos(4/3) ];
2 4

(%o8) [1, -, cos(-)]
3 3

1.9.7 Floating Point Numbers from a Maxima Function

Let’s use our recursive subscripted function definition of Pn(x) and compare the “exact” value with the default floating
point number when we look for P3(8/10). Let p3t hold the exact value 2/25. Maxima’s float function returns 0.08
from float(2/25), but internally Maxima holds a binary representation with has a small error when converted to a
decimal number. We can see the internally held decimal number by using ?print which accesses the lisp function print
from Maxima.

(%i1) ( p[n](x) := expand(((2*n-1)/n)*x*p [n-1](x) - ((n-1)/n)*p [n-2](x) ),
p [0](x) := 1, p [1](x) := x ) $

(%i2) p3 : p[3](x);
3

5 x 3 x
(%o2) ---- - ---

2 2
(%i3) p3t : p3, x = 8/10;

2
(%o3) --

25
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(%i4) float(p3t);
(%o4) 0.08
(%i5) ?print(%);
0.080000000000000002
(%o5) 0.08
(%i6) p3f : p3, x = 0.8;
(%o6) 0.08
(%i7) ?print(%);
0.080000000000000071
(%o7) 0.08
(%i8) abs (p3f - p3t);
(%o8) 6.9388939039072284E-17
(%i9) abs (%o4 - p3t);
(%o9) 0.0
(%i10) ?print(%);
0.0
(%o10) 0.0

The input line (%i6) p3f : p3, x = 0.8; replaces x by the floating point decimal number 0.8 (which has no
exact binary representation) and then uses binary arithmetic to perform the indicated additions, divisions, and multiplica-
tions, and then returns the closest decimal number corresponding to the final binary value. The result of all this hidden
work is a number with some ”floating point error”, which we calculate in line %i8.

We can come to the same conclusion in a slightly different way if we first define a Maxima function P3(x) using
p[3], say.

(%i11) define (P3(y), p[3](y))$
(%i12) P3(x);

3
5 x 3 x

(%o12) ---- - ---
2 2

(%i13) P3f1 : float (P3(8/10));
(%o13) 0.08
(%i14) ?print(%);
0.080000000000000002
(%o14) 0.08
(%i15) P3f2 : P3(0.8);
(%o15) 0.08
(%i16) ?print(%);
0.080000000000000071
(%o16) 0.08
(%i17) abs (P3f2 - P3f1);
(%o17) 6.9388939039072284E-17

We have used ?print(...) above to look at the approximate decimal digit equivalent of a binary representation held
internally by Maxima for a floating point number. We can sometimes learn new things by looking at Lisp translations of
input and output using ?print( Maxima stuff ), :lisp #$ Maxima stuff $, and :lisp $_. (See html
Help Manual: Click on Right Panel, Click on Contents, Sec. 3.1, Lisp and Maxima.)

(%i18) ?print(a + b)$
((MPLUS SIMP) $A $B)
(%i19) :lisp $_
((PRINT) ((MPLUS) $A $B))
(%i19) :lisp #$a+b$
((MPLUS SIMP) $A $B)
(%i19) ?print( a/b )$
((MTIMES SIMP) $A ((MEXPT SIMP) $B -1))
(%i20) :lisp $_
((PRINT) ((MQUOTIENT) $A $B))
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(%i20) :lisp #$a / b$
((MTIMES SIMP) $A ((MEXPT SIMP) $B -1))
(%i21) bfloat(2/25),fpprec:30;
(%o21) 8.0b-2
(%i22) ?print(%);
((BIGFLOAT SIMP 102) 3245185536584267267831560205762 -3)
(%o22) 8.0b-2
(%i23) p3, x = 8/10;

2
(%o23) --

25
(%i24) :lisp $_
(($EV) $P3 ((MEQUAL) $X ((MQUOTIENT) 8 10)))
(%i24) :lisp #$ p3, x=8/10 $
((RAT SIMP) 2 25)

1.10 Pulling Out Overall Factors from an Expression

If you have an expression of the form expr : u * ( fac*c1 + fac*c2 ), you can pull out the common factor
fac using fac * ratsimp ( expr / fac ) . Of course there may also be other methods which will work
for a particular expression.

Here is one example.

(%i1) e1 : x*(A*cos(d1)ˆ3 - A*cos(d2)ˆ3);
3 3

(%o1) x (cos (d1) A - cos (d2) A)
(%i2) A * ratsimp (e1/A);

3 3
(%o2) (cos (d1) - cos (d2)) x A
(%i3) rat (e1);

3 3
(%o3)/R/ (- cos (d2) + cos (d1)) x A

Here is a second example.

(%i4) e2 : x*(A*a*b1 - A*a*b2);
(%o4) x (a b1 A - a b2 A)
(%i5) A*a*ratsimp ( e2/( A*a));
(%o5) a (b1 - b2) x A
(%i6) factor(e2);
(%o6) - a (b2 - b1) x A
(%i7) rat(e2);
(%o7)/R/ (- a b2 + a b1) x A

We see above that rat does not pull out all the common factors in this second example. We also find that factor does not
simply pull out factors, but also rewrites the trig functions, when used with the first expression.

(%i8) factor (e1);
2 2

(%o8) - (cos(d2) - cos(d1)) (cos (d2) + cos(d1) cos(d2) + cos (d1)) x A

More discussion of display and simplification tools will appear in the upcoming new Chapter 4.
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1.11 Construction and Use of a Test Suite File

It is useful to construct a code test which can be run against new versions of your own personal code, as well as against
new versions of Maxima. We show here a very simple example of such a code test file and use.

The test of floating point division (below) is sensitive to the specific Lisp version used to compile the Maxima source code; different
Lisp versions may have slightly different floating point behaviors and digits of precision. Here are the contents of mytest.mac, which
contains the tests: addition of integers, multiplication of integers, integer division, and floating point division. The convention is to
include an input Maxima command followed by the expected Maxima answer (with the addition of a semicolon). The command
batch("mytest.mac",test) will then use Maxima’s test utilities. (You will find much useful and practical information in the
file README.how-to in the ...\maxima\5.19.0\tests folder.)

/* this is mytest.mac */
1 + 2;
3;
2 * 3;
6;
2/3;
2/3;
2.0/3;
0.66666666666666663;

Here is an example of running mytest.mac as a batch file in test mode using one dimensional output display.

(%i1) display2d:false$
(%i2) 2.0/3;
(%o2) 0.66666666666667
(%i3) ?print(%);
0.66666666666666663
(%o3) 0.66666666666667
(%i4) batch ("mytest.mac",test )$
Error log on #<output stream mytest.ERR>
********************** Problem 1 ***************
Input:
2+1
Result:
3
... Which was correct.

********************** Problem 2 ***************
Input:
2*3
Result:
6
... Which was correct.

********************** Problem 3 ***************
Input:
2/3
Result:
2/3
... Which was correct.

********************** Problem 4 ***************
Input:
2.0/3
Result:
0.66666666666667
... Which was correct.
4/4 tests passed.

Note that to avoid an error return on the floating point division test, we needed to use for
the answer the result returned by the Lisp print function, which is available from Maxima by
preceding the Lisp function name with a question mark (?).
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1.12 History of Maxima’s Development

From the Unix/Linux Maxima manual:

MACSYMA (Project MAC’s SYmbolic MAnipulation System) was developed by
the Mathlab group of the MIT Laboratory for Computer Science (originally known
as Project MAC), during the years 1969-1972. Their work was supported by grants
NSG 1323 of the National Aeronautics and Space Administration, N00014-77-C-
0641 of the Office of Naval Research, ET-78-C-02-4687 of the U.S. Department
of Energy, and F49620-79-C-020 of the U.S. Air Force. MACSYMA was further
modified for use under the UNIX operating system (for use on DEC VAX comput-
ers and Sun workstations), by Richard Fateman and colleagues at the University
of California at Berkeley; this version of MACSYMA is known as VAXIMA. The
present version stems from a re-working of the public domain MIT MACSYMA for
GNU Common Lisp, prepared by William Schelter, University of Texas at Austin
until his passing away in 2001. It contains numerous additions, extensions and
enhancements of the original.

From the first page of the Maxima html help manual:

Maxima is derived from the Macsyma system, developed at MIT in the years 1968
through 1982 as part of Project MAC. MIT turned over a copy of the Macsyma
source code to the Department of Energy in 1982; that version is now known as
DOE Macsyma. A copy of DOE Macsyma was maintained by Professor William
F. Schelter of the University of Texas from 1982 until his death in 2001. In 1998,
Schelter obtained permission from the Department of Energy to release the DOE
Macsyma source code under the GNU Public License, and in 2000 he initiated
the Maxima project at SourceForge to maintain and develop DOE Macsyma, now
called Maxima.

Maxima is now developed and maintained by the Maxima project at
http://maxima.sourceforge.net.
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LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see Ch. 1, Introduction to
Maxima for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the XMaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.
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2.1 Introduction to plot2d

You should be able to use any of our examples with either wxMaxima or Xmaxima. If you substitute the word wxplot2d
for the word plot2d you should get the same plot (using wxMaxima), but the plot will be drawn ”inline” in your notebook
rather than in a separate window.

To save a plot as an image file, using wxMaxima, right click on the inline plot, choose a name and a destination folder,
and click ok.

To save a plot drawn in a separate gnuplot window, right click the small icon in the upper left hand corner of the plot
window, choose Options, Copy to Clipboard, and then open any utility which can open a picture file and select Edit, Paste,
and then File, Save As. A standard utility which comes with Windows XP is the accessory Paint, which will work fine in
this role to save the clipboard image file. The freely available Infanview is a combination picture viewer and editor which
can also be used for this purpose. Saving the image via the gnuplot window route results in a larger image.

2.1.1 First Steps with plot2d

The syntax of plot2d is

plot2d( object-list, draw-parameter-list, other-option-lists).

The required object list (the first item) may be simply one object (not a list). The object types may be expressions (or
functions), all depending on the same draw parameter, discrete data objects, and parametric objects. If at least one of the
plot objects involves a draw parameter, say p, then a draw parameter range list of the form [p, pmin, pmax] should
follow the object list.

We start with the simplest version which only controls how much of the expression to plot, and does not try to control the
canvas width or height.

(%i1) plot2d ( sin(u), [u, 0, %pi/2] )$

which produces the plot:
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Figure 1: plot2d ( sin(u), [u, 0, %pi/2] )
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We see that plot2d has made the canvas width only as wide as the drawing width, and has made the canvas height only
as high as the drawing height. Now let’s add a horizontal range (canvas width) control list in the form [x,-0.2,1.8].
Notice the special role the symbol x plays here in plot2d.

(%i2) plot2d ( sin(u),[u,0,%pi/2],[x, -0.2, 1.8] )$

which produces
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Figure 2: plot2d ( sin(u), [u, 0, %pi/2], [x,-0.2,1.8] )

We see that we now have separate draw width and canvas width controls included. If we try to put the canvas width
control list before the draw width control list, we get an error message:

(%i3) plot2d(sin(u),[x,-0.2,1.8], [u,0,%pi/2] )$
Unknown plot option specified: u
-- an error. To debug this try debugmode(true);

However, if the expression variable happens to be x, the following command includes both draw width and canvas width
using separate x symbol control lists.

(%i4) plot2d ( sin(x), [x,0,%pi/2], [x,-0.2,1.8] )$

in which the first (required) x control list determines the drawing range, and the second (optional) x control list deter-
mines the canvas width.

Despite the special role the symbol y also plays in plot2d, the following command produces the same plot as above.

(%i5) plot2d ( sin(y), [y,0,%pi/2], [x,-0.2,1.8] )$
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The optional vertical canvas height control list uses the special symbol y, as shown in

(%i6) plot2d ( sin(u), [u,0,%pi/2], [x,-0.2,1.8], [y,-0.2, 1.2] )$

which produces
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Figure 3: plot2d ( sin(u), [u,0,%pi/2], [x,-0.2,1.8], [y,-0.2, 1.2] )

and the following alternatives produce exactly the same plot.

(%i7) plot2d ( sin(u), [u,0,%pi/2], [y,-0.2, 1.2], [x,-0.2,1.8] )$
(%i8) plot2d ( sin(x), [x,0,%pi/2], [x,-0.2,1.8], [y,-0.2, 1.2] )$
(%i9) plot2d ( sin(y), [y,0,%pi/2], [x,-0.2,1.8], [y,-0.2, 1.2] )$
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2.1.2 Parametric Plots

For orientation, we will draw a sine curve using the parametric plot object syntax and using a parametric parameter t.

(%i1) plot2d ( [parametric, t, sin(t), [t, 0, %pi] ] )$

which produces
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Figure 4: plot2d ( [parametric, t, sin(t), [t, 0, %pi] ] )

We see that

plot2d ( [ parametric, fx(t), fy(t), [ t, tmin, tmax ] ] )$

plots pairs of points ( fx (ta), fy(ta) ) for ta in the interval [tmin, tmax]. We have used no canvas
width control list [ x, xmin, xmax ] in this minimal version.

We next use a parametric plot to create a ”circle”, letting fx(t) = cos(t) and fy(t) = sin(t), and again adding
no canvas width or height control list.

(%i2) plot2d ([parametric, cos(t), sin(t), [t,-%pi,%pi]])$

This produces
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Figure 5: plot2d ( [ parametric, cos(t), sin(t), [t, -%pi, %pi] ] )
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Now let’s add a canvas width control list:

(%i3) plot2d ([parametric, cos(t), sin(t), [t, -%pi, %pi] ], [x,-4/3,4/3])$

which produces a ”rounder” circle:
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Figure 6: As above, but adding option [x, -4/3, 4/3]

The following versions produce precisely the same parametric plot:

(%i4) plot2d ([parametric, cos(x), sin(x), [x,-%pi,%pi]],
[x,-4/3,4/3])$

(%i5) plot2d ([parametric, cos(y), sin(y), [y,-%pi,%pi]],
[x,-4/3,4/3])$

An alternative method of producing a ”round” circle with a parametric plot is to make use of the gnuplot preamble
option in the form:

(%i6) plot2d ([parametric, cos(t), sin(t), [t,-%pi,%pi]],
[x,-1.2,1.2], [y,-1.2,1.2],

[gnuplot_preamble,"set size ratio 1;"])$

which produces
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Figure 7: Using ”set size ratio 1”
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We now make a plot consisting of two plot objects, the first being the explicit expression uˆ3, and the second being the
parametric plot object used above. We now need the syntax

plot2d ([plot-object-1, plot-object-2], possibly-required-draw-range-control,
other-option-lists )

Here is an example:

(%i7) plot2d (
[ uˆ3,

[parametric, cos(t), sin(t), [t,-%pi,%pi]]],
[u,-0.8,0.8], [x,-4/3,4/3] )$

in which [u,-0.8,0.8] is required to determine the drawing range of uˆ3, and this produces

-1

-0.5

 0

 0.5
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u

u3

cos(t), sin(t)

Figure 8: Combining an Explicit Expression with a Parametric Object

in which the horizontal axis label (by default) is u.
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We now add a few more options to make this combined plot look a little better (more about some of these later).

(%i8) plot2d (
[ [parametric, cos(t), sin(t), [t,-%pi,%pi]],uˆ3],

[u,-1,1], [x,-1.2,1.2] , [y,-1.2,1.2], [nticks,200],
[style, [lines,8]], [xlabel," "], [ylabel," "],
[box,false], [axes, false],
[legend,false],[gnuplot_preamble,"set size ratio 1;"])$

which produces

 

 

Figure 9: Drawing of u3 Over a Circle

The default value of nticks inside plot2d is 29, and using [nticks, 200] yields a much smoother parametric curve.

2.1.3 Line Width and Color Controls

Each element to be included in the plot can have a separate [ lines, nlw, nlc ] entry in the style option list, with nlw
determining the line width and nlc determining the line color. The default value of nlw is 1, a very thin weak line. The
use of nlw = 5 creates a strong wider line.

The default values of nlc consist of a rotating color scheme which starts with nlc = 1 (blue) and then progresses through
nlc = 7 (black) and then repeats.

You will see the colors with the associated values of nlc, using the following code which draws a set of vertical lines in
various colors. This code also shows an example of using discrete list objects, and the use of various options available.
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(%i1) plot2d(
[ [discrete,[[-4,-5],[-4,5]]], [discrete,[[-3,-5],[-3,5]]],

[discrete,[[-2,-5],[-2,5]]],[discrete,[[-1,-5],[-1,5]]],
[discrete,[[0,-5],[0,5]]],[discrete,[[1,-5],[1,5]]],
[discrete,[[2,-5],[2,5]]],[discrete,[[3,-5],[3,5]]] ],

[style, [lines,10,0],[lines,10,1],[lines,10,2],
[lines,10,3],[lines,10,4],[lines,10,5],[lines,10,6],
[lines,10,7]],

[x,-5,5], [y,-7,7],
[legend,"0","1","2","3","4","5","6","7"],
[xlabel," "], [ylabel," "],
[box,false],[axes,false],
[gnuplot_preamble, "set key bottom"] )$

Note that none of the objects being drawn are expressions or functions, so a draw parameter range list is not only not
necessary but would make no sense, and that the optional width control list is [x,-5,5].

The plot2d colors are: 0 = black, 1 = blue, 2 = red, 3 = violet, 4 = dark green, 5 = dark brown, 6 = green, 7 = black,
8 = blue, ...

We cannot use plot2d to produce an eps figure which will show the true plot2d colors since plot2d access to postscript
eps file colors are: 0 = light blue, 1 = blue, 2 = red, 3 = violet, 4 = black, 5 = yellow, 6 = green, 7 = light blue.

Thus the plot2d eps color set replaces dark green and dark brown with yellow and light blue (but with different numbers
too).

The following color bar plot, which was produced using qdraw (see Ch. 5) shows roughly the color bar chart you will
see using the usual interactive plot2d mode.

0
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3
4
5
6
7

Figure 10: plot2d Color Numbers
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For a simple example which uses color and line width controls, we plot the expressions uˆ2 and uˆ3 on the same canvas,
using lines in black and red colors, and add a height control list, which has the syntax [y, ymin, ymax].

(%i2) plot2d( [uˆ2,uˆ3],[u,0,2], [x, -.2, 2.5],
[style, [lines,5,7],[lines,5,2]],
[y,-1,4] )$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.

A bug (v. 5.18.1) in plot2d incorrectly treats numbers outside the vertical range which has been set with [y, -1, 4] as
if they were non-numeric objects.

The width and height control list parameters have been chosen to make it easy to see where the two curves cross for
positive u. If you move the cursor over the crossing point, you can read off the coordinates from the cursor position
printout in the lower left corner of the plot window.

This produces the plot:
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Figure 11: Black and Red Curves

This figure was included in this chapter by creating an eps file version (for inclusion in a latex file) using the code

(%i3) plot2d( [uˆ2, uˆ3],[u,0,2], [x, -.2, 2.5],
[style, [lines,10,4],[lines,10,2]],
[y,-1,4],[psfile, "ch2p11.eps"] )$

This eps file version creates the key legend u2 instead of the plot2d console window version which has uˆ2 as the legend.
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Quoted Symbol Prevents Serious Error

Since plot2d has a special role for the symbols x and y, used in the optional width and height control lists, there is the
danger that you might have assigned an expression or value to the symbol y (say) in your previous work, and since plot2d
evaluates its arguments, you will get an error. Here is an example:

(%i1) y : xˆ2$
(%i2) plot2d ( uˆ3, [u,-1,1], [x,-2,2], [y,-10,10])$

[xˆ2,-10,10] is not a plot option. Must be [symbol,..data]
-- an error. To debug this try debugmode(true);

(%i3) plot2d ( uˆ3, [u,-1,1], [x,-2,2], [’y,-10,10])$
(%i4) ’y;
(%o4) y
(%i5) y;

2
(%o5) x
(%i6) ev(y);

2
(%o6) x

By using the single quoted symbol ’y in the canvas height control list, you are preventing plot2d from ”evaluating” the
symbol and assigning the first slot of that list to the expression xˆ2. You can use the single quote ’ for the first slot of
both control lists:

(%i7) plot2d ( uˆ3, [u,-1,1], [’x,-2,2], [’y,-10,10])$

and the plot appears with no problems.

2.1.4 Discrete Data Plots: Point Size, Color, and Type Control

We have seen some simple parametric plot examples above. Here we make a more elaborate plot which includes discrete
data points which locate on the curve special places, with information on the key legend about those special points. We
force large size points with special color choices, using the maximum amount of control in the
[points, nsize, ncolor, ntype] style assignments.

(%i1) obj_list : [ [parametric, 2*cos(t),tˆ2,[t,0,2*%pi]],
[discrete,[[2,0]]],[discrete,[[0,(%pi/2)ˆ2]]],

[discrete,[[-2,%piˆ2]]],[discrete,[[0,(3*%pi/2)ˆ2]]] ]$
(%i2) style_list : [style, [lines,4,7],[points,5,1,1],[points,5,2,1],

[points,5,6,1],[points,5,3,1]]$
(%i3) legend_list : [legend, " ","t = 0","t = pi/2","t = pi",

" t = 3*pi/2"]$
(%i4) plot2d( obj_list, [x,-3,4], [y,-1,40],style_list,

[xlabel,"X = 2 cos( t ), Y = t ˆ2 "],
[ylabel, " "] ,legend_list )$
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This produces the plot:
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Figure 12: Parametric Plot with Discrete Points

The points style option has any of the following forms: [points], or [points, point_size], or
[points, point_size, point_color], or [points, point_size, point_color, point_type], in order
of increasing control. The default point size is given by the integer 1 which is small. The default point colors are the
same cyclic colors used by the lines style. The default point type is a cyclic order starting with 2 = open circle , then
continuing 3 = plus sign, 4 = diagonal crossed lines as capital X, 5 = star, 6 = filled square, 7 = open square, 8 = filled
triangle point up, 9 = open triangle point up, 10 = filled triangle point down, 11 = open triangle point down 12 =
filled diamond, 13 = open diamond = 0, 14 = filled circle, which is the same as 1. Thus if you use [points,5] you
will get good size points, and both the color and shape will cycle through the default order. If you use [points,5,2]
you will force a red color but the shape will depend on the contents and order of the rest of the objects list.

Next we combine a list of twelve (x,y) pairs of points with the key word discrete to form a discrete object type for plot2d,
and then look at the data points without adding the optional canvas width control.

(%i5) data_list : [discrete,
[ [1.1,-0.9],[1.45,-1],[1.56,0.3],[1.88,2],

[1.98,3.67],[2.32,2.6],[2.58,1.14],
[2.74,-1.5],[3,-0.8],[3.3,1.1],
[3.65,0.8],[3.72,-2.9] ] ]$

(%i6) plot2d( data_list, [style,[points]])$
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This produces the plot

-3

-2

-1

 0

 1

 2

 3

 4

 1  1.5  2  2.5  3  3.5  4

di
sc

re
te

 d
at

a

Figure 13: Twelve Data Points

We now combine the data points with a curve which is a possible fit to these data points over the draw parameter range
[u, 1, 4].

(%i7) plot2d( [sin(u)*cos(3*u)*uˆ2, data_list],
[u,1,4], [x,0,5],[y,-10,8],

[style,[lines,4,1],[points,4,2,1]])$
plot2d: expression evaluates to non-numeric value somewhere in plotting range.

which produces the plot
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Figure 14: Curve Plus Data
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2.1.5 More gnuplot preamble Options

Here is an example of using the gnuplot preamble options to add a grid, a title, and position the plot key at the bottom
center of the canvas. Note the use of a semi-colon between successive gnuplot instructions.

(%i1) plot2d([ u*sin(u),cos(u)],[u,-4,4] ,[x,-8,8],
[style,[lines,5]],

[gnuplot_preamble,"set grid; set key bottom center;
set title ’Two Functions’;"])$

which produces the plot
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Figure 15: Using the gnuplot preamble Option

Another option we have previously used is set zeroaxis lw 2; to get more prominent x and y axes. Another
example of key location would be set key top left;. We have also previously used set size ratio 1; to
get a ”rounder” circle.
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2.1.6 Using qplot for Quick Plots of One or More Functions

The file mbe1util.mac is posted with Ch. 1. This ”utility file” contains a function called qplot which can be used for
quick plotting of functions in place of plot2d.

The function qplot (q for ”quick”) accepts the default cyclic colors but always uses thicker lines than the plot2d default,
adds more prominent x and y axes to the plot, and adds a grid. Here are some examples of use. (We include use with
discrete lists only for completeness, since there is no way to get the points style with qplot.)

(%i1) load(mbe1util);
(%o1) c:/work2/mbe1util.mac
(%i2) qplot(sin(u),[u,-%pi,%pi])$
(%i3) qplot(sin(u),[u,-%pi,%pi],[x,-4,4])$
(%i4) qplot(sin(u),[u,-%pi,%pi],[x,-4,4],[y,-1.2,1.2])$
(%i5) qplot([sin(u),cos(u)],[u,-%pi,%pi])$
(%i6) qplot([sin(u),cos(u)],[u,-%pi,%pi],[x,-4,4])$
(%i7) qplot([sin(u),cos(u)],[u,-%pi,%pi],[x,-4,4],[y,-1.2,1.2])$
(%i8) qplot ([parametric, cos(t), sin(t), [t,-%pi,%pi]],

[x,-2.1,2.1],[y,-1.5,1.5])$

The last use involved only a parametric object, and the ”prange” list is interpreted as a width control list based on the
symbol x. The next example includes both an expression depending on the parameter u and a parametric object, so we
must have a draw parameter control list.

(%i9) qplot ([ uˆ3,
[parametric, cos(t), sin(t), [t,-%pi,%pi]]],
[u,-1,1],[x,-2.1,2.1],[y,-1.5,1.5])$

We have used qdraw (Ch.5) to produce an eps figure we can use here which roughly represents what you get from that
last example:
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Figure 16: qplot example
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Here are two discrete examples which draw vertical lines.

(%i10) qplot([discrete,[[0,-2],[0,2]]],[x,-2,2],[y,-4,4])$
(%i11) qplot( [ [discrete,[[-1,-2],[-1,2]]],

[discrete,[[1,-2],[1,2]]]],[x,-2,2],[y,-4,4])$

Here is the code (in mbe1util.mac) which defines the Maxima function qplot.

qplot ( exprlist, prange, [hvrange]) :=
block([optlist, plist],
optlist : [ [nticks,100], [legend, false],

[ylabel, " "], [gnuplot_preamble, "set grid; set zeroaxis lw 2;"] ],
optlist : cons ( [style,[lines,5]], optlist ),
if length (hvrange) = 0 then plist : []

else plist : hvrange,
plist : cons (prange,plist),
plist : cons (exprlist,plist),
plist : append ( plist, optlist ),
apply (plot2d, plist ) )$

In this code, the third argument is an optional argument. The local plist accumulates the arguments to be passed to plot2d
by use of cons and append, and is then passed to plot2d by the use of apply. The order of using cons makes sure that
exprlist will be the first element, (and prange will be the second) seen by plot2d. In this example you can see several
tools used for programming with lists.

Several choices have been made in the qplot code to get quick and uncluttered plots of one or more functions. One choice
was to add a grid and stronger x and y axis lines. Another choice was to eliminate the key legend by using the option
[legend, false]. If you want a key legend to appear when plotting multiple functions, you should remove that
option from the code and reload mbe1util.mac.
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2.2 Least Squares Fit to Experimental Data

2.2.1 Maxima and Least Squares Fits: lsquares estimates

Suppose we are given a list of [x,y] pairs which are thought to be roughly described by the relation y = a*xˆb + c,
where the three parameters are all of order 1. We can use the data of [x,y] pairs to find the ”best” values of the unknown
parameters [a, b, c], such that the data is described by the equation y = a*xˆb + c (a three parameter fit to the
data).

We are using one of the Manual examples for lsquares estimates.

(%i1) dataL : [[1, 1], [2, 7/4], [3, 11/4], [4, 13/4]];

7 11 13
(%o1) [[1, 1], [2, -], [3, --], [4, --]]

4 4 4
(%i2) dataM : apply (’matrix, dataL);

[ 1 1 ]
[ ]
[ 7 ]
[ 2 - ]
[ 4 ]
[ ]

(%o2) [ 11 ]
[ 3 -- ]
[ 4 ]
[ ]
[ 13 ]
[ 4 -- ]
[ 4 ]

(%i3) load (lsquares)$
(%i4) fpprintprec:8$
(%i5) lsquares_estimates (dataM, [x,y], y=a*xˆb+c,

[a,b,c], initial=[3,3,3], iprint=[-1,0] );
(%o5) [[a = 1.3873659, b = 0.711096, c = - 0.414271]]
(%i6) fit : a*xˆb + c , % ;

0.711096
(%o6) 1.3873659 x - 0.414271

Note that we must use load (lsquares); to use this method. We can now make a plot of both the discrete data
points and the least squares fit to those four data points.

(%i7) plot2d ([fit,[discrete,dataL]],[x,0,5],
[style,[lines,5],[points,4,2,1]],
[legend,"fit", "data"],
[gnuplot_preamble,"set key bottom;"])$
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which produces the plot
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Figure 17: Three Parameter Fit to Four Data Points

2.2.2 Syntax of lsquares estimates

The minimal syntax is

lsquares_estimates (data-matrix, data-variable-list, fit-eqn, param-list );

in which the data-variable-list assigns a variable name to the corresponding column of the data-matrix,
and the fit-eqn is an equation which is a relation among the data variable symbols and the equation parameters
which appear in param-list. The function returns the ”best fit” values of the equation parameters in the form
[ [p1 = p1val, p2 = p2val, ...] ].

In the example above, the data variable list was [x, y] and the parameter list was [a, b, c].

If an exact solution cannot be found, a numerical approximation is attempted using lbfgs, in which case, all the elements
of the data matrix should be ”numbers” numberp(x) -> true. This means that %pi and %e, for example, should
be converted to explicit numbers before use of this method.

(%i1) expr : 2*%pi + 3*exp(-4);
- 4

(%o1) 2 %pi + 3 %e
(%i2) listconstvars:true$
(%i3) listofvars(expr);
(%o3) [%e, %pi]
(%i4) map(’numberp,%);
(%o4) [false, false]
(%i5) fullmap(’numberp,expr);

true
(%o5) false true + false true
(%i6) float(expr);
(%o6) 6.338132223845789
(%i7) numberp(%);
(%o7) true
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Optional arguments to lsquares estimates are (in any order)

initial = [p10, p20,...], iprint = [n, m], tol = search-tolerance

The list [p10, p20, ...] is the optional list of initial values of the equation parameters, and without including your
own guess for starting values this list defaults (in the code) to [1, 1, ...].

The first integer n in the iprint list controls how often progress messages are printed to the screen. The default is
n = 1 which causes a new progress message printout each iteration of the search method. Using n = -1 surpresses all
progress messages. Using n = 5 allows one progress message every five iterations.

The second integer m in the iprint list controls the verbosity, with m = 0 giving minimum information and m = 3
giving maximum information.

The option iprint = [-1,0] will hide the details of the search process.

The default value of the search-tolerance is 1e-3, so by using the option tol = 1e-8 you might find a more
accurate solution.

Many examples of the use of the lsquares package are found in the file lsquares.mac, which is found in the
...share/contrib folder. You can also see great examples of efficient programming in the Maxima language in
that file.

2.2.3 Coffee Cooling Model

”Newton’s law of cooling” (only approximate and not a law) assumes the rate of decrease of temperature (celsius degrees
per minute) is proportional to the instantaneous difference between the temperature T(t) of the coffee in the cup and the
surrounding ambient temperature Ts, the latter being treated as a constant. If we use the symbol r for the ”rate constant”
of proportionality, we then assume the cooling of the coffee obeys the first order differential equation

dT
dt

= −r (T(t)−Ts) (2.1)

Since T has dimension degrees Celsius, and t has dimension minute, the dimension of the rate constant r must be 1/min.

(This attempt to employ a rough mathematical model which can be used for the cooling of a cup of coffee avoids a
bottom-up approach to the problem, which would require mathematical descriptions of the four distinct physical mecha-
nisms which contribute to the decrease of thermal energy in the system hot coffee plus cup to the surroundings: thermal
radiation (net electromagnetic radiation flux, approximately black body ) energy transport across the surface of the liquid
and cup, collisional heat conduction due to the presence of the surrounding air molecules, convective energy transport due
to local air temperature rise, and finally evaporation which is the escape of the fastest coffee molecules which are able to
escape the binding surface forces at the liquid surface. If the temperature difference between the coffee and the ambient
surroundings is not too large, experiment shows that the simple relation above is roughly true.)

This differential equation is easy to solve ”by hand” , since we can write

dT
dt

=
d (T−Ts)

d t
=

dy
d t

(2.2)

and then divide both sides by y = (T−Ts), multiply both sides by d t, and use dy/y = d ln(y) and finally integrate
both sides over corresponding intervals to get ln(y) − ln(y0) = ln(y/y0) = −r t, where y0 = T(0)−Ts involves
the initial temperature at t = 0. Since

eln(A) = A, (2.3)
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by equating the exponential of the left side to that of the right side, we get

T(t) = Ts + (T(0)−Ts) e−r t. (2.4)

Using ode2, ic1, expand, and collectterms, we can also use Maxima just for fun:

(%i1) de : ’diff(T,t) + r*(T - Ts);
dT

(%o1) -- + r (T - Ts)
dt

(%i2) gsoln : ode2(de,T,t);
- r t r t

(%o2) T = %e (%e Ts + %c)
(%i3) de, gsoln, diff, ratsimp;
(%o3) 0
(%i4) ic1 (gsoln, t = 0, T = T0);

- r t r t
(%o4) T = %e (T0 + (%e - 1) Ts)
(%i5) expand (%);

- r t - r t
(%o5) T = %e T0 - %e Ts + Ts
(%i6) Tcup : collectterms ( rhs(%), exp(-r*t) );

- r t
(%o6) %e (T0 - Ts) + Ts
(%i7) Tcup, t = 0;
(%o7) T0

We arrive at the same solution as found ”by hand”. We have checked the particular solution for the initial condition and
checked that our original differential equation is satisfied by the general solution.

2.2.4 Experiment Data: file search, printfile, read nested list, and makelist

Let’s take some ”real world” data for this problem (p. 21, An Introduction to Computer Simulation Methods, 2nd ed.,
Harvey Gould and Jan Tobochnik, Addison-Wesley, 1996) which is in a data file c:\work2\coffee.dat on the author’s
Window’s XP computer (data file available with this chapter on the author’s webpage).

This file contains three columns of tab separated numbers, column one being the elapsed time in minutes, column two
the Celsius temperature of the system glass plus coffee for black coffee, and column three the Celsius temperature for the
case glass plus creamed coffee. The glass-coffee temperature was recorded with an estimated accuracy of 0.1◦C. The
ambient temperature of the surroundings was 17 ◦C.

We need to use double quotes for a file name which includes an extension like .dat.

(%i1) file_search("coffee.dat");
(%o1) coffee.dat

No path was needed because of the contents of maxima-init.mac. We can look at the whole file at one burst with
printfile. (We will show only the top of the output.)

(%i2) printfile("coffee.dat");
0 82.3 68.8
2 78.5 64.8
4 74.3 62.1
6 70.7 59.9
8 67.6 57.7
----------------

etc, etc.
---------
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We now use read nested list which will create a list of sublists, one sublist per row.

(%i3) fpprintprec:6$
(%i4) cdata : read_nested_list("coffee.dat");
(%o4) [[0, 82.3, 68.8], [2, 78.5, 64.8], [4, 74.3, 62.1], [6, 70.7, 59.9],
[8, 67.6, 57.7], [10, 65.0, 55.9], [12, 62.5, 53.9], [14, 60.1, 52.3],
[16, 58.1, 50.8], [18, 56.1, 49.5], [20, 54.3, 48.1], [22, 52.8, 46.8],
[24, 51.2, 45.9], [26, 49.9, 44.8], [28, 48.6, 43.7], [30, 47.2, 42.6],
[32, 46.1, 41.7], [34, 45.0, 40.8], [36, 43.9, 39.9], [38, 43.0, 39.3],
[40, 41.9, 38.6], [42, 41.0, 37.7], [44, 40.1, 37.0], [46, 39.5, 36.4]]

We now use makelist to create a (time, temperature) list based on the black coffee data and then based on the white
(creamed coffee) data.

(%i5) black_data : makelist( [first(cdata[i]),second(cdata[i])],
i,1,length(cdata));

(%o5) [[0, 82.3], [2, 78.5], [4, 74.3], [6, 70.7], [8, 67.6], [10, 65.0],
[12, 62.5], [14, 60.1], [16, 58.1], [18, 56.1], [20, 54.3], [22, 52.8],
[24, 51.2], [26, 49.9], [28, 48.6], [30, 47.2], [32, 46.1], [34, 45.0],
[36, 43.9], [38, 43.0], [40, 41.9], [42, 41.0], [44, 40.1], [46, 39.5]]
(%i6) white_data : makelist( [first(cdata[i]),third(cdata[i])],

i,1,length(cdata));
(%o6) [[0, 68.8], [2, 64.8], [4, 62.1], [6, 59.9], [8, 57.7], [10, 55.9],
[12, 53.9], [14, 52.3], [16, 50.8], [18, 49.5], [20, 48.1], [22, 46.8],
[24, 45.9], [26, 44.8], [28, 43.7], [30, 42.6], [32, 41.7], [34, 40.8],
[36, 39.9], [38, 39.3], [40, 38.6], [42, 37.7], [44, 37.0], [46, 36.4]]

2.2.5 Least Squares Fit of Coffee Cooling Data

We now use lsquares estimates to use a least squares fit with each of our data sets to our phenomenological model, that is
finding the ”best” value of the cooling rate constant r that appears in Eq. (2.4). The function lsquares estimates(data matrix,
eqnvarlist,eqn,paramlist) is available after using load(lsquares).

To save space in this chapter we use display2d:false to surpress the default two dimensional display of a Maxima matrix
object.

(%i7) display2d:false$
(%i8) black_matrix : apply ( ’matrix, black_data);
(%o8) matrix([0,82.3],[2,78.5],[4,74.3],[6,70.7],[8,67.6],[10,65.0],[12,62.5],

[14,60.1],[16,58.1],[18,56.1],[20,54.3],[22,52.8],[24,51.2],
[26,49.9],[28,48.6],[30,47.2],[32,46.1],[34,45.0],[36,43.9],
[38,43.0],[40,41.9],[42,41.0],[44,40.1],[46,39.5])

(%i9) white_matrix : apply ( ’matrix, white_data);
(%o9) matrix([0,68.8],[2,64.8],[4,62.1],[6,59.9],[8,57.7],[10,55.9],

[12,53.9],[14,52.3],[16,50.8],[18,49.5],[20,48.1],[22,46.8],
[24,45.9],[26,44.8],[28,43.7],[30,42.6],[32,41.7],[34,40.8],
[36,39.9],[38,39.3],[40,38.6],[42,37.7],[44,37.0],[46,36.4])

We now load lsquares.mac and calculate the ”best fit” values of the cooling rate constant r for both cases. For the black
coffee case, T0 = 82.3 deg C and Ts = 17 deg C and we surpress the units.

(%i10) display2d:true$
(%i11) load(lsquares);
(%o11) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/contrib/lsquares.mac
(%i12) black_eqn : T = 17 + 65.3*exp(-r*t);

- r t
(%o12) T = 65.3 %e + 17
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(%i13) lsquares_estimates ( black_matrix, [t,T], black_eqn, [r],
iprint = [-1,0] );

(%o13) [[r = 0.02592]]
(%i14) black_fit : rhs ( black_eqn ), %;

- 0.02592 t
(%o14) 65.3 %e + 17

Thus rblack is roughly 0.026 minˆ(-1).

For the white coffee case, T0 = 68.8 deg C and Ts = 17 deg C.

(%i15) white_eqn : T = 17 + 51.8*exp(-r*t);
- r t

(%o15) T = 51.8 %e + 17
(%i16) lsquares_estimates ( white_matrix, [t,T], white_eqn, [r],

iprint = [-1,0] );
(%o16) [[r = 0.0237]]
(%i17) white_fit : rhs ( white_eqn ), %;

- 0.0237 t
(%o17) 51.8 %e + 17

Thus rwhite is roughly 0.024 minˆ(-1), a slightly smaller value than for the black coffee ( which is reasonable since
a black body is a better radiator of thermal energy than a white surface).

A prudent check on mathematical reasonableness can be made by using, say, the two data points for t = 0 and t = 24min
to solve for a rough value of r. For this rough check, the author concludes that rblack is roughly 0.027 minˆ(-1)
and rwhite is roughly 0.024 minˆ(-1).

We can now plot the temperature data against the best fit model curve, first for the black coffee case.

(%i18) plot2d( [ black_fit ,[discrete,black_data] ],
[t,0,50], [style, [lines,5], [points,2,2,6]],
[ylabel," "] ,
[xlabel," Black Coffee T(deg C) vs. t(min) with r = 0.026/min"],
[legend,"black fit","black data"] )$

which produces the plot
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Figure 18: Black Coffee Data and Fit
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and next plot the white coffee data and fit:

(%i19) plot2d( [ white_fit ,[discrete, white_data] ],
[t,0,50], [style, [lines,5], [points,2,2,6]],
[ylabel," "] ,
[xlabel," White Coffee T(deg C) vs. t(min) with r = 0.024/min"],
[legend,"white fit","white data"] )$

which yields the plot
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Figure 19: White Coffee Data and Fit

Cream at Start or Later?

Let’s use the above approximate values for the cooling rate constants to find the fastest method to use to get the temperature
of hot coffee down to a drinkable temperature. Let’s assume we start with a glass of very hot coffee, T0 = 90◦C, and
want to compare two methods of getting the temperature down to 75◦C, which we assume is low enough to start sipping.
We will assume that adding cream lowers the temperature of the coffee by 5◦C for both options we explore. Option 1
(white option) is to immediately add cream and let the creamed coffee cool down from 85◦C to 75◦C. We first write
down a general expression as a function of T0 and r, and then substitute values appropriate to the white coffee cooldown.

(%i20) T : 17 + (T0 -17)*exp(-r*t);
- r t

(%o20) %e (T0 - 17) + 17
(%i21) T1 : T, [T0 = 85, r = 0.0237];

- 0.0237 t
(%o21) 68 %e + 17
(%i22) t1 : find_root(T1 - 75,t,2,10);
(%o22) 6.71159

The ”white option” requires about 6.7min for the coffee to be sippable.
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Option 2 (the black option) lets the black coffee cool from 90◦C to 80◦C, and then adds cream, immediately getting the
temperature down from 80◦C to 75◦C

(%i23) T2 : T, [T0 = 90, r = 0.02592];
- 0.02592 t

(%o23) 73 %e + 17
(%i24) t2 : find_root(T2 - 80,t,2,10);
(%o24) 5.68382

The black option (option 2) is the fastest method to cool the coffee, taking about 5.68min which is about 62 sec less
than the white option 1.
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Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the XMaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.18.1
(2009). http://maxima.sourceforge.net/

The homemade function fll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
automatically loaded in with mbe1util.mac from Ch. 1. We will include a reference to this definition when working with lists.

This function has the definitions

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxima html help manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html.

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
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3.1 Solving Ordinary Differential Equations

3.2 Solution of One First Order Ordinary Differential Equation (ODE)

3.2.1 Summary Table

ode2 and ic1
gsoln : ode2 (de, u, t);

where de involves ’diff(u,t).

psoln : ic1 (gsoln, t = t0, u = u0);

desolve
gsoln : desolve(de, u(t) );

where de includes the equal sign (=)

and ’diff(u(t),t) and possibly u(t).

psoln : ratsubst(u0val,u(o),gsoln)

plotdf
plotdf ( dudt, [t,u], [trajectory_at, t0, u0],

[direction,forward], [t, tmin, tmax],

[u, umin, umax] )$

rk
points : rk ( dudt, u, u0, [t, t0, tlast, dt] )$

where dudt is a function of t and u which

determines diff(u,t).

Table 1: Methods for One First Order ODE

We will use these four different methods to solve the first order ordinary differential equation

du
d t

= e−t + u (3.1)

subject to the condition that when t = 2, u = −0.1.

3.2.2 Exact Solution with ode2 and ic1

Most ordinary differential equations have no known exact solution (or the exact solution is a complicated expression
involving many terms with special functions) and one normally uses approximate methods. However, some ordinary
differential equations have simple exact solutions, and many of these can be found using ode2, desolve, or contrib ode.
The manual has the following information about ode2

Function: ode2 (eqn, dvar, ivar)
The function ode2 solves an ordinary differential equation (ODE) of first or second order. It takes three
arguments: an ODE given by eqn, the dependent variable dvar, and the independent variable ivar. When
successful, it returns either an explicit or implicit solution for the dependent variable. %c is used to represent
the integration constant in the case of first-order equations, and %k1 and %k2 the constants for second-order
equations. The dependence of the dependent variable on the independent variable does not have to be written
explicitly, as in the case of desolve, but the independent variable must always be given as the third argument.
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If the differential equation has the structure Left(dudt,u,t) = Right(dudt,u,t) ( here u is the dependent variable and t is
the independent variable), we can always rewrite that differential equation as de = Left(dudt,u,t) - Right(dudt,u,t) = 0,
or de = 0.

We can use the syntax ode2(de,u,t), with the first argument an expression which includes derivatives, instead of the com-
plete equation including the ” = 0” on the end, and ode2 will assume we mean de = 0 for the differential equation. (Of
course you can also use ode2 ( de=0, u, t)

We rewrite our example linear first order differential equation Eq. 3.1 in the way just described, using the noun form
’diff, which uses a single quote. We then use ode2, and call the general solution gsoln.

(%i1) de : ’diff(u,t)- u - exp(-t);
du - t

(%o1) -- - u - %e
dt

(%i2) gsoln : ode2(de,u,t);
- 2 t

%e t
(%o2) u = (%c - -------) %e

2

The general solution returned by ode2 contains one constant of integration %c, and is an explicit solution for u as a func-
tion of t, although the above does not bind the symbol u.

We next find the particular solution which has t = 2, u = −0.1 using ic1, and call this particular solution psoln. We
then check the returned solution in two ways: 1. does it satisfy the conditions given to ic1?, and 2. does it produce a zero
value for our expression de?

(%i3) psoln : ic1(gsoln,t = 2, u = -0.1),ratprint:false;
- t - 4 2 2 t 4

%e ((%e - 5) %e + 5 %e )
(%o3) u = - -----------------------------------

10
(%i4) rhs(psoln),t=2,ratsimp;

1
(%o4) - --

10
(%i5) de,psoln,diff,ratsimp;
(%o5) 0

Both tests are passed by this particular solution. We can now make a quick plot of this solution using plot2d.

(%i6) us : rhs(psoln);
- t - 4 2 2 t 4

%e ((%e - 5) %e + 5 %e )
(%o6) - -----------------------------------

10
(%i7) plot2d(us,[t,0,7],

[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$
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which looks like
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t0 = 2, u0 = -0.1, du/dt = exp(-t) + u

Figure 1: Solution for which t = 2, u = −0.1

3.2.3 Exact Solution Using desolve

desolve uses Laplace transform methods to find an exact solution. To be able to use desolve, we need to write our example
differential equation Eq.3.1 in a more explicit form, with every u -> u(t), and include the = sign in the definition of
the differential equation.

(%i1) eqn : ’diff(u(t),t) - exp(-t) - u(t) = 0;
d - t

(%o1) -- (u(t)) - u(t) - %e = 0
dt

(%i2) gsoln : desolve(eqn,u(t));
t - t

(2 u(0) + 1) %e %e
(%o2) u(t) = ---------------- - -----

2 2
(%i3) eqn,gsoln,diff,ratsimp;
(%o3) 0 = 0
(%i4) bc : subst ( t=2, rhs(gsoln)) = - 0.1;

2 - 2
%e (2 u(0) + 1) %e

(%o4) ---------------- - ----- = - 0.1
2 2

(%i5) solve ( eliminate ( [gsoln, bc],[u(0)]), u(t) ),ratprint:false;
- t t - 2 t - 4

- 5 %e - %e + 5 %e
(%o5) [u(t) = -------------------------------]

10
(%i6) us : rhs(%[1]);

- t t - 2 t - 4
- 5 %e - %e + 5 %e

(%o6) -------------------------------
10
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(%i7) us, t=2, ratsimp;
1

(%o7) - --
10

(%i8) plot2d(us,[t,0,7],
[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$

and we get the same plot as before. The function desolve returns a solution in terms of the “initial value” u(0), which
here means u(t = 0), and we must go through an extra step to eliminate u(0) in a way that assures our chosen bound-
ary condition t = 2, u - -0.1 is satisfied.

We have checked that the general solution satisfies the given differential equation in %i3, and have checked that our
particular solution satisfies the desired condition at t = 2 in %i7.

If your problem requires that the value of the solution us be specified at t = 0, the route to the particular solution is
much simpler than what we used above. You simply use subst ( u(0) = -1, rhs (gsoln) ) if, for example,
you wanted a particular solution to have the property that when t = 0, u = -1.

(%i9) us : subst( u(0) = -1,rhs(gsoln) ),ratsimp;
- t 2 t

%e (%e + 1)
(%o9) - -----------------

2
(%i10) us,t=0,ratsimp;
(%o10) - 1

3.2.4 Numerical Solution and Plot with plotdf

We next use plotdf to numerically integrate the given first order ordinary differential equation, draw a direction field plot
which governs any particular solution, and draw the particular solution we have chosen.

The default color choice of plotdf is to use small blue arrows give the local direction of the trajectory of the partic-
ular solution passing though that point. This direction can be defined by an angle α such that if u′ = f(t,u), then
tan(α) = f(t,u), and at the point (t0, u0),

du = f(t0,u0)× d t = d t ×
(

du
d t

)

t=t0, u=u0

(3.2)

This equation determines the increase d u in the value of the dependent variable u induced by a small increase d t in the
independent variable t at the point (t0, u0). We then define a local vector with t component d t and u component d u, and
draw a small arrow in that direction at a grid of chosen points to construct a direction field associated with the given first
order differential equation. The length of the small arrow can be increased some to reflect large values of the magnitude
of du/d t.

For one first order ordinary differential equation, plotdf, has the syntax

plotdf( dudt,[t,u], [trajectory_at, t0, u0], options ... )

in which dudt is the function of (t,u) which determines the rate of change du/d t.
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(%i1) plotdf(exp(-t) + u, [t, u], [trajectory_at,2,-0.1],
[direction,forward], [t,0,7], [u, -6, 1] )$

produces the plot

0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

0

1
u

t

Figure 2: Direction Field for the Solution t = 2, u = −0.1

(We have thickened the red curve using the Config, Linewidth menu option of plotdf, followed by Replot).

The help manual has an extensive discussion and examples of the use of the direction field plot utility plotdf.

3.2.5 Numerical Solution with 4th Order Runge-Kutta: rk

Although the plotdf function is useful for orientation about the shapes and types of solutions possible, if you need a list
with coordinate points to use for other purposes, you can use the fourth order Runge-Kutta function rk.

For one first order ordinary differential equation, the syntax has some faint resemblance to that of plotdf:

rk ( dudt, u, u0, [ t, t0, tlast, dt ] )

in which we are assuming that u is the dependent variable and t is the independent variable, and dudt is that function of
(t, u) which locally determines the value of du/d t. This will numerically integrate the corresponding first order ordinary
differential equation and return a list of pairs of (t, u) on the solution curve which has been requested:

[ [t0, u0], [t0 + dt, y(t0 + dt)], .... ,[tlast, y(tlast)] ]
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For our example first order ordinary differential equation, choosing the same initial conditions as above, and choosing
dt = 0.01,

(%i1) fpprintprec:8$
(%i2) points : rk (exp(-t) + u, u, -0.1, [ t, 2, 7, 0.01 ] )$
(%i3) %, fll;
(%o3) [[2, - 0.1], [7.0, - 4.7990034], 501]
(%i4) plot2d( [ discrete, points ], [ t, 0, 7],

[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$

(We have used our homemade function fll(x), loaded in at startup with the other functions defined in mbe1util.mac,
available with the Ch. 1 material. We have provided the definition of fll in the preface of this chapter. Instead of
%, fll ;, you could use [%[1],last(%),length(%)]; to get the same information.)

The plot looks like
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-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 2  3  4  5  6  7

 

t0 = 2, u0 = -0.1, du/dt = exp(-t) + u

Figure 3: Runge-Kutta Solution with t = 2, u = −0.1
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3.3 Solution of One Second Order ODE or Two First Order ODE’s

3.3.1 Summary Table

ode2 and ic1
gsoln : ode2 (de, u, t); where de involves ’diff(u,t,2)

and possibly ’diff(u,t).

psoln : ic2 (gsoln, t = t0, u = u0, ’diff(u,t) = up0);

desolve
atvalue ( ’diff(u,t), t = 0, v(0) );

gsoln : desolve(de, u(t) );

where de includes the equal sign (=), ’diff(u(t),t,2),

and possibly ’diff(u(t),t) and u(t).

One type of particular solution is returned by using

psoln : subst([ u(o) = u0, v(0) = v0] , gsoln)

plotdf
plotdf ( [dudt, dvdt], [u, v], [trajectory_at, u0, v0],

[u, umin, umax],[v, vmin, vmax], [tinitial, t0],

[direction,forward], [versus_t, 1],[tstep, timestepval],

[nsteps, nstepsvalue] )$

rk
points : rk ([dudt, dvdt ],[u, v],[u0, v0],[t, t0, tlast, dt] )$

where dudt and dvdt are functions of t,u, and v which

determine diff(u,t) and diff(v,t).

Table 2: Methods for One Second Order or Two First Order ODE’s

We apply the above four methods to the simple second order ordinary differential equation:

d2 u
d t2

= 4u (3.3)

subject to the conditions that when t = 2, u = 1 and du/d t = 0.

3.3.2 Exact Solution with ode2, ic2, and eliminate

The main difference here is the use of ic2 rather than ic1.

(%i1) de : ’diff(u,t,2) - 4*u;
2
d u

(%o1) --- - 4 u
2

dt
(%i2) gsoln : ode2(de,u,t);

2 t - 2 t
(%o2) u = %k1 %e + %k2 %e
(%i3) de,gsoln,diff,ratsimp;
(%o3) 0
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(%i4) psoln : ic2(gsoln,t=2,u=1,’diff(u,t) = 0);
2 t - 4 4 - 2 t

%e %e
(%o4) u = --------- + ---------

2 2
(%i5) us : rhs(psoln);

2 t - 4 4 - 2 t
%e %e

(%o5) --------- + ---------
2 2

(%i6) us, t=2, ratsimp;
(%o6) 1
(%i7) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 "])$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.

which produces the plot

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4

 

 U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 

Figure 4: Solution for which t = 2, u = 1, u′ = 0

Next we make a “phase space plot” which is a plot of v = du/d t versus u over the range 1 ≤ t ≤ 3.

(%i8) vs : diff(us,t),ratsimp;
- 2 t - 4 4 t 8

(%o8) %e (%e - %e )
(%i9) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i10) plot2d( [[parametric,us,vs,[t,1,3]],d[1],d[2],d[3] ],

[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],
[points,4,3,1],[points,4,6,1]],

[ylabel," "],[xlabel," "],
[legend," du/dt vs u "," t = 1 ","t = 2","t = 3"] )$
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which produces the plot
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 du/dt vs u 
 t = 1 
t = 2
t = 3

Figure 5: t = 2, y = 1, y′ = 0 Solution

If your boundary conditions are, instead, for t=0, u = 1, and for t = 2, u = 4, then one can eliminate the
two constants “by hand” instead of using ic2 (see also next section).

(%i4) bc1 : subst(t=0,rhs(gsoln)) = 1$
(%i5) bc2 : subst(t = 2, rhs(gsoln)) = 4$
(%i6) solve(

eliminate([gsoln,bc1,bc2],[%k1,%k2]), u ),
ratsimp, ratprint:false;

- 2 t 4 4 t 8 4
%e ((4 %e - 1) %e + %e - 4 %e )

(%o6) [u = -----------------------------------------]
8

%e - 1
(%i7) us : rhs(%[1]);

- 2 t 4 4 t 8 4
%e ((4 %e - 1) %e + %e - 4 %e )

(%o7) -----------------------------------------
8

%e - 1
(%i8) us,t=0,ratsimp;
(%o8) 1
(%i9) us,t=2,ratsimp;
(%o9) 4
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3.3.3 Exact Solution with desolve, atvalue, and eliminate

The function desolve uses Laplace transform methods which are set up to expect the use of initial values for dependent
variables and their derivatives. (However, we will show how you can impose more general boundary conditions.) If the
dependent variable is u(t), for example, the solution is returned in terms of a constant u(0), which refers to the value
of u(t = 0) (here we are assuming that the independent variable is t). To get a simple result from desolve which we
can work with (for the case of a second order ordinary differential equation), we can use the atvalue function with the
syntax (for example):

atvalue ( ’diff(u,t), t = 0, v(0) )

which will allow desolve to return the solution to a second order ODE in terms of the pair of constants( u(0), v(0) ).
Of course, there is nothing sacred about using the symbol v(0) here. The function atvalue should be invoked before the
use of desolve.

If the desired boundary conditions for a particular solution refer to t = 0, then you can immediately find that particular
solution using the syntax (if ug is the general solution, say)

us : subst( [ u(0) = u0val, v(0) = v0val], ug ),

or else by using ratsubst twice.

In our present example, the desired boundary conditions refer to t = 2 , and impose conditions on the value of u and
its first derivative at that value of t. This requires a little more work, and we use eliminate to get rid of the constants
(u(0), v(0)) in a way that allows our desired conditions to be satisfied.

(%i1) eqn : ’diff(u(t),t,2) - 4*u(t) = 0;
2

d
(%o1) --- (u(t)) - 4 u(t) = 0

2
dt

(%i2) atvalue ( ’diff(u(t),t), t=0, v(0) )$
(%i3) gsoln : desolve(eqn,u(t));

2 t - 2 t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%o3) u(t) = --------------------- - -----------------------
4 4

(%i4) eqn,gsoln,diff,ratsimp;
(%o4) 0 = 0
(%i5) ug : rhs(gsoln);

2 t - 2 t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%o5) --------------------- - -----------------------
4 4

(%i6) vg : diff(ug,t),ratsimp$
(%i7) ubc : subst(t = 2,ug) = 1$
(%i8) vbc : subst(t = 2,vg) = 0$
(%i9) solve (

eliminate([gsoln, ubc, vbc],[u(0), v(0)]), u(t) ),
ratsimp,ratprint:false;

- 2 t - 4 4 t 8
%e (%e + %e )

(%o9) [u(t) = -------------------------]
2
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(%i10) us : rhs(%[1]);
- 2 t - 4 4 t 8

%e (%e + %e )
(%o10) -------------------------

2
(%i11) subst(t=2, us),ratsimp;
(%o11) 1
(%i12) vs : diff(us,t),ratsimp;

- 2 t - 4 4 t 8
(%o12) %e (%e - %e )
(%i13) subst(t = 2,vs),ratsimp;
(%o13) 0
(%i14) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 "])$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.
(%i15) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i16) plot2d( [[parametric,us,vs,[t,1,3]],d[1],d[2],d[3] ],

[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],
[points,4,3,1],[points,4,6,1]],

[ylabel," "],[xlabel," "],
[legend," du/dt vs u "," t = 1 ","t = 2","t = 3"] )$

which generates the same plots found with the ode2 method above.

If the desired boundary conditions are that u have given values at t = 0 and t = 3, then we can proceed from the
same general solution above as follows with up being a partially defined particular solution (assume u(0) = 1 and
u(3) = 2):

(%i17) up : subst(u(0) = 1, ug);
2 t - 2 t

(v(0) + 2) %e (v(0) - 2) %e
(%o17) ---------------- - ------------------

4 4
(%i18) ubc : subst ( t=3, up) = 2;

6 - 6
%e (v(0) + 2) %e (v(0) - 2)

(%o18) -------------- - ---------------- = 2
4 4

(%i19) solve(
eliminate ( [ u(t) = up, ubc ],[v(0)] ), u(t) ),

ratsimp, ratprint:false;
- 2 t 6 4 t 12 6

%e ((2 %e - 1) %e + %e - 2 %e )
(%o19) [u(t) = ------------------------------------------]

12
%e - 1

(%i20) us : rhs (%[1]);
- 2 t 6 4 t 12 6

%e ((2 %e - 1) %e + %e - 2 %e )
(%o20) ------------------------------------------

12
%e - 1

(%i21) subst(t = 0, us),ratsimp;
(%o21) 1
(%i22) subst (t = 3, us),ratsimp;
(%o22) 2
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(%i23) plot2d(us,[t,0,4],[y,0,10],
[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(0) = 1, U(3) = 2 "])$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.

which produces the plot
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 U versus t, U’’(t) = 4 U(t), U(0) = 1, U(3) = 2 

Figure 6: Solution for u(0) = 1, u(3) = 2

If instead, you need to satisfy u(1) = -1 and u(3) = 2, you could proceed from gsoln and ug as follows:

(%i24) ubc1 : subst ( t=1, ug) = -1$
(%i25) ubc2 : subst ( t=3, ug) = 2$
(%i26) solve(

eliminate ( [gsoln, ubc1, ubc2],[u(0),v(0)]), u(t) ),
ratsimp, ratprint:false;

- 2 t 4 4 t 12 8
%e ((2 %e + 1) %e - %e - 2 %e )

(%o26) [u(t) = ------------------------------------------]
10 2

%e - %e
(%i27) us : rhs(%[1]);

- 2 t 4 4 t 12 8
%e ((2 %e + 1) %e - %e - 2 %e )

(%o27) ------------------------------------------
10 2

%e - %e
(%i28) subst ( t=1, us), ratsimp;
(%o28) - 1
(%i29) subst ( t=3, us), ratsimp;
(%o29) 2
(%i30) plot2d ( us, [t,0,4], [y,-2,8],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(1) = -1, U(3) = 2 "])$
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which produces the plot
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 U versus t, U’’(t) = 4 U(t), U(1) = -1, U(3) = 2 

Figure 7: Solution for u(1) = −1, u(3) = 2

The simplest case of using desolve is the case in which you impose conditions on the solution and its first derivative at
t = 0, in which case you simply use:

(%i4) psoln : subst([u(0) = 1,v(0)=0],gsoln);
2 t - 2 t

%e %e
(%o4) u(t) = ----- + -------

2 2
(%i5) us : rhs(psoln);

2 t - 2 t
%e %e

(%o5) ----- + -------
2 2

in which we have chosen the initial conditions u(0) = 1, and v(0) = 0.
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3.3.4 Numerical Solution and Plot with plotdf

Given a second order autonomous ODE, one needs to introduce a second dependent variable v(t), say, which is defined
as the first derivative of the original single dependent variable u(t). Then for our example, the starting ODE

d2 u
d t2

= 4u (3.4)

is converted into two first order ODE’s
du
d t

= v,
dv
d t

= 4u (3.5)

and the plotdf syntax for two first order ODE’s is

plotdf ( [dudt, dvdt], [u, v], [trajectory_at, u0, v0], [u, umin, umax],
[v, vmin, vmax], [tinitial, t0], [versus_t, 1],
[tstep, timestepval], [nsteps, nstepsvalue] )$

in which at t = t0, u = u0 and v = v0. If t0 = 0 you can omit the option [tinitial, t0]. The options
[u, umin, umax] and [v, vmin, vmax] allow you to control the horizontal and vertical extent of the phase
space plot (here v versus u) which will be produced. The option [versus_t,1] tells plotdf to create a separate plot
of both u and v versus the dependent variable. The last two options are only needed if you are not satisfied with the plots
and want to experiment with other than the default values of tstep and nsteps.

Another option you can add is [direction,forward], which will display the trajectory for t greater than or equal
to t0, rather than for a default interval around the value t0 which corresponds to [direction,both].
Here we invoke plotdf for our example.

(%i1) plotdf ( [v, 4*u], [u, v], [trajectory_at, 1, 0],
[u, 0, 8], [v, -10, 10], [versus_t, 1],

[tinitial, 2])$

The plot versus t is

0.8 1.2 1.6 2 2.4 2.8 3.2

-8
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0

4

8

u

v

t

Figure 8: u(t) and u’(t) vs. t for u(2) = 1, u′(2) = 0
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and the phase space plot is

1 2 3 4 5 6 7

-8
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0

4

8
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u

Figure 9: u’(t) vs. u(t) for u(2) = 1, u′(2) = 0

In both of these plots we used the Config menu to increase the linewidth, and then clicked on Replot. We also cut and
pasted the color red to be the second choice on the color cycle (instead of green) used in the plot versus the independent
variable t. Note that no matter what you call your independent variable, it will always be called t on the plot of the
dependent variables versus the independent variable.

3.3.5 Numerical Solution with 4th Order Runge-Kutta: rk

To use the fourth order Runge-Kutta numerical integrator rk for this example, we need to follow the procedure used in
the previous section using plotdf, converting the second order ODE to a pair of first order ODE’s.

The syntax for two first order ODE’s with dependent variables [u,v] and independent variable t is

rk ( [ dudt, dvdt ], [u,v], [u0,v0], [t, t0, tmax, dt] )

which will produce the list of lists:

[ [t0, u0,v0],[t0+dt, u(t0+dt),v(t0+dt)], ..., [tmax, u(tmax),v(tmax)] ]

For our example, following our discussion in the previous section with plotdf, we use

points : rk ( [v, 4*u], [u, v], [1, 0], [t, 2, 3.6, 0.01] )

We again use the homemade function fll (see the preface) to look at the first element, the last element, and the length
of various lists.

(%i1) fpprintprec:8$
(%i2) points : rk([v,4*u],[u,v],[1,0],[t,2,3.6,0.01])$
(%i3) %, fll;
(%o3) [[2, 1, 0], [3.6, 12.286646, 24.491768], 161]
(%i4) uL : makelist([points[i][1],points[i][2]],i,1,length(points))$
(%i5) %, fll;
(%o5) [[2, 1], [3.6, 12.286646], 161]
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(%i6) vL : makelist([points[i][1],points[i][3]],i,1,length(points))$
(%i7) %, fll;
(%o7) [[2, 0], [3.6, 24.491768], 161]
(%i8) plot2d([ [discrete,uL],[discrete,vL]],[x,1,5],

[style,[lines,5]],[y,-1,24],[ylabel," "],
[xlabel,"t"],[legend,"u(t)","v(t)"])$

which produces the plot
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Figure 10: Runge-Kutta for u(2) = 1, u′(2) = 0

Next we make a phase space plot of v versus u from the result of the Runge-Kutta integration.

(%i9) uvL : makelist([points[i][2],points[i][3]],i,1,length(points))$
(%i10) %, fll;
(%o10) [[1, 0], [12.286646, 24.491768], 161]
(%i11) plot2d( [ [discrete,uvL]],[x,0,13],[y,-1,25],

[style,[lines,5]],[ylabel," "],
[xlabel," v vs. u "])$

which produces the phase space plot
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 v vs. u 

Figure 11: R-K Phase Space Plot for u(2) = 1, u′(2) = 0
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3.4 Examples of ODE Solutions

3.4.1 Ex. 1: Fall in Gravity with Air Friction: Terminal Velocity

Let’s explore a problem posed by Patrick T. Tam (A Physicist’s Guide to Mathematica, Academic Press, 1997, page 349).

A small body falls downward with an initial velocity v0 from a height h near the surface of the earth. For
low velocities (less than about 24m/s), the effect of air resistance may be approximated by a frictional
force proportional to the velocity. Find the displacement and velocity of the body, and determine the terminal
velocity. Plot the speed as a function of time for several initial velocities.

The net vector force F acting on the object is thus assumed to be the (constant) force of gravity and the (variable) force
due to air friction, which is in a direction opposite to the direction of the velocity vector v. We can then write Newton’s
Law of motion in the form

F = mg − bv = m
dv
d t

(3.6)

In this vector equation, m is the mass in kg., g is a vector pointing downward with magnitude g, and b is a positive
constant which depends on the size and shape of the object and on the viscosity of the air. The velocity vector v points
down during the fall.

If we choose the y axis positive downward, with the point y = 0 the launch point, then the net y components of the force
and Newton’s Law of motion are:

Fy = mg − b vy = m
d vy

d t
(3.7)

where g is the positive number 9.8m/s2 and since the velocity component vy > 0 during the fall, the effects of gravity
and air resistance are in competition.

We see that the rate of change of velocity will become zero at the instant that mg − b vy = 0, or vy = mg/b, and the
downward velocity stops increasing at that moment, the ”terminal velocity” having been attained.

While working with Maxima, we can simplify our notation and let vy → v and (b/m) → a so both v and a represent
positive numbers. We then use Maxima to solve the equation d v/d t = g − a v. The dimension of each term of this
equation must evidently be the dimension of v/t, so a has dimension 1/t.

(%i1) de : ’diff(v,t) - g + a*v;
dv

(%o1) -- + a v - g
dt

(%i2) gsoln : ode2(de,v,t);
a t

- a t g %e
(%o2) v = %e (------- + %c)

a
(%i3) de, gsoln, diff,ratsimp;
(%o3) 0

We then use ic1 to get a solution such that v = v0 when t = 0.

(%i4) psoln : expand ( ic1 (gsoln,t = 0, v = v0 ) );
- a t

- a t g %e g
(%o4) v = %e v0 - --------- + -

a a
(%i5) vs : rhs(psoln);

- a t
- a t g %e g

(%o5) %e v0 - --------- + -
a a
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For consistency, we must get the correct terminal speed for large t:

(%i6) assume(a>0)$
(%i7) limit( vs, t, inf );

g
(%o7) -

a

which agrees with our analysis.

To make some plots, we can introduce a dimensionless time u with the replacement t → u = a t, and a dimensionless
speed w with the replacement v → w = a v/g.

(%i8) expand(vs*a/g);
- a t

a %e v0 - a t
(%o8) ------------ - %e + 1

g
(%i9) %,[t=u/a,v0=w0*g/a];

- u - u
(%o9) %e w0 - %e + 1
(%i10) ws : collectterms (%, exp (-u));

- u
(%o10) %e (w0 - 1) + 1

As our dimensionless time u gets large, ws → 1, which is the value of the terminal speed in dimensionless units.

Let’s now plot three cases, two cases with initial speed less than terminal speed and one case with initial speed greater
than the terminal speed. (The use of dimensionless units for plots generates what are called “universal curves”, since they
are generally valid, no matter what the actual numbers are).

(%i11) plot2d([[discrete,[[0,1],[5,1]]],subst(w0=0,ws),subst(w0=0.6,ws),
subst(w0=1.5,ws)],[u,0,5],[y,0,2],

[style,[lines,2,7],[lines,4,1],[lines,4,2],[lines,4,3]],
[legend,"terminal speed", "w0 = 0", "w0 = 0.6", "w0 = 1.5"],

[ylabel, " "],
[xlabel, " dimensionless speed w vs dimensionless time u"])$

which produces:
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Figure 12: Dimensionless Speed Versus Dimensionless Time
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An object thrown down with an initial speed greater than the terminal speed (as in the top curve) slows down until its
speed is the terminal speed.

Thus far we have been only concerned with the relation between velocity and time. We can now focus on the implications
for distance versus time. A dimensionless length z is a2 y/g and the relation dy/d t = v becomes dz/du = w, or
dz = wdu, which can be integrated over corresponding intervals: z over the interval [0, zf ], and u over the interval
[0,uf ].

(%i12) integrate(1,z,0,zf) = integrate(ws,u,0,uf);
- uf uf

(%o12) zf = - %e (w0 - uf %e - 1) + w0 - 1
(%i13) zs : expand(rhs(%)),uf = u;

- u - u
(%o13) - %e w0 + w0 + %e + u - 1
(%i14) zs, u=0;
(%o14) 0

(Remember the object is launched at y = 0 which means at z = 0). Let’s make a plot of distance travelled vs time
(dimensionless units) for the three cases considered above.

(%i15) plot2d([subst(w0=0,zs),subst(w0=0.6,zs),
subst(w0=1.5,zs)],[u,0,1],[style,[lines,4,1],[lines,4,2],

[lines,4,3]], [legend,"w0 = 0", "w0 = 0.6", "w0 = 1.5"],
[ylabel," "],
[xlabel,"dimensionless distance z vs dimensionless time u"],
[gnuplot_preamble,"set key top left;"])$

which produces:
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Figure 13: Dimensionless Distance Versus Dimensionless Time
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3.4.2 Ex. 2: One Nonlinear First Order ODE

Let’s solve
x2 y

dy
dx

= xy2 + x3 − 1 (3.8)

for a solution such that when x = 1, y = 1.

(%i1) de : xˆ2*y*’diff(y,x) - x*yˆ2 - xˆ3 + 1;
2 dy 2 3

(%o1) x y -- - x y - x + 1
dx

(%i2) gsoln : ode2(de,y,x);
2 3

3 x y - 6 x log(x) - 2
(%o2) ------------------------ = %c

3
6 x

(%i3) psoln : ic1(gsoln,x=1,y=1);
2 3

3 x y - 6 x log(x) - 2 1
(%o3) ------------------------ = -

3 6
6 x

This implicitly determines y as a function of the independent variable x By inspection, we see that x = 0 is a singular
point we should stay away from, so we assume from now on that x 6= 0.

To look at explicit solutions y(x) we use solve, which returns a list of two expressions depending on x. Since the implicit
solution is a quadratic in y, we will get two solutions from solve, which we call y1 and y2.

(%i4) [y1,y2] : map(’rhs, solve(psoln,y) );
2 2 2 2 2 2

sqrt(6 x log(x) + x + -) sqrt(6 x log(x) + x + -)
x x

(%o4) [- --------------------------, --------------------------]
sqrt(3) sqrt(3)

(%i5) [y1,y2], x = 1, ratsimp;
(%o5) [- 1, 1]
(%i6) de, diff, y= y2, ratsimp;
(%o6) 0

We see from the values at x = 1 that y2 is the particular solution we are looking for, and we have checked that y2 satisfies
the original differential equation. From this example, we learn the lesson that ic1 sometimes needs some help in finding
the particular solution we are looking for.

Let’s make a plot of the two solutions found.

(%i7) plot2d([y1,y2],[x,0.01,5],
[style,[lines,5]],[ylabel, " Y "],

[xlabel," X "] , [legend,"Y1", "Y2"],
[gnuplot_preamble,"set key bottom center;"])$
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which produces:
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Figure 14: Positive X Solutions

3.4.3 Ex. 3: One First Order ODE Which is Not Linear in Y’

The differential equation to solve is (
dx
d t

)2

+ 5x2 = 8 (3.9)

with the initial conditions t = 0, x = 0.

(%i1) de: ’diff(x,t)ˆ2 + 5*xˆ2 - 8;
dx 2 2

(%o1) (--) + 5 x - 8
dt

(%i2) ode2(de,x,t);
dx 2 2

(%t2) (--) + 5 x - 8
dt

first order equation not linear in y’

(%o2) false

We see that direct use of ode2 does not succeed. We can use solve to get equations which are linear in the first derivative,
and then using ode2 on each of the resulting linear ODE’s.

(%i3) solve(de,’diff(x,t));
dx 2 dx 2

(%o3) [-- = - sqrt(8 - 5 x ), -- = sqrt(8 - 5 x )]
dt dt

(%i4) ode2 ( %[2], x, t );
5 x

asin(----------)
2 sqrt(10)

(%o4) ---------------- = t + %c
sqrt(5)
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(%i5) solve(%,x);
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)

(%o5) [x = --------------------------------------]
5

(%i6) gsoln2 : %[1];
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)

(%o6) x = --------------------------------------
5

(%i7) trigsimp ( ev (de,gsoln2,diff ) );
(%o7) 0
(%i8) psoln : ic1 (gsoln2, t=0, x=0);
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

2 sqrt(10) sin(sqrt(5) t)
(%o8) x = -------------------------

5
(%i9) xs : rhs(psoln);

2 sqrt(10) sin(sqrt(5) t)
(%o9) -------------------------

5
(%i10) xs,t=0;
(%o10) 0

We have selected only one of the linear ODE’s to concentrate on here. We have shown that the solution satisfies the
original differential equation and the given boundary condition.

3.4.4 Ex. 4: Linear Oscillator with Damping

The equation of motion for a particle of mass m executing one dimensional motion which is subject to a linear restoring
force proportional to |x| and subject to a frictional force proportional to its speed is

m
d2 x
d t2

+ b
dx
d t

+ kx = 0 (3.10)

Dividing by the mass m, we note that if there were no damping, this motion would reduce to a linear oscillator with the
angular frequency

ω0 =
(

k
m

)1/2

. (3.11)

In the presence of damping, we can define

γ =
b

2m
(3.12)

and the equation of motion becomes
d2 x
d t2

+ 2γ
dx
d t

+ ω2
0 x = 0 (3.13)

In the presence of damping, there are now two natural time scales

t1 =
1

ω0
, t2 =

1
γ

(3.14)

and we can introduce a dimensionless time θ = ω0 t and the dimensionless positive constant a = γ/ω0, to get

d2 x
dθ2 + 2a

dx
dθ

+ x = 0 (3.15)
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The “underdamped” case corresponds to γ < ω0, or a < 1 and results in damped oscillations around the final x = 0.
The “critically damped” case corresponds to a = 1, and the “overdamped” case corresponds to a > 1. We specialize to
solutions which have the initial conditions θ = 0, x = 1, dx/d t = 0 ⇒ dx/dθ = 0.

(%i1) de : ’diff(x,th,2) + 2*a*’diff(x,th) + x ;
2

d x dx
(%o1) ---- + 2 a --- + x

2 dth
dth

(%i2) for i thru 3 do
x[i] : rhs ( ic2 (ode2 (subst(a=i/2,de),x,th), th=0,x=1,diff(x,th)=0))$

(%i3) plot2d([x[1],x[2],x[3]],[th,0,10],
[style,[lines,4]],[ylabel," "],
[xlabel," Damped Linear Oscillator " ],
[gnuplot_preamble,"set zeroaxis lw 2"],
[legend,"a = 0.5","a = 1","a = 1.5"])$

which produces
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Figure 15: Damped Linear Oscillator

and illustrates why engineers seek the critical damping case, which brings the system to x = 0 most rapidly.
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Now for a phase space plot with dx/dth versus x, drawn for the underdamped case:

(%i4) v1 : diff(x[1],th)$
(%i5) fpprintprec:8$
(%i6) [x5,v5] : [x[1],v1],th=5,numer;
(%o6) [- 0.0745906, 0.0879424]
(%i7) plot2d ( [ [parametric, x[1], v1, [th,0,10],[nticks,80]],

[discrete,[[1,0]]], [discrete,[ [x5,v5] ] ] ],
[x, -0.4, 1.2],[y,-0.8,0.2], [style,[lines,3,7],

[points,3,2,1],[points,3,6,1] ],
[ylabel," "],[xlabel,"th = 0, x = 1, v = 0"],
[legend," v vs x "," th = 0 "," th = 5 "])$

which shows
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Figure 16: Underdamped Phase Space Plot

Using plotdf for the Damped Linear Oscillator

Let’s use plotdf to show the phase space plot of our underdamped linear oscillator, using the syntax

plotdf ( [dudt, dvdt],[u,v], options...)

which requires that we convert our single second order ODE to an equivalent pair of first order ODE’s. If we let
dx/dθ = v, assume the dimensionless damping parameter a = 1/2, we then have dv/dθ = −v − x, and we use
the plotdf syntax

plotdf ( [dxdth, dvdth], [x, v], options... ).

One has to experiment with the number of steps, the step size, and the horizontal and vertical views. The v(θ) values
determine the vertical position and the x(boldsymbolθ) values determine the horizontal position of a point on the phase
space plot curve. The symbols used for the horizontal and vertical ranges should correspond to the symbols used in the
second argument (here [x,v]). Since we want to get a phase space plot which agrees with our work above, we require
the trajectory begin at θ = 0, x = 1, v = 0, and we integrate forward in dimensionless time θ.
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(%i8) plotdf([v,-v-x],[x,v],[trajectory_at,1,0],
[direction,forward],[x,-0.4,1.2],[v,-0.6,0.2],
[nsteps,400],[tstep,0.01])$

This will bring up the phase space plot v vs. x, and you can thicken the red curve by clicking the Config button (which
brings up the Plot Setup panel), increasing the linewidth to 3, and then clicking ok. To actually see the thicker line, you
must then click on the Replot button. This plot is
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-0.25

0
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x

Figure 17: Underdamped Phase Space Plot Using plotdf

To see the separate curves v(θ) and x(θ), you can click on the Plot Versus t button. (The symbol t is simply a placeholder
for the independent variable, which in our case is θ.) Again, you can change the linewidth and colors (we changed green
to red) via the Config and Replot button process, which yields
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Figure 18: x(θ) and v(θ) Using plotdf



28

3.4.5 Ex. 5: Underdamped Linear Oscillator with Sinusoidal Driving Force

We extend our previous oscillator example by adding a sinusoidal driving force. The equation of motion is now

m
d2 x
d t2

+ b
dx
d t

+ kx = Acos(ω t) (3.16)

We again divide by the mass m and let

ω0 =
(

k
m

)1/2

. (3.17)

As before, we define

γ =
b

2m
. (3.18)

Finally, let B = A/m. The equation of motion becomes

d2 x
d t2

+ 2γ
dx
d t

+ ω2
0 x = Bcos(ω t) (3.19)

There are now three natural time scales

t1 =
1

ω0
, t2 =

1
γ

, t3 =
1
ω

(3.20)

and we can introduce a dimensionless time θ = ω0 t, the dimensionless positive damping constant a = γ/ω0, the di-
mensionless oscillator displacement y = x/B, and the dimensionless driving angular frequency q = ω/ω0 to get

d2 y
dθ2 + 2a

dy
dθ

+ y = cos(q θ) (3.21)

The “underdamped” case corresponds to γ < ω0, or a < 1, and we specialize to the case a = 1/2.

(%i1) de : ’diff(y,th,2) + ’diff(y,th) + y - cos(q*th);
2

d y dy
(%o1) ---- + --- + y - cos(q th)

2 dth
dth

(%i2) gsoln : ode2(de,y,th);
2

q sin(q th) + (1 - q ) cos(q th)
(%o2) y = --------------------------------

4 2
q - q + 1

- th/2 sqrt(3) th sqrt(3) th
+ %e (%k1 sin(----------) + %k2 cos(----------))

2 2
(%i3) psoln : ic2(gsoln,th=0,y=1,diff(y,th)=0);

2
q sin(q th) + (1 - q ) cos(q th)

(%o3) y = --------------------------------
4 2

q - q + 1
4 2 sqrt(3) th 4 sqrt(3) th

(q - 2 q ) sin(----------) q cos(----------)
- th/2 2 2

+ %e (--------------------------------- + ------------------)
4 2 4 2

sqrt(3) q - sqrt(3) q + sqrt(3) q - q + 1
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We now specialize to a high (dimensionless) driving angular frequency case, q = 4, which means that we are assuming
that the actual driving angular frequency is four times as large as the natural angular frequency of this oscillator.

(%i4) ys : subst(q=4,rhs(psoln));
sqrt(3) th sqrt(3) th

224 sin(----------) 256 cos(----------)
- th/2 2 2

(%o4) %e (------------------- + -------------------)
241 sqrt(3) 241

4 sin(4 th) - 15 cos(4 th)
+ --------------------------

241
(%i5) vs : diff(ys,th)$

We now plot both the dimensionless oscillator amplitude and the dimensionless oscillator velocity on the same plot.

(%i6) plot2d([ys,vs],[th,0,12],
[nticks,100],
[style,[lines,5]],
[legend," Y "," V "],
[xlabel," dimensionless Y and V vs. theta"])$
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Figure 19: Dimensionless Y and V versus Dimensionless Time θ

We see that the driving force soon dominates the motion of the underdamped linear oscillator, which is forced to
oscillate at the driving frequency. This dominance evidently has nothing to do with the actual strength A newtons of the
peak driving force, since we are solving for a dimensionless oscillator amplitude, and we get the same qualitative curve
no matter what the size of A is.
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We next make a phase space plot for the early “capture” part of the motion of this system. (Note that plotdf cannot
numerically integrate this differential equation because of the explicit appearance of the dependent variable.)

(%i7) plot2d([parametric,ys,vs,[th,0,8]],
[style,[lines,5]],[nticks,100],
[xlabel," V (vert) vs. Y (hor) "])$
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Figure 20: Dimensionless V Versus Dimensionless Y: Early History

We see the phase space plot being driven to regular oscillations about y = 0 and v = 0.

3.4.6 Ex. 6: Regular and Chaotic Motion of a Driven Damped Planar Pendulum

The motion is pure rotation in a fixed plane (one degree of freedom), and if the pendulum is a simple pendulum with all
the mass m concentrated at the end of a weightless support of length L, then the moment of inertia about the support point
is I = mL2, and the angular acceleration is α, and rotational dynamics implies the equation of motion

Iα = mL2 d2θ

d t2
= τ z = −mgLsin θ − c

dθ

d t
+ Acos(ωd t) (3.22)

We introduce a dimensionless time τ = ω0 t and a dimensionless driving angular frequency ω = ωd/ω0, where ω2
0 = g/L,

to get the equation of motion
d2θ

d τ 2
= −sin θ − a

dθ

d τ
+ bcos(ω τ ) (3.23)

To simplify the notation for our exploration of this differential equation, we make the replacements θ → u, τ → t, and
ω → w ( parameters a, b, and w are dimensionless) to work with the differential equation:

d2 u
d t2

= −sinu− a
du
d t

+ bcos(wt) (3.24)

where now both t and u are dimensionless, with the measure of u being radians, and the physical values of the pendulum
angle being limited to the range −π ≤ u ≤ π, both extremes being the “flip-over-point” at the top of the motion.

We will use both plotdf and rk to explore this system, with

du
d t

= v,
dv
d t

= −sinu− av + bcos(wt) (3.25)
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3.4.7 Free Oscillation Case

Using plotdf, the phase space plot for NO friction and NO driving torque is

(%i1) plotdf([v,-sin(u)],[u,v],[trajectory_at,float(2*%pi/3),0],
[direction,forward],[u,-2.5,2.5],[v,-2.5,2.5],
[tstep, 0.01],[nsteps,600])$
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Figure 21: No Friction, No Driving Torque: V Versus Angle U

and now we use the Plot Versus t button of plotdf to show the angle u radians and the dimensionless rate of change of
angle v

0 2 4 6 8 10

-2

-1

0

1

2

u

v

t

Figure 22: No Friction, No Driving Torque: Angle U [blue] and V [red]
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3.4.8 Damped Oscillation Case

We now include some damping with a = 1/2.

(%i2) plotdf([v,-sin(u)-0.5*v],[u,v],[trajectory_at,float(2*%pi/3),0],
[direction,forward],[u,-1,2.5],[v,-1.5,1],
[tstep, 0.01],[nsteps,450])$
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Figure 23: With Friction, but No Driving Force: V Versus Angle U

and now we use the Plot Versus t button of plotdf to show the angle u radians and the dimensionless rate of change of
angle y for the friction present case.
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Figure 24: With Friction, but No Driving Force: Angle U [blue] and V [red]



33

3.4.9 Including a Sinusoidal Driving Torque

We now use the Runge-Kutta function rk to integrate the differential equation set forward in time for ncycles, which
is the same as setting the final dimensionless tmax equal to ncycles*2*%pi/w, or ncycles*T, where we can call
T the dimensionless period defined by the dimensionless angular frequency w. The physical meaning of T is the ratio of
the period of the driving torque to the period of unforced and undamped small oscillations of the free simple pendulum.

For simplicity of exposition, we will call t the “time” and T the “period”. We again use our homemade function fll
described in the preface.

One cycle (period) of time is divided into nsteps subdivisions, so dt = T/nsteps.

For both the regular and chaotic parameter cases, we have used the same parameters as used in Mathematica in Theo-
retical Physics, by Gerd Baumann, Springer/Telos, 1996, pages 46 - 53.

3.4.10 Regular Motion Parameters Case

We find regular motion of this driven system with a = 0.2, b = 0.52, and w = 0.694, and with u0 = 0.8 rad,
and v0 = 0.8 rad/unit-time.

(%i1) fpprintprec:8$
(%i2) (nsteps : 31, ncycles : 30, a : 0.2, b : 0.52, w : 0.694)$
(%i3) [dudt : v, dvdt : -sin(u) - a*v + b*cos(w*t),

T : float(2*%pi/w ) ];
(%o3) [v, - 0.2 v - sin(u) + 0.52 cos(0.694 t), 9.0535811]
(%i4) [dt : T/nsteps, tmax : ncycles*T ];
(%o4) [0.292051, 271.60743]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt])$
(%i6) %, fll;
(%o6) [[0, 0.8, 0.8], [271.60743, - 55.167003, 1.1281164], 931]
(%i7) 930*dt;
(%o7) 271.60743

Plot of u(t) and v(t)

Plot of u(t) and v(t) against t

(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,length(tuvL))$
(%i9) %, fll;
(%o9) [[0, 0.8], [271.60743, - 55.167003], 931]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]],i,1,length(tuvL))$
(%i11) %, fll;
(%o11) [[0, 0.8], [271.60743, 1.1281164], 931]
(%i12) plot2d([ [discrete,tuL], [discrete,tvL]],[x,0,280],

[style,[lines,3]],[xlabel,"t"],
[legend, "u", "v"],
[gnuplot_preamble,"set key bottom left;"])$
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which produces
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Figure 25: Angle u(t) and v(t)

The above plot shows nine flips of the pendulum at the top:
the first passage over the top at u = -3 pi/2 = -4.7 rad,
the second passage over the top at u = -7 pi/2 = -11 rad ,
and so on.

Phase Space Plot

We next construct a phase space plot.

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]],i,1,length(tuvL))$
(%i14) %, fll;
(%o14) [[0.8, 0.8], [- 55.167003, 1.1281164], 931]
(%i15) plot2d ( [discrete,uvL],[x,-60,5],[y,-5,5],

[style,[lines,3]],
[ylabel," "],[xlabel," v vs u "] )$

which produces (note that we include the early points which are more heavily influenced by the initial conditions):
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Figure 26: Non-Reduced Phase Space Plot
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Reduced Phase Space Plot

Let’s define a Maxima function reduce which brings u back to the interval (-pi, pi ) and then make a reduced phase space
plot. Since this is a strictly numerical task, we can simplify Maxima’s efforts by defining a floating point number pi once
and for all, and simply work with that definition. You can see the origin of our definition of reduce in the manual’s
entry on Maxima’s modulus function mod.

(%i16) pi : float(%pi);
(%o16) 3.1415927
(%i17) reduce(yy) := pi - mod (pi - yy,2*pi)$
(%i18) float( [-7*%pi/2,-3*%pi/2 ,3*%pi/2, 7*%pi/2] );
(%o18) [- 10.995574, - 4.712389, 4.712389, 10.995574]
(%i19) map(’reduce, % );
(%o19) [1.5707963, 1.5707963, - 1.5707963, - 1.5707963]
(%i20) uvL_red : makelist ( [ reduce( tuvL[i][2]),

tuvL[i][3]],i,1,length(tuvL))$
(%i21) %, fll;
(%o21) [[0.8, 0.8], [1.3816647, 1.1281164], 931]

To make a reduced phase space plot with our reduced regular motion points, we will only use the last two thirds of the
pairs (u,v). This will then show the part of the motion which has been “captured” by the driving torque and shows little
influence of the initial conditions.

We use the Maxima function rest (list, n) which returns list with its first n elements removed if n is positive. Thus we
use rest (list, num/3) to get the last two thirds.

(%i22) uvL_regular : rest (uvL_red, round(length (uvL_red)/3) )$
(%i23) %, fll;
(%o23) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 621]
(%i24) plot2d ( [discrete,uvL_regular],[x,-3.2,3.2],[y,-3.2,3.2],

[style,[lines,2]],
[ylabel," "],[xlabel,"reduced phase space v vs u "] )$

which produces
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Figure 27: Reduced Phase Space Plot of Regular Motion Points
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Poincare Plot

We next construct a Poincare plot of the regular (reduced) phase space points by using a “stroboscopic view” of this phase
space, displaying only phase space points which correspond to times separated by the driving period T. We select (u,v)
pairs which correspond to intervals of time n*T, where n = 10, 11, ..., 30 which will give us 21 phase space
points for our plot (this is roughly the same as taking the last two thirds of the points).

The time t = 30*T corresponds to t = 30*31*dt = 930*dt which is the time associated with element 931,
the last element) of uvL_red. The value of j used to select the last Poincare point is the solution of the equation
1 + 10*nsteps + j*nsteps = 1 + ncycles*nsteps, which for this case is equivalent to
311 + j*31 = 931.

(%i25) solve(311 + j*31 = 931);
(%o25) [j = 20]
(%i26) pL : makelist (1+10*nsteps + j*nsteps, j, 0, 20);
(%o26) [311, 342, 373, 404, 435, 466, 497, 528, 559, 590, 621, 652, 683, 714,

745, 776, 807, 838, 869, 900, 931]
(%i27) length(pL);
(%o27) 21
(%i28) poincareL : makelist (uvL_red[i], i, pL)$
(%i29) %,fll;
(%o29) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 21]
(%i30) plot2d ( [discrete,poincareL],[x,-0.5,2],[y,-1.5,1.5],

[style,[points,1,1,1 ]],
[ylabel," "],[xlabel," Poincare Section v vs u "] )$

which produces the plot
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Figure 28: Reduced Phase Space Plot of Regular Motion Points

For this regular motion parameters case, the Poincare plot shows the phase space point coming back to one of three
general locations in phase space at times separated by the period T.
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3.4.11 Chaotic Motion Parameters Case.

To exhibit an example of chaotic motion for this system, we use the same initial conditions for u and v, but use the
parameter set a = 1/2, b = 1.15, w = 2/3.

(%i1) fpprintprec:8$
(%i2) (nsteps : 31, ncycles : 240, a : 1/2, b : 1.15, w : 2/3)$
(%i3) [dudt : v, dvdt : -sin(u) - a*v + b*cos(w*t),

T : float(2*%pi/w ) ];
v 2 t

(%o3) [v, - - - sin(u) + 1.15 cos(---), 9.424778]
2 3

(%i4) [dt : T/nsteps, tmax : ncycles*T ];
(%o4) [0.304025, 2261.9467]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt])$
(%i6) %, fll;
(%o6) [[0, 0.8, 0.8], [2261.9467, 26.374502, 0.937008], 7441]
(%i7) dt*( last(%) - 1 );
(%o7) 2261.9467
(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,length(tuvL))$
(%i9) %, fll;
(%o9) [[0, 0.8], [2261.9467, 26.374502], 7441]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]],i,1,length(tuvL))$
(%i11) %, fll;
(%o11) [[0, 0.8], [2261.9467, 0.937008], 7441]
(%i12) plot2d([ [discrete,tuL], [discrete,tvL]],[x,0,2000],

[y,-15,30],
[style,[lines,2]],[xlabel,"t"], [ylabel, " "],
[legend, "u","v" ] ,[gnuplot_preamble,"set key bottom;"])$

which produces a plot of u(t) and v(t) over 0 <= t <= 2000:
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Figure 29: Angle u(t), and v(t) for Chaotic Parameters Choice
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Phase Space Plot

We next construct a non-reduced phase space plot, but show only the first 2000 reduced phase space points.

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]],i,1,length(tuvL))$
(%i14) %, fll;
(%o14) [[0.8, 0.8], [26.374502, 0.937008], 7441]
(%i15) uvL_first : rest(uvL, -5441)$
(%i16) %, fll;
(%o16) [[0.8, 0.8], [23.492001, 0.299988], 2000]
(%i17) plot2d ( [discrete,uvL_first],[x,-12,30],[y,-3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel," v vs u "])$

which produces
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Figure 30: non-reduced phase space plot using first 2000 points

If we use the discrete default style option lines instead of points,

(%i18) plot2d ( [discrete,uvL_first],[x,-12,30],[y,-3,3],
[ylabel," "],[xlabel," v vs u "])$

we get the non-reduced phase space plot drawn with lines between the points:
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Figure 31: non-reduced phase space plot using first 2000 points
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Reduced Phase Space Plot

We now construct the reduced phase space points as in the regular motion case and then omit the first 400.

(%i19) pi : float(%pi);
(%o19) 3.1415927
(%i20) reduce(yy) := pi - mod (pi - yy,2*pi)$
(%i21) uvL_red : makelist ( [ reduce( first( uvL[i] )),

second( uvL[i] ) ],i,1,length(tuvL))$
(%i22) %, fll;
(%o22) [[0.8, 0.8], [1.2417605, 0.937008], 7441]
(%i23) uvL_cut : rest(uvL_red, 400)$
(%i24) %, fll;
(%o24) [[0.25464, 1.0166641], [1.2417605, 0.937008], 7041]

We have discarded the first 400 reduced phase space points in defining uvL_cut. If we now only plot the first 1000 of
the points retained in uvL_cut:

(%i25) uvL_first : rest (uvL_cut, -6041)$
(%i26) %, fll;
(%o26) [[0.25464, 1.0166641], [2.2678603, 0.608686], 1000]
(%i27) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

we get the plot
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Figure 32: 1000 points reduced phase space plot

and the same set of points drawn with the default lines option:

(%i28) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$
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produces the plot
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Figure 33: 1000 points reduced phase space plot

3000 point phase space plot

We next draw the same reduced phase space plot, but use the first 3000 points of uvL_cut.

(%i29) uvL_first : rest (uvL_cut, -4041)$
(%i30) %, fll;
(%o30) [[0.25464, 1.0166641], [- 2.2822197, - 0.532184], 3000]
(%i31) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces
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Figure 34: 3000 points reduced phase space plot
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and again, the same set of points drawn with the default lines option

(%i32) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces the plot
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Figure 35: 3000 points reduced phase space plot
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Poincare Plot

We now construct the Poincare section plot as before, using all the points available in uvL_red.

(%i33) pL : makelist(1+10*nsteps + j*nsteps, j, 0, ncycles - 10)$
(%i34) %, fll;
(%o34) [311, 7441, 231]
(%i35) poincareL : makelist(uvL_red[i], i, pL)$
(%i36) %, fll;
(%o36) [[- 2.2070801, 1.3794391], [1.2417605, 0.937008], 231]
(%i37) plot2d ( [discrete,poincareL],[x,-3,3],[y,-4,4],

[style,[points,1,1,1]],
[ylabel," "],[xlabel," Poincare Section v vs u "] )$

which produces the plot
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Figure 36: 231 poincare section points
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3.5 Using contrib ode for ODE’s

The syntax of contrib ode is the same as ode. Let’s first solve the same first order ODE example used in the first sections.

(%i1) de : ’diff(u,t)- u - exp(-t);
du - t

(%o1) -- - u - %e
dt

(%i2) gsoln : ode2(de,u,t);
- 2 t

%e t
(%o2) u = (%c - -------) %e

2
(%i3) contrib_ode(de,u,t);

du - t
(%o3) contrib_ode(-- - u - %e , u, t)

dt
(%i4) load(’contrib_ode);
(%o4) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/contrib/diffequations/c\
ontrib_ode.mac
(%i5) contrib_ode(de,u,t);

- 2 t
%e t

(%o5) [u = (%c - -------) %e ]
2

(%i6) ode_check(de, %[1] );
(%o6) 0

We see that contrib_ode, with the same syntax as ode, returns a list (here with one solution, but in general more than
one solution) rather than simply one answer.

Moreover, the package includes the Maxima function ode check which can be used to confirm the general solution.

Here is a comparison for our second order ODE example.

(%i7) de : ’diff(u,t,2) - 4*u;
2
d u

(%o7) --- - 4 u
2

dt
(%i8) gsoln : ode2(de,u,t);

2 t - 2 t
(%o8) u = %k1 %e + %k2 %e
(%i9) contrib_ode(de,u,t);

2 t - 2 t
(%o9) [u = %k1 %e + %k2 %e ]
(%i10) ode_check(de, %[1] );
(%o10) 0

Here is an example of an ODE which ode2 cannot solve, but contrib ode can solve.

(%i11) de : ’diff(u,t,2) + ’diff(u,t) + t*u;
2

d u du
(%o11) --- + -- + t u

2 dt
dt

(%i12) ode2(de,u,t);
(%o12) false
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(%i13) gsoln : contrib_ode(de,u,t);
3/2

1 (4 t - 1) - t/2
(%o13) [u = bessel_y(-, ------------) %k2 sqrt(4 t - 1) %e

3 12
3/2

1 (4 t - 1) - t/2
+ bessel_j(-, ------------) %k1 sqrt(4 t - 1) %e ]

3 12
(%i14) ode_check(de, %[1] );
(%o14) 0

This section will probably be augmented in the future with more examples of using contrib ode.
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4 Solving Equations
Maxima has several functions which can be used for solving sets of algebraic equations and for �nding the
roots of an expression. These are described in the Maxima manual, Sec. 21, and listed under �Contents� under
�Equations�.

This chapter gives examples of the following Maxima functions:

• solve solves a system of simultaneous linear or nonlinear polynomial equations for the speci�ed vari-
able(s) and returns a list of the solutions.

• linsolve solves a system of simultaneous linear equations for the speci�ed variables and returns a list of
the solutions.

• �nd root uses a combination of binary search and Newton-Raphson methods for univariate functions
and will �nd a root when provided with an interval containing at least one root.

• allroots �nds all the real and complex roots of a real univariate polynomial.

• realroots �nds all of the real roots of a univariate polynomial within a speci�ed tolerance.

• eliminate eliminates variables from a set of equations or expressions.

• linsolve by lu solves a system of linear algebraic equations by the matrix method known as �LU decom-
position�, and provides a Maxima method to work with a set of linear equations in terms of the matrix of
coef�cients.

• newton, naive univariate Newton-Raphson, and mnewton, multivariate Newton-Raphson, can deal with
nonlinear function(s).

We also encourage the use of two dimensional plots to approximately locate solutions.

This chapter does not yet include �Solving Recurrence Relations�, and �Solving One Hundred Equations�.

4.1 One Equation or Expression: Symbolic Solution or Roots
4.1.1 The Maxima Function solve
Maxima's ability to solve equations is limited, but progress is being made in this area. The Maxima man-
ual has an extensive entry for the important function solve, which you can view in Maxima with the input
? solve (no semicolon) followed by (Enter), or the equivalent command: describe(solve)$. The in-
put example(solve)$ will show you the manual examples without the manual syntax material. We will
present some examples of the use of solve and not try to cover �everything�.
solve tries to �nd exact solutions. If solve(f(x),x) cannot �nd an exact solution, solve tries to return a
simpli�ed version of the original problem. Sometimes the �simpli�ed� version can be useful:

(%i1) f(x);
(%o1) f(x)
(%i2) solve( f(x)�2-1 , x );
(%o2) [f(x) = - 1, f(x) = 1]

Since Maxima's idea of what is �simpler� may not agree with your own, often the returned version is of no use.
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The Maxima manual solve syntax discussion relevant to solving one equation is:

Function: solve(expr, x)
Function: solve(expr)
Solves the algebraic equation expr for the variable x and returns a list of solution equations in x. If expr
is not an equation, the equation expr = 0 is assumed in its place. x may be a function (e.g. f(x)), or
other non-atomic expression except a sum or product. x may be omitted if expr contains only one variable.
expr may be a rational expression, and may contain trigonometric functions, exponentials, etc.
breakup if false will cause solve to express the solutions of cubic or quartic equations as single
expressions rather than as made up of several common subexpressions which is the default.
multiplicities will be set to a list of the multiplicities of the individual solutions returned by solve,
realroots, or allroots.
Try apropos (solve) for the switches which affect solve. describe may then by used on the
individual switch names if their purpose is not clear.

It is important to recognise that the �rst argument to solve is either an equation such as f(x) = g(x) (or
h(x) = 0), or simply h(x); in the latter case, solve understands that you mean the equation h(x) = 0,
and the problem is to �nd the �roots� of h(x), ie., values of x such that the equation h(x) = 0 is satis�ed.

Here we follow the manual suggestion about using apropos and describe:

(%i1) apropos(solve);
(%o1) [solve, solvedecomposes, solveexplicit, solvefactors, solvenullwarn,

solveradcan, solvetrigwarn, solve_inconsistent_error]
(%i2) describe(solveradcan)$
-- Option variable: solveradcan

Default value: `false'

When `solveradcan' is `true', `solve' calls `radcan' which makes
`solve' slower but will allow certain problems containing
exponentials and logarithms to be solved.

(%i3) describe(solvetrigwarn)$
-- Option variable: solvetrigwarn

Default value: `true'

When `solvetrigwarn' is `true', `solve' may print a message saying
that it is using inverse trigonometric functions to solve the
equation, and thereby losing solutions.

4.1.2 solve with Expressions or Functions & the multiplicities List
Let's start with a simple example where the expected answers are obvious and check the behavior of solve. In
particular we want to check solve's behavior with both an expression and a function (de�ned via :=). We also
want to check how the system list multiplicities is created and maintained. We include the use of realroots
and allroots in this comparison, even though we will not have to use these latter two functions for a while.

(%i1) multiplicities;
(%o1) not_set_yet
(%i2) ex1 : x�2 - 2*x + 1;

2
(%o2) x - 2 x + 1
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(%i3) factor(ex1);
2

(%o3) (x - 1)
(%i4) g(x) := x�2 - 2*x + 1$
(%i5) g(y);

2
(%o5) y - 2 y + 1
(%i6) solve(ex1);
(%o6) [x = 1]
(%i7) multiplicities;
(%o7) [2]
(%i8) solve(g(y));
(%o8) [y = 1]
(%i9) multiplicities;
(%o9) [2]
(%i10) realroots(ex1);
(%o10) [x = 1]
(%i11) multiplicities;
(%o11) [2]
(%i12) allroots(ex1);
(%o12) [x = 1.0, x = 1.0]
(%i13) multiplicities;
(%o13) [2]

We see that we can use either an expression or a function with solve, and you can check that this also applies
to realroots and allroots. It is not clear from our use of allroots above how allroots affects multiplicities,
although, as we will see later, the manual does not assert any connection, and we would not expect there to be a
connection because allroots returns multiple roots explicitly in %o12. Just to make sure, let's restart Maxima
and use only allroots:

(%i1) multiplicities;
(%o1) not_set_yet
(%i2) allroots(x�2 - 2*x + 1);
(%o2) [x = 1.0, x = 1.0]
(%i3) multiplicities;
(%o3) not_set_yet

As we expected, allroots does not affect multiplicities; only solve and realroots set its value.

4.1.3 General Quadratic Equation or Function
To get our feet wet, lets turn on the machinery with a general quadratic equation or expression. There are
some differences if you employ an expression rather than a function de�ned with :=. Each method has some
advantages and some disadvantages. Let's �rst use the function argument, rather than an expression argument.
We will later show how the calculation is different if an expression is used. We will step through the process of
verifying the solutions and end up with a �do loop� which will check all the solutions. We will use a function
f(x) which depends parametrically on (a,b,c) as the �rst argument to solve, and �rst see what happens if
we don't identify the unknown: how smart is Maxima??

(%i1) f(x) := a*x�2 + b*x + c$
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(%i2) f(y);
2

(%o2) a y + b y + c
(%i3) sol : solve( f(x) );
More unknowns than equations - `solve'
Unknowns given :
[a, x, b, c]
Equations given:

2
[a x + b x + c]
-- an error. To debug this try debugmode(true);

We see that Maxima cannot read our mind! We must tell Maxima which of the four symbols is to be considered
the �unknown�. From Maxima's point of view (actually the point of view of the person who wrote the code),
one equation cannot determine four unknowns, so we must supply the information about which of the four
variables is to be considered the unknown.

(%i4) sol : solve( f(x),x );
2 2

sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(%o4) [x = - --------------------, x = --------------------]

2 a 2 a

We see that solve returns the expected list of two possible symbolic solutions.

4.1.4 Checking Solutions with subst or ev and a �Do Loop�
Let's check the �rst solution:

(%i5) s1 : sol[1];
2

sqrt(b - 4 a c) + b
(%o5) x = - --------------------

2 a

Now we can use the subst( x = x1, f(x) ) form of the subst function syntax.

(%i6) r1 : subst(s1, f(x) );
2 2 2

(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)
(%o6) ----------------------- - ------------------------ + c

4 a 2 a
(%i7) expand(r1);
(%o7) 0

Now that we understand what steps lead to the desired �0�, we automate the process using a do loop:

(%i8) for i:1 thru 2 do disp( expand( subst( sol[i], f(x) ) ) )$
0
0

For each of the two solutions (for x) found by Maxima, the given expression evaluates to zero, verifying the
roots of the expression.
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Since the result (here) of using ev( f(x), sol[i]) is the same as using subst( sol[i], f(x) ),
we can use ev instead:

(%i9) for i:1 thru 2 do disp( expand( ev(f(x), sol[i]) ))$
0
0

4.1.5 The One Argument Form of solve
The simple one-argument form of solve can be used if all but one of the symbols in the expression is already
�bound�.

(%i10) solve(3*x -2);
2

(%o10) [x = -]
3

(%i11) (a:1, b:2, c:3)$
(%i12) [a,b,c];
(%o12) [1, 2, 3]
(%i13) solve(a*x�2 + b*x + c);
(%o13) [x = - sqrt(2) %i - 1, x = sqrt(2) %i - 1]
(%i14) [a,b,c] : [4,5,6];
(%o14) [4, 5, 6]
(%i15) solve(a*x�2 + b*x + c);

sqrt(71) %i + 5 sqrt(71) %i - 5
(%o15) [x = - ---------------, x = ---------------]

8 8
(%i16) [a,b,c] : [4,5,6];
(%o16) [4, 5, 6]

4.1.6 Using disp, display, and print
We have seen above examples of using disp, which can be used to print out the values of symbols or text, and
display, which can be used to print out the name of the symbol and its value in the form of an equation:
�x = value�.
Here is the do loop check of the roots of the quadratic found above using print instead of disp.
However, we need to be careful, because we are using a function f(x) rather than an expression. We have just
assigned the values of a, b, and c, and we want f(x) to have arbitrary values of these parameters.

(%i17) [a,b,c];
(%o17) [4, 5, 6]
(%i18) f(x);

2
(%o18) 4 x + 5 x + 6
(%i19) kill(a,b,c);
(%o19) done
(%i20) [a,b,c];
(%o20) [a, b, c]
(%i21) f(x);

2
(%o21) a x + b x + c
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(%i22) sol;
2 2

sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(%o22) [x = - --------------------, x = --------------------]

2 a 2 a
(%i23) for i:1 thru 2 do print("expr = ", expand( subst(sol[i],f(x) ) ) )$
expr = 0
expr = 0

Here we use disp to display a title for the do loop:

(%i24) ( disp("check roots"), for i thru 2 do
print("expr = ", expand( subst( sol[i],f(x) ) ) ) )$

check roots

expr = 0
expr = 0

The only tricky thing about this kind of code is getting the parentheses to balance. Note that that expand(...) is
inside print, so the syntax used is do print(... ), ie., a �one job do �. The outside parentheses allow the syntax
( job1, job2 ). Note also that the default start of the do loop index is �1�, so we can use an abbreviated
syntax that does not have the i:1 beginning.

4.1.7 Checking Solutions using map
One advantage of using a function f(x) de�ned via := as the �rst argument to solve is that it is fairly easy
to check the roots by using the map function. We want to use the syntax map( f, solnlist}, where
solnlist is a list of the roots (not a list of replacement rules). To get the solution list we can again use map
with the syntax map(rhs, sol}.

(%i25) solnlist : map( rhs, sol );
2 2

sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(%o25) [- --------------------, --------------------]

2 a 2 a
(%i26) map( f, solnlist );

2 2 2
(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)

(%o26) [----------------------- - ------------------------ + c,
4 a 2 a

2 2 2
(sqrt(b - 4 a c) - b) b (sqrt(b - 4 a c) - b)
----------------------- + ------------------------ + c]

4 a 2 a
(%i27) expand(%);
(%o27) [0, 0]
(%i28) expand( map(f, map(rhs, sol) ) );
(%o28) [0, 0]

The last input %i27 shows a compact method which avoids having to name the �solnlist� and which also
avoids having to look at the intermediate output. When you see someone's example written in a compact form
like this, you should realize that the �someone� probably tried out the progression of steps one step at a time
(just like we did) to see the correct route, and once the path to the result has been found, reduced the result to
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the minimum number of steps and names. Often, one does not know in advance which progression of steps
will succeed, and one must experiment before �nding the �true path�. You should �take apart� the compact
code, by reading from the inside out (ie., from right to left), and also try getting the result one step at a time to
get comfortable with the method and notation being used.

4.1.8 Psuedo-PostFix Code: %%
An alternative �psuedo-post�x� (ppf) notation can be used which allows one to read the line from left to right,
following the logical succession of procedures being used. Although this ppf notation costs more in keystrokes
(an extra pair of outside parentheses, extra commas, and entry of double percent signs %%), the resulting code is
usually easier for beginners to follow, and it is easier to mentally balance parentheses as well. As an example,
the previous double map check of the roots can be carried out as:

(%i29) ( map(rhs,sol), map(f,%%), expand(%%) );
(%o29) [0, 0]

Note the beginning and ending parentheses for the whole �line� of input, with the syntax:
( job1, job2(%%), job3(%%),... ). The system variable %% has the manual description (in part):

System variable: %%
In compound statements, namely block, lambda, or (s_1, ..., s_n), %% is the value of the previ-
ous statement.

4.1.9 Using an Expression Rather than a Function with Solve
Let's rework the general quadratic equation solution, including the checks of the solutions, using an expression
ex rather than a function f(x) de�ned using :=.

(%i1) ex : a*x�2 + b*x + c$
(%i2) sol : solve( ex, x );

2 2
sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b

(%o2) [x = - --------------------, x = --------------------]
2 a 2 a

(%i3) s1 : sol[1];
2

sqrt(b - 4 a c) + b
(%o3) x = - --------------------

2 a
(%i4) r1 : subst(s1, ex );

2 2 2
(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)

(%o4) ----------------------- - ------------------------ + c
4 a 2 a

(%i5) expand(r1);
(%o5) 0
(%i6) for i:1 thru 2 do disp( expand( subst( sol[i], ex ) ) )$

0
0

(We could have also used ev instead of subst.)
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Thus far, the methods have been similar. If we now bind the values of (a,b,c), as we did in the middle
of our solutions using f(x), what is the difference?

(%i7) [a,b,c] : [1,2,3]$
(%i8) [a,b,c];
(%o8) [1, 2, 3]
(%i9) ex;

2
(%o9) a x + b x + c

We see that the symbol ex remains bound to the same general expression. The symbol ex retains its original
binding. We can make use of the values given to (a,b,c) with the expression ex by using two single quotes,
which forces an extra evaluation of the expression ex by the Maxima engine, and which then makes use of the
extra information about (a,b,c).

(%i10) ''ex;
2

(%o10) x + 2 x + 3
(%i11) ex;

2
(%o11) a x + b x + c

Forcing the extra evaluation in %10 does not change the binding of ex. Now let's try to check the solutions
using map, as we did before. To use map we need a function, rather than an expression to map on a solution
list. Let's try to de�ne such a function f(x) using the expression ex.

(%i12) f(x);
(%o12) f(x)
(%i13) f(x) := ex;
(%o13) f(x) := ex
(%i14) f(y);

2
(%o14) a x + b x + c
(%i15) f(x) := ''ex;

2
(%o15) f(x) := a x + b x + c
(%i16) f(y);

2
(%o16) y + 2 y + 3
(%i17) kill(a,b,c);
(%o17) done
(%i18) f(y);

2
(%o18) a y + b y + c
(%i19) solnlist : map(rhs,sol);

2 2
sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b

(%o19) [- --------------------, --------------------]
2 a 2 a
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(%i20) map(f,solnlist);
2 2 2

(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)
(%o20) [----------------------- - ------------------------ + c,

4 a 2 a
2 2 2

(sqrt(b - 4 a c) - b) b (sqrt(b - 4 a c) - b)
----------------------- + ------------------------ + c]

4 a 2 a
(%i21) expand(%);
(%o21) [0, 0]

Output %14 showed that the syntax f(x) := ex did not succeed in de�ning the function we need. The input
f(x) := ''ex suceeded in getting a true function of x, but now the function f(x) automatically makes
use of the current binding of (a,b,c), so we had to kill those values to get a function with arbitrary values
of (a,b,c). Having the function in hand, we again used the map function twice to check the solutions. Now
that we have discovered the �true path�, we can restart Maxima and present the method as:

(%i1) ex : a*x�2 + b*x + c$
(%i2) sol : solve( ex, x );

2 2
sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b

(%o2) [x = - --------------------, x = --------------------]
2 a 2 a

(%i3) f(x) := ''ex$
(%i4) expand ( map(f, map(rhs, sol) ) );
(%o4) [0, 0]

We can also use the (generally safer) syntax define( f(x),ex ); to obtain a true function of x:

(%i5) define( f(x),ex );
2

(%o5) f(x) := a x + b x + c
(%i6) f(y);

2
(%o6) a y + b y + c
(%i7) expand ( map(f, map(rhs, sol) ) );
(%o7) [0, 0]

We can also use the unnamed, anonymous function lambda to avoid introducing needless names, like �f�:

(%i8) expand( map(lambda([x],''ex), map(rhs,sol) ) );
(%o8) [0, 0]

4.1.10 Escape Speed from the Earth

In this section we solve a physics problem which involves a simple quadratic equation. It is so simple that �do-
ing it� on paper is faster than doing it with Maxima. In fact, once you understand the plan of the calculation,
you can come up with the �nal formula for the escape speed in your head. However, we will present practical
details of setup and evaluation which can be used with more messy problems, when you might want to use
Maxima.

Let's use conservation of mechanical energy (kinetic plus potential) to �rst calculate the initial radial speed
a rocket must have near the surface of the earth to achieve a �nal required radial speed far from the earth (far
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enough away so we can neglect earth's gravitational pull).
Let the mass of the rocket be m, the mass of the earth be M, the radius of the earth be R, a general radial distance
from the center of the earth be r >= R, a general radial rocket speed be v, the maximum speed of the rocket
near the surface of the earth be v0, and the �nal radial speed of the rocket (as r becomes in�nite) be vf.

At a general distance r from the center of the earth the rocket has kinetic energy ke = m*v�2/2, and
gravitational energy pe = -G*M*m/r, where G is the gravitational constant:
(G = 6.673 10�(-11) newton*meter�2/kg�2).

(%i1) energy : m*v�2/2 - G*M*m/r;
2

m v m G M
(%o1) ---- - -----

2 r

The initial energy e0 corresponds to the energy the rocket has achieved at the moment of maximum radial
speed: this will occur at a radius r slightly larger than the radius of the earth R, but negligible error to the
required �lift-off speed� v0 will be made by ignoring this difference in radius. (You can justify this as a
good approximation by getting the answer when including this small difference, and comparing the percent
difference in the answers.)

(%i2) e0 : energy,v=v0,r=R;
2

m v0 m G M
(%o2) ----- - -----

2 R

As the rocket �rises�, r becomes larger, and the magnitude of the gravitational energy becomes smaller. The
��nal� energy efinal will be the energy when the gravitational energy is so small that we can ignore it; in
practice this will occur when the magnitude of the gravitational energy is much smaller than the magnitude of
the inital gravitational energy. The radial outward speed of the rocket then remains a constant value vf.

(%i3) efinal : limit(energy,r,inf),v=vf;
2

m vf
(%o3) -----

2

If we neglect the loss of mechanical energy due to friction in leaving the earth's atmosphere, and also neglect
other tiny effects like the gravitational interaction between the moon and the rocket, the sun and the rocket,
etc, then we can approximately say that the total mechanical energy (as we have de�ned it) of the rocket is a
constant, once chemical energy used to increase the rocket's speed is no longer a factor (which occurs at the
moment of maximum radial speed).
We can then get one equation by approximately equating the mechanical energy of the rocket just after achiev-
ing maximum speed to the mechanical energy of the rocket when r is so large that we can ignore the instanta-
neous gravitational energy contribution.

(%i4) v0soln : solve(efinal = e0,v0);
2 G M 2 2 G M 2

(%o4) [v0 = - sqrt(----- + vf ), v0 = sqrt(----- + vf )]
R R
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(%i5) v0soln : v0soln[2];
2 G M 2

(%o5) v0 = sqrt(----- + vf )
R

(%i6) v0;
(%o6) v0
(%i7) v0 : rhs( v0soln );

2 G M 2
(%o7) sqrt(----- + vf )

R

This provides the required �lift-off� speed near the surface of the earth to achieve a given �nal radial speed vf.
We now want to �nd the �escape speed�, the minimum value of the lift-off speed which will allow the rocket
to escape the gravitational pull of the earth. Any rocket which has a radial speed when r is effectively in�nite
will succeed in escaping, no matter how small that radial speed is. The limiting initial speed is then gotten by
taking the limit of v0 as vf goes to zero.

(%i8) vescape : ev( v0, vf = 0 );
G M

(%o8) sqrt(2) sqrt(---)
R

Uing the mass of the earth, M = 5.974 10�(24) kg, and the radius of the earth,
R = 6.378 10�(6) meters, we get an escape speed 11,181 m/s = 11.18 km/s.

(%i09) ev( vescape, [G=6.673e-11,M=5.974e24,R=6.378e6] );
(%o09) 7905.892670345354 sqrt(2)
(%i10) float(%);
(%o10) 11180.62063706845

We have rounded the answer to four signi�cant �gures, since that is the accuracy of the Earth data and gravita-
tional constant we have used.
If we need to use a set of physical or numerical constants throughout a session, we can de�ne a list of �equali-
ties�, say clist, and use as follows:

(%i11) clist : [G=6.673e-11,M=5.974e24,R=6.378e6];
(%o11) [G = 6.6729999999999999E-11, M = 5.9740000000000004E+24, R = 6378000.0]
(%i12) ev( vescape, clist, float );
(%o12) 11180.62063706845

Note that adding the option variable �oat as a switch (equivalent to float:true), gets the sqrt(2) in
�oating point.

Looking at all those digits is unnecessary; set fpprintprec to something reasonable (this only affects the
numbers presented on the screen, not the accuracy of the calculation):

(%i13) fpprintprec:8$
(%i14) ev( vescape, clist, float );
(%o14) 11180.621
(%i15) clist;
(%o15) [G = 6.673E-11, M = 5.974E+24, R = 6378000.0]
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4.1.11 Cubic Equation or Expression
Here is an example of using solve to �solve� a cubic equation, or, in the alternative language, �nd the roots
of a cubic expression. After checking the roots via the map function, we assign the values of the roots to the
symbols(x1,x2,x3). The cubic expression we choose is especially simple, with no arbitrary parameters, so
we can use the one argument form of solve.

(%i1) ex : x�3 + x�2 + x$
(%i2) sol : solve(ex);

sqrt(3) %i + 1 sqrt(3) %i - 1
(%o2) [x = - --------------, x = --------------, x = 0]

2 2
(%i3) define( f(x), ex )$
(%i4) expand ( map(f, map(rhs, sol) ) );
(%o4) [0, 0, 0]
(%i5) [x1,x2,x3] : map(rhs,sol);

sqrt(3) %i + 1 sqrt(3) %i - 1
(%o5) [- --------------, --------------, 0]

2 2
(%i6) x1;

sqrt(3) %i + 1
(%o6) - --------------

2

4.1.12 Trigonometric Equation or Expression
Here is an exact solution using solve:

(%i1) [fpprintprec:8,display2d:false]$
(%i2) ex : sin(x)�2 -2*sin(x) -3$
(%i3) sol : solve(ex);
`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.
(%o3) [x = asin(3),x = -%pi/2]
(%i4) define( f(x), ex )$
(%i5) expand ( map(f, map(rhs, sol) ) );
(%o5) [0,0]
(%i6) numroots : float( map(rhs, sol) );
(%o6) [1.5707963-1.7627472*%i,-1.5707963]

The �rst solution returned is the angle (in radians) whose sin is 3. For real x, sin(x) lies in the range
-1 <= sin(x) <= 1 . Thus we have found one real root. But we have been warned that some solutions
will be lost. Because the given expression is a polynomial in sin(x), we can use realroots:

(%i7) rr : realroots(ex);
(%o7) [sin(x) = -1,sin(x) = 3]

However, by �realroots�, realroots means that the numbers [-1,3] are real!
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We can of course take the output of realroots and let solve go to work.

(%i8) map(solve, rr);
`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.

`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.
(%o8) [[x = -%pi/2],[x = asin(3)]]

We know that the numerical value of the expression ex3 repeats when x is replaced by x + 2*%pi, so
there are an in�nite number of real roots, related to −π/2 by adding or subtracting 2nπ, where n is an integer.

We can make a simple plot of our expression to see the periodic behavior and the approximate location of
the real roots.

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

x

0.0
sin(x)2-2*sin(x)-3

Figure 1: plot of ex3

We used the plot2d code:

(%i18) plot2d([0.0,ex3],[x,-6,6],[y,-5,5] )$

4.1.13 Equation or Expression Containing Logarithmic Functions
Here is an example submitted to the Maxima mailing list and a method of solution provided by Maxima
developer Stavros Macrakis. The problem is to �nd the roots of the following expression ex:

(%i1) [fpprintprec:8,display2d:false,ratprint:false]$
(%i2) ex : log(0.25*(2*x+5)) - 0.5*log(5*x - 5)$

We �rst try solve, with the option variable solveradcan set equal to true. Remember that the syntax
func, optvar; is equivalent to func, optvar:true;.

(%i3) sol : solve(ex,x),solveradcan;
(%o3) [log((2*x+5)/4) = log(5*x-5)/2]
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We see that solve tried to �nd a �simpler� form which it returned in %o2. The Maxima function fullratsimp
has the manual description

Function: fullratsimp(expr)
fullratsimp repeatedly applies ratsimp followed by non-rational simpli�cation to an expression until
no further change occurs, and returns the result.
When non-rational expressions are involved, one call to ratsimp followed as is usual by non-rational
(�general�) simpli�cation may not be suf�cient to return a simpli�ed result. Sometimes, more than one such
call may be necessary. fullratsimp makes this process convenient.

The effect of fullratsimp in our case results in the decimals being replaced by exact fractions.

(%i4) ex : fullratsimp(ex);
(%o4) (2*log((2*x+5)/4)-log(5*x-5))/2

The logarithms can be combined using the Maxima function logcontract. This function was discussed in
Chapter 2, Sect. 2.3.5. A partial description is:

Function: logcontract(expr)
Recursively scans the expression expr, transforming subexpressions of the form
a1*log(b1) + a2*log(b2) + c into log(ratsimp(b1�a1 * b2�a2)) + c

(%i1) 2*(a*log(x) + 2*a*log(y))$
(%i2) logcontract(%);

2 4
(%o2) a log(x y )

Here is the application to our problem:

(%i5) ex : logcontract(ex);
(%o5) -log((80*x-80)/(4*x�2+20*x+25))/2

Having combined the logarithms, we try out solve on this expression:

(%i6) sol : solve(ex );
(%o6) [x = -(2*sqrt(30)-15)/2,x = (2*sqrt(30)+15)/2]

We have a successful exact solution, but solve (in its present incarnation) needed some help. We now use the
map method to check the roots.

(%i7) define( f(x), ex )$
(%i8) expand( map(f, map(rhs,sol) ) );
(%o8) [0,0]

4.2 One Equation Numerical Solutions: allroots, realroots, �nd root
We have already tried out the Maxima functions realroots and allroots. The most important restriction for
both of these numerical methods is that the expression or equation be a polynomial, as the manual explains:

� Function: realroots(eqn, bound)
� Function: realroots(expr)
� Function: realroots(eqn)
Computes rational approximations of the real roots of the polynomial expr or polynomial equation eqn of
one variable, to within a tolerance of bound. Coef�cients of expr or eqn must be literal numbers; symbol
constants such as %pi are rejected.
realroots assigns the multiplicities of the roots it �nds to the global variable multiplicities.
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realroots constructs a Sturm sequence to bracket each root, and then applies bisection to re�ne the
approximations. All coef�cients are converted to rational equivalents before searching for roots, and com-
putations are carried out by exact rational arithmetic. Even if some coef�cients are �oating-point numbers,
the results are rational (unless coerced to �oats by the float or numer �ags).
When bound is less than 1, all integer roots are found exactly. When bound is unspeci�ed, it is assumed
equal to the global variable rootsepsilon (default: 10�(-7)).
When the global variable programmode is true (default: true), realroots returns a list of the form
[x = <x_1>, x = <x_2>, ...]. When programmode is false, realroots creates interme-
diate expression labels %t1, %t2, ..., assigns the results to them, and returns the list of labels.

Here are the startup values of the option variables just mentioned:

(%i1) fpprintprec:8$
(%i2) [multiplicities,rootsepsilon,programmode];
(%o2) [not_set_yet, 1.0E-7, true]

The function allroots also accepts only polynomials, and �nds numerical approximations to both real and
complex roots:

Function: allroots(expr)
Function: allroots(eqn)
Computes numerical approximations of the real and complex roots of the polynomial expr or polynomial
equation eqn of one variable.
The �ag polyfactor when true causes allroots to factor the polynomial over the real numbers
if the polynomial is real, or over the complex numbers, if the polynomial is complex (default setting of
polyfactor is false).
allroots may give inaccurate results in case of multiple roots.
If the polynomial is real, allroots (%i*p))may yield more accurate approximations than allroots(p),
as allroots invokes a different algorithm in that case.
allroots rejects non-polynomials. It requires that the numerator after rat'ing should be a polynomial, and
it requires that the denominator be at most a complex number. As a result of this, allroots will always
return an equivalent (but factored) expression, if polyfactor is true.

Here we test the default value of polyfactor:

(%i3) polyfactor;
(%o3) false

4.2.1 Comparison of realroots with allroots
Let's �nd the real and complex roots of a �fth order polynomial which solve cannot �solve�, doesn't factor,
and use both realroots and allroots.

(%i4) ex : x�5 + x�4 -4*x�3 +2*x�2 -3*x -7$
(%i5) define( fex(x), ex )$

We �rst use realroots to �nd the three real roots of the given polynomial, and substitute the roots back into the
expression to see how close to zero we get.

(%i6) rr : float( map(rhs, realroots(ex,1e-20) ) );
(%o6) [- 2.7446324, - 0.880858, 1.7964505]
(%i7) frr : map( fex, rr );
(%o7) [0.0, - 4.4408921E-16, 0.0]
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Next we �nd numerical approximations to the three real roots and the two (complex-conjugate) roots of the
given polynomial, using allroots( ex ) and substitute the obtained roots back into the expression to see how
close to zero we get.

(%i8) ar1 : map(rhs, allroots( ex ) );
(%o8) [1.1999598 %i + 0.41452, 0.41452 - 1.1999598 %i, - 0.880858, 1.7964505,

- 2.7446324]
(%i9) far1 : expand( map( fex, ar1 ) );
(%o9) [1.12132525E-14 %i + 4.4408921E-16, 4.4408921E-16 - 1.12132525E-14 %i,

- 1.13242749E-14, 2.48689958E-14, - 2.84217094E-14]

Finally, we repeat the process for the syntax allroots( %i* ex ).

(%i10) ar2 : map(rhs, allroots( %i*ex ) );
(%o10) [1.1999598 %i + 0.41452, - 3.60716392E-17 %i - 0.880858,
0.41452 - 1.1999598 %i, 6.20555942E-15 %i + 1.7964505,
- 6.54444294E-16 %i - 2.7446324]
(%i11) far2 : expand( map( fex, ar2 ) );
(%o11) [1.55431223E-15 %i - 1.77635684E-15, 5.61204464E-16 %i - 4.4408921E-16,
1.61204383E-13 %i + 2.26041408E-13, 2.52718112E-13 %i - 1.91846539E-13,
- 6.32553289E-14 %i - 3.97903932E-13]
(%i12) far2 - far1;
(%o12) [- 9.65894031E-15 %i - 2.22044605E-15,
1.1774457E-14 %i - 8.8817842E-16, 1.61204383E-13 %i + 2.37365683E-13,
2.52718112E-13 %i - 2.16715534E-13, - 6.32553289E-14 %i - 3.69482223E-13]

The three real roots of the given �fth order polynomial are found more accurately by realroots than by either
version of allroots. We see that the three real roots of this �fth order polynomial are found more accurately by
the syntax allroots(expr) (which was used to get ar1), than by the syntax allroots(%i*expr), used to get
ar2. We also see that the syntax allroots(%i*expr) introduced a tiny complex piece to the dominant real
part. The two extra complex roots found by the �rst syntax (ar1) are the complex conjugate of each other. The
two extra complex roots found by the alternative syntax (ar2) are also the complex conjugate of each other to
within the default arithmetic accuracy being used.

4.2.2 Intersection Points of Two Polynomials
Where do the two curves h(x) = x3 − 8 x2 + 19 x − 12 and k(x) = 1

2
x2 − x − 1

8
intersect? We want

approximate numerical values. We can plot the two functions together and use the cursor to read off the values
of x for which the curves cross, and we can also �nd the roots numerically. We �rst de�ne the curves as
expressions depending on x, then de�ne the difference of the expressions (rx) to work with using allroots �rst
to see if all the (three) roots are real, and then using realroots just for fun, and then checking the solutions.
If we are just going to compare the results with a plot, we don't need any great accuracy, so we will use the
default realroots precision.

(%i1) fpprintprec : 8$
(%i2) hx : x�3 - 8*x�2 + 19*x - 12$
(%i3) kx : x�2/2 -x -1/8$
(%i4) rx : hx - kx;

2
3 17 x 95

(%o4) x - ----- + 20 x - --
2 8
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(%i5) factor(rx);
3 2

8 x - 68 x + 160 x - 95
(%o5) -------------------------

8
(%i6) define( fr(x), rx )$
(%i7) allroots(rx);
(%o7) [x = 0.904363, x = 2.6608754, x = 4.9347613]
(%i8) rr : float( realroots(rx) );
(%o8) [x = 0.904363, x = 2.6608754, x = 4.9347613]
(%i9) rr : map( rhs, rr);
(%o9) [0.904363, 2.6608754, 4.9347613]
(%i10) map(fr, rr);
(%o10) [2.04101367E-8, - 8.4406409E-8, 5.30320676E-8]

We see that the numerical solutions are �zeros� of the cubic function to within the numerical accuracy realroots
is using. Just out of curiosity, what about exact solutions of this cubic polynomial? Use of solve will generate a
complicated looking expression involving roots and %i. Let's set display2d to false so the output doesn't take
up so much room on the screen.
(%i11) display2d : false$
(%i12) sx : solve(rx);
(%o12) [x = (-sqrt(3)*%i/2-1/2)*(3�-(3/2)*sqrt(16585)*%i/16+151/432)�(1/3)

+49*(sqrt(3)*%i/2-1/2)/(36*(3�-(3/2)*sqrt(16585)*%i/16+151/432)
�(1/3))+17/6,

etc, etc ]
(%i13) sx1 : map(rhs, sx);
(%o13) [(-sqrt(3)*%i/2-1/2)*(3�-(3/2)*sqrt(16585)*%i/16+151/432)�(1/3)

+49*(sqrt(3)*%i/2-1/2)/(36*(3�-(3/2)*sqrt(16585)*%i/16+151/432)
�(1/3))+17/6,

etc, etc ]

The list sx1 holds the exact roots of the cubic polynomial which solve found. We see that the form returned
has explicit factors of %i. We already know that the roots of this polynomial are purely real. How can we get
the exact roots into a form where it is �obvious� that the roots are real? The Maxima expert Alexey Beshenov
(via the Maxima mailing list) suggested using rectform, followed by trigsimp. Using rectform gets rid of the
factors of %i, and trigsimp does some trig simpli�cation.
(%i14) sx2 : rectform(sx1);
(%o14) [49*(3*sqrt(3)*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7

-3*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7)/36
+7*sqrt(3)*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12
+%i*(-7*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12
+49*(3*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7
+3*sqrt(3)*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7)/36

-7*sqrt(3)*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12)
-7*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12+17/6,
etc,etc ]

(%i15) sx3 : trigsimp(sx2);
(%o15) [ (7*sqrt(3)*sin(atan(9*sqrt(16585)/(151*sqrt(3)))/3)

-7*cos(atan(9*sqrt(16585)/(151*sqrt(3)))/3)+17)/6,
-(7*sqrt(3)*sin(atan(9*sqrt(16585)/(151*sqrt(3)))/3)
+7*cos(atan(9*sqrt(16585)/(151*sqrt(3)))/3)-17)/6,

(14*cos(atan(9*sqrt(16585)/(151*sqrt(3)))/3)+17)/6 ]
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The quantity sx3 is a list of the �simpli�ed� exact roots of the cubic. Using �oat we ask for the numerical
values:

(%i16) sx4 : float(sx3);
(%o16) [2.6608754,0.904363,4.9347613]

We see that the numerical values agree, although the order of the roots is different. Next we enquire whether
or not the �exact roots�, when substituted back into the cubic, result in �exact zeroes�. Mapping the cubic onto
the list of roots doesn't automatically simplify to a list of three zeroes, as we would like, although applying
�oat suggests the analytic roots are correct. The combination
trigsimp( expand( [fr(root1), fr(root2), fr(root3)] ) ) still does not provide the alge-
braic and trig simpli�cation needed, but we �nally get [0.0, 0.0, 0.0] when applying �oat.

(%i17) float( map(fr, sx3) );
(%o17) [-3.55271368E-15,1.88737914E-15,-1.42108547E-14]
(%i18) float( expand( map(fr, sx3) ) );
(%o18) [6.66133815E-16,-2.44249065E-15,0.0]
(%i19) float( trigsimp( expand( map(fr, sx3) ) ) );
(%o19) [0.0,0.0,0.0]

Let's next plot the three functions, using the expressions hx, kx, and rx (the difference).
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rx=hx - kx

Figure 2: Intersection Points are Zeroes of rx

Here is code you can use to make something close to the above plot.

(%i20) plot2d([hx,kx,rx],[x,0,5],
[style, [lines,2,1], [lines,2,2], [lines,2,0] ],

[legend, "hx", "kx", "rx=hx - rx"],
[gnuplot_preamble, " set xzeroaxis lw 2 "])$

When you place the cursor over the places on the x axis where the expression rx is zero, you can read off the
coordinates in the lower left corner of the plot window. The x coordinate (the �rst) is the desired root.
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4.2.3 Transcendental Equations and Roots: �nd root

A transcendental equation is an equation containing a transcendental function. Examples of such equations are
x = ex and x = sin(x). The logarithm and the exponential function are examples of transcendental functions.
We will include the trigonometric functions, i.e., sine, cosine, tangent, cotangent, secant, and cosecant in this
category of functions. (A function which is not transcendental is said to be algebraic. Examples of algebraic
functions are rational functions and the square root function.)

To �nd the roots of transcendental expressions, for example, we can �rst make a plot of the expression, and
then use �nd root knowing roughly where �nd root should start looking. The Maxima manual provides a lot
of details, beginning with:

Function: �nd root(expr, x, a, b)
Function: �nd root(f, a, b)
Option variable: �nd root error
Option variable: �nd root abs
Option variable: �nd root rel
Finds a root of the expression expr or the function f over the closed interval [a, b]. The expression
expr may be an equation, in which case find_root seeks a root of lhs(expr) - rhs(expr).
Given that Maxima can evaluate expr or f over [a, b] and that expr or f is continuous, find_root
is guaranteed to �nd the root, or one of the roots if there is more than one.

Let's �nd a root of the equation x = cos(x) . If we make a simple plot of the function x− cos(x), we see that
there is one root somewhere between x = 0 and x = 1.
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Figure 3: Plot of x - cos(x)

We can use either an expression or function as the entry to the �rst slot of �nd root. I �nd that the most
common mistake I make with �nd root is to leave out the underline between ��nd� and �root�, in which case,
I simply get back the unevaluated ��ndroot(ex, x, 0, 1)�, since Maxima has no knowledge of ��ndroot� (unless
I create a homemade function with that name).
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We can make a plot, �nd the root in a variety of ways using �nd root, and verify the accuracy of the root
as follows:

(%i1) fpprintprec:8$
(%i2) plot2d( x - cos(x), [ x, 0, 1 ],

[style, [lines, 4, 1] ],
[xlabel," plot of x - cos(x) "],

[gnuplot_preamble, "set nokey; set xzeroaxis lw 2 "] )$
(%i3) find_root( x - cos(x),x, 0, 1);
(%o3) 0.739085
(%i4) ex : x - cos(x)$
(%i5) [find_root( ex, x, 0, 1),find_root( ex, 0, 1)];
(%o5) [0.739085, 0.739085]
(%i6) define( f(x), ex )$
(%i7) [find_root(f(x), x, 0, 1), find_root(f(x), 0, 1),

find_root(f, 0, 1), find_root(f, x, 0, 1)];
(%o7) [0.739085, 0.739085, 0.739085, 0.739085]
(%i8) ev(ex, x = first(%) );
(%o8) 0.0

As a second example, we will �nd the roots of the function

f(x) = cos(x/π) e−(x/4)2 − sin(x3/2)− 5/4

Here is the plot of f(x).
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Figure 4: Plot of f(x)

This plot shows roots near the points [x = 2.53, x = 2.97].
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Here is our session making a plot and using �nd root:

(%i1) fpprintprec:8$
(%i2) f(x):= cos(x/%pi)*exp(-(x/4)�2) - sin(x�(3/2)) - 5/4$

(%i3) plot2d( f(x),[x,0,5],
[style, [lines,4,1] ],
[xlabel," plot of f(x) "],[ylabel," "],

[gnuplot_preamble, "set nokey; set xzeroaxis lw 2 "] )$
(%i4) [find_root(f,2.5,2.6), find_root(f, x, 2.5, 2.6),

find_root(f(x),x,2.5,2.6), find_root(f(y),y,2.5,2.6)];
(%o4) [2.5410501, 2.5410501, 2.5410501, 2.5410501]
(%i5) [x1 : find_root(f,2.5,2.6),x2 : find_root(f, 2.9, 3.0 )];
(%o5) [2.5410501, 2.9746034]
(%i6) float( map(f, [x1,x2] ) );
(%o6) [3.33066907E-16, 2.77555756E-16]

We see that the numerical accuracy of �nd root using default behavior is the normal accuracy of Maxima
arithmetic.

4.2.4 �nd root: Quote that Function!
The Maxima function �nd root is an unusual function. The source code which governs the behavior of
�nd root has been purposely designed to allow uses like the following:

(%i1) fpprintprec:8$
(%i2) find_root(diff(cos(2*x)*sin(3*x)/(1+x�2),x), x, 0, 0.5);
(%o2) 0.321455

�nd root evaluates the derivative and parks the resulting expression in the code function �fr(x)�,say, to be used
to probe where the function changes sign, as the code executes a bisection search for a root in the range called
for. The code �rst checks that the sign of the function fr(x) has opposite signs at the end points of the given
range. Next the code makes small steps in one direction, checking at each step if a sign change has occurred.
As soon as a sign change has occurred, the code backs up one step, cuts the size of the step in half, say, and
starts stepping again, looking for that sign change again. This is a brute force method which will �nd that
root if there is one in the given interval. Of course the user can always evaluate the derivative and submit the
resulting expression to �nd root to �nd the same answer, as in:

(%i3) ex : trigsimp( diff(cos(2*x)*sin(3*x)/(1+x�2),x) );
2

(%o3) - (((2 x + 2) sin(2 x) + 2 x cos(2 x)) sin(3 x)
2 4 2

+ (- 3 x - 3) cos(2 x) cos(3 x))/(x + 2 x + 1)
(%i4) plot2d([0.0,ex],[x,-3,3])$
(%i5) find_root(ex,x,0,0.5);
(%o5) 0.321455
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If we assign the delayed derivative to an expression ex1, we can then use an argument ev(ex1,diff) to
�nd root as in:

(%i6) ex1 : 'diff(cos(2*x)*sin(3*x)/(1+x�2),x);
d cos(2 x) sin(3 x)

(%o6) -- (-----------------)
dx 2

x + 1
(%i7) find_root(ev(ex1,diff),x,0,0.5);
(%o7) 0.321455

If we assign the delayed derivative to a function g(x), and assign ev(g(x),diff) to another function k(x),
we can use �nd root as in:

(%i8) g(x) := 'diff(cos(2*x)*sin(3*x)/(1+x�2),x);
d cos(2 x) sin(3 x)

(%o8) g(x) := -- (-----------------)
dx 2

1 + x
(%i9) k(x) := ev(g(x),diff);
(%o9) k(x) := ev(g(x), diff)
(%i10) find_root(k(x),x,0,0.5);
(%o10) 0.321455

or just use the syntax:

(%i11) find_root( ev(g(x),diff),x,0,0.5 );
(%o11) 0.321455

However, the following syntax which leaves out the variable name produces an error message:

(%i12) find_root( k, 0, 0.5 );
Non-variable 2nd argument to diff:
0.0
#0: g(x=0.0)
#1: k(x=0.0)
-- an error. To debug this try debugmode(true);

In the above cases we want �nd root to use the default initial evaluation of the �rst slot argument before
going to work looking for the root.

The important thing to stress is that the �nd root source code, by default, is designed to evaluate the �rst
slot expression before beginning the checking of the sign of the resulting function (after evaluation) at the end
points and proceeding with the bisection search. If the user wants to use (for some reason) a function f(x) in
the �rst slot of �nd root and wishes to prevent the initial evaluation of the �rst slot expression, the user should
use the syntax '(f(x)) for the �rst slot entry, rather than f(x). However, the code is loosely written so
that most of the time you can get correct results without using the single quote syntax '(f(x)). All of the
following examples give the correct answer for this simple function.

(%i13) f(x) := x - cos(x)$
(%i14) [find_root( f, 0, 1), find_root( 'f, 0, 1),

find_root( '(f), 0, 1), find_root( f(x), x, 0, 1),
find_root( '( f(x)), 'x, 0, 1),find_root( '( f(x)), x, 0, 1),
find_root( 'f(x), x, 0, 1)];

(%o14) [0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085]
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However, one can arrive at specialized homemade functions which require the strict syntax (a quoted func-
tion entry in the �rst slot) to behave correctly. Suppose we need to �nd the numerical roots of a function de�ned
by an integral. The following is a toy model which uses such a function in a case where we know the answer
ahead of time. Instead of directly looking for the roots of the function f(x) = (x2 − 5), we look for the roots
of the function

∫ x√
5
2 y d y.

(%i1) fpprintprec : 8$
(%i2) ex : integrate(2*'y,'y,sqrt(5),x);

2
x 5

(%o2) 2 (-- - -)
2 2

(%i3) ex : expand(ex);
2

(%o3) x - 5
(%i4) define( f(x), ex );

2
(%o4) f(x) := x - 5
(%i5) solve( ex );
(%o5) [x = - sqrt(5), x = sqrt(5)]
(%i6) rr : float( map(rhs,%) );
(%o6) [- 2.236068, 2.236068]
(%i7) map(f,rr);
(%o7) [8.8817842E-16, 8.8817842E-16]
(%i8) find_root(f,0,4);
(%o8) 2.236068

Let's concentrate on �nding the root 2.23606797749979 using the indirect route. De�ne a function g(x)
in terms of integrate:
(%i9) g(x) := block([numer,keepfloat,y],

numer:true,keepfloat:true,
integrate(2*y,y,sqrt(5),x) )$

(%i10) map(g, [1,2,3]);
(%o10) [- 4.0, - 1.0, 4.0]
(%i11) map(f, [1,2,3]);
(%o11) [- 4, - 1, 4]
(%i12) [find_root( g, 1, 4), find_root( g(x),x,1,4),

find_root( '(g(x)),'x,1,4 ), find_root( 'g(x),x,1,4 )];
(%o12) [2.236068, 2.236068, 2.236068, 2.236068]

We see that we have no problems with getting the function g(x) to �work� with �nd root. However, if
we replace integrate with quad qags, we �nd problems. First let's show the numerical integration routine
quad qags at work by itself:
(%i13) quad_qags(2*'y,'y,sqrt(5),2);
(%o13) [- 1.0, 1.11076513E-14, 21, 0]
(%i14) g(2.0);
(%o14) - 1.0

The quad qags function returns a list of four items, the �rst being the numerical value of the integral, the second
being an estimate of the error of the answer calculated, the third being the number of function evaluations
required, and the last an error code. The returned error code 0 means no problems were encountered, and we
will write a function which ignores the error code returned, although in �real life� we would always want to
report an error code value which was not 0.
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Here we de�ne h(x) which employs the function quad qags to carry out the numerical itegration.

(%i15) h(x) := block([numer,keepfloat,y,qlist],
numer:true,keepfloat:true,
qlist : quad_qags(2*y,y,sqrt(5),x),
qlist[1] )$

(%i16) map(h,[1,2,3]);
(%o16) [- 4.0, - 1.0, 4.0]
(%i17) map(g,[1,2,3]);
(%o17) [- 4.0, - 1.0, 4.0]

The function h(x) does the same job as g(x), but uses quad qags instead of integrate. Now let's use h(x) in
the Maxima function �nd root.

(%i18) find_root( h(x),x,1,4);
function has same sign at endpoints
[f(1.0) = - 5.0, f(4.0) = - 5.0]
-- an error. To debug this try debugmode(true);

We see that the syntax find_root( h(x),x,1,4) produced an error due to the way �nd root evaluates
the �rst slot. Somehow �nd root assigned -5.0 to the internal function fr(x) used to look for the root, and in
the �rst steps of that root location, checking for a difference in sign of fr(x) and the range end points, found the
value -5.0 at both ends. In effect, the code was working on the problem find_root( -5.0, x, 1, 4).

The following methods succeed.

(%i19) [find_root( h, 1, 4),find_root( '(h(x)),'x,1,4 ),
find_root( '(h(x)),x,1,4 ),find_root( 'h(x),x,1,4 )];

(%o19) [2.236068, 2.236068, 2.236068, 2.236068]

4.2.5 newton
The Maxima function newton can also be used for numerical solutions of a single equation. The Maxima
manual describes the syntax as:

Function: newton(expr, x, x_0, eps)
Returns an approximate solution of expr = 0 by Newton's method, considering expr to be a function of
one variable, x. The search begins with x = x_0 and proceeds until abs(expr) < eps (with expr
evaluated at the current value of x).
newton allows unde�ned variables to appear in expr, so long as the termination test abs(expr) < eps
evaluates to true or false. Thus it is not necessary that expr evaluate to a number.
load(newton1) loads this function.

The two examples in the manual are instructive:

(%i1) fpprintprec:8$
(%i2) load (newton1);
(%o2) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/numeric/newton1.mac
(%i3) newton (cos (u), u, 1, 1/100);
(%o3) 1.5706753
(%i4) ev (cos (u), u = %);
(%o4) 1.21049633E-4
(%i5) assume (a > 0);
(%o5) [a > 0]
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(%i6) newton (x�2 - a�2, x, a/2, a�2/100);
(%o6) 1.0003049 a
(%i7) ev (x�2 - a�2, x = %);

2
(%o7) 6.09849048E-4 a

Of course both of these examples are found exactly by solve:

(%i8) solve( cos(x) );
`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o8) [x = ---]

2
(%i9) float(%);
(%o9) [x = 1.5707963]
(%i10) solve( x�2 - a�2,x );
(%o10) [x = - a, x = a]

I �nd the source code (Windows XP) in the folder
c:\Program Files\Maxima-5.14.0\share\maxima\5.14.0\share\numeric. Here is the
code in the �le newton1.mac:

newton(exp,var,x0,eps):=
block([xn,s,numer],
numer:true,
s:diff(exp,var),
xn:x0,
loop,
if abs(subst(xn,var,exp))<eps then return(xn),
xn:xn-subst(xn,var,exp)/subst(xn,var,s),

go(loop)
)$

We see that the code implements the Newton-Raphson algorithm. Given a function f(x) and an initial guess
xg which can be assigned to, say, xi, a closer approximation to the value of x for which f(x) = 0 is generated
by

xi+1 = xi − f(xi)

f ′(xi)
.

The method depends on being able to evaluate the derivative of f(x) which appears in the denominator.
Steven Koonin's (edited) comments (Computational Physics: Fortran Version, Steven E. Koonin and Dawn
Meredith, WestView Press, 1998, Ch. 1, Sec.3) are cautionary:

When the function f(x) is badly behaved near its root (e.g., there is an in�ection point near the root) or when
there are several roots, the �automatic� Newton-Raphson method can fail to converge at all or converge to
the wrong answer if the initial guess for the root is poor.
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4.3 Two or More Equations: Symbolic and Numerical Solutions
For sets of equations, we can use solve with the syntax:

Function: solve([eqn_1, ..., eqn_n], [x_1, ..., x_n])
solve ([eqn_1, ..., eqn_n], [x_1, ..., x_n]) solves a system of simultaneous (linear
or non-linear) polynomial equations by calling linsolve or algsys and returns a list of the solution
lists in the variables. In the case of linsolve this list would contain a single list of solutions. This form
of solve takes two lists as arguments. The �rst list represents the equations to be solved; the second list
is a list of the unknowns to be determined. If the total number of variables in the equations is equal to the
number of equations, the second argument-list may be omitted.

4.3.1 Numerical or Symbolic Linear Equations with solve or linsolve

The Maxima functions solve, linsolve, and linsolve by lu can be used for linear equations.

Linear equations containing symbolic coef�cients can be �solved� by solve and linsolve. For example the
pair of equations

ax + by = c, dx + ey = f

. Here we solve for the values of (x,y) which simultaneously satisfy these two equations and check the
solutions.

(%i1) eqns : [a*x + b*y = c, d*x + e*y = f];
(%o1) [b y + a x = c, e y + d x = f]
(%i2) solve(eqns,[x,y]);

c e - b f c d - a f
(%o2) [[x = - ---------, y = ---------]]

b d - a e b d - a e
(%i3) soln : linsolve(eqns,[x,y]);

c e - b f c d - a f
(%o3) [x = - ---------, y = ---------]

b d - a e b d - a e
(%i4) (ev(eqns, soln), ratexpand(%%) );
(%o4) [c = c, f = f]

Note the presence of the determinant of the �coef�cient matrix� in the denominator of the solutions.

A simple numerical (rather than symbolic) two equation example:

(%i1) eqns : [3*x-y=4,x+y=2];
(%o1) [3 x - y = 4, y + x = 2]
(%i2) solns : solve(eqns,[x,y]);

3 1
(%o2) [[x = -, y = -]]

2 2
(%i3) soln : solns[1];

3 1
(%o3) [x = -, y = -]

2 2
(%i4) for i thru 2 do disp( ev( eqns[i],soln ) )$

4 = 4
2 = 2
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Using linsolve instead returns a list, rather than a list of a list.

(%i5) linsolve(eqns,[x,y]);
3 1

(%o5) [x = -, y = -]
2 2

4.3.2 Matrix Methods for Linear Equation Sets: linsolve by lu

The present version (5.14) of the Maxima manual does not have an index entry for the function linsolve by lu.
These notes include only the simplest of many interesting examples described in two mailing list responses by
the creator of the linear algebra package, Barton Willis (Dept. of Mathematics, Univ. Nebraska at Kearney),
dated Oct. 27, 2007 and Nov. 21, 2007.

If we re-cast the two equation problem we have just been solving in the form of a matrix equation
A . xcol = bcol, we need to construct the square matrix A so that matrix multiplication by the column
vector xcol results in a column vector whose rows contain the left hand sides of the equations. The column
vector bcol rows hold the right hand sides of the equations. Our notation below ( as xycol and xylist )
is only natural for a two equation problem (ie., a 2 x 2 matrix): you can invent your own notation to suit your
problem.

If the argument of the function matrix is a simple list, the result is a row vector (a special case of a matrix
object). We can then take the transpose of the row matrix to obtain a column matrix, such as xcol below.
A direct de�nition of a two element column matrix is matrix([x],[y]), which is probably faster than
transpose(matrix([x,y])). To reduce the amount of space taken up by the default matrix output, we
can set display2d:false.

(%i6) m : matrix( [3,-1],[1,1] );
[ 3 - 1 ]

(%o6) [ ]
[ 1 1 ]

(%i7) display2d:false$
(%i8) m;
(%o8) matrix([3,-1],[1,1])
(%i9) xcol : matrix([x],[y]);
(%o9) matrix([x],[y])
(%i10) m . xcol;
(%o10) matrix([3*x-y],[y+x])

The period allows non-commutative multiplication of matrices. The linear algebra package function lin-
solve by lu allows us to specify the column vector bcol as a simple list:

(%i11) b : [4,2];
(%o11) [4,2]
(%i12) linsolve_by_lu(m,b);
(%o12) [matrix([3/2],[1/2]),false]
(%i13) xycol : first(%);
(%o13) matrix([3/2],[1/2])
(%i14) m . xycol - b;
(%o14) matrix([0],[0])
(%i15) xylist : makelist( xycol[i,1],i,1,length(xycol) );
(%o15) [3/2,1/2]
(%i16) xyrules : map("=",[x,y],xylist);
(%o16) [x = 3/2,y = 1/2]
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The matrix argument needs to be a square matrix. The output of linsolve by lu is a list: the �rst element is the
solution column vector which for this two dimensional problem we have called xycol.

We check the solution in input %i14. The output %o14 is a column vector each of whose elements is zero;
such a column vector is ordinarily replaced by the number 0.

One should always check solutions when using computer algebra software, since the are occasional bugs in
the algorithms used. The second list element returned by linsolve by lu is false, which should always be the
value returned when the calculation uses non-�oating point numbers as we have here. If �oating point numbers
are used, the second element should be either false or a lower bound to the �matrix condition number�. (We
show an example later.) We have shown how to convert the returned xycol matrix object into an ordinary list,
and how to then construct a list of replacement rules (as would be returned by linsolve) which could then be
used for other purposes. The use of makelist is the recommended way to use parts of matrix objects in lists.
However, here is a simple method which avoids makelist:
(%i17) flatten( args( xycol));
(%o17) [3/2,1/2]

but makelist should normally be the weapon of choice, since the method is foolproof and can be extended to
many exotic ways of using the various elements of a matrix.

The Maxima function linsolve by lu allows the second argument to be either a list (as in the example
above) or a column matrix, as we show here.
(%i18) bcol : matrix([4],[2])$
(%i19) linsolve_by_lu(m,bcol);
(%o19) [matrix([3/2],[1/2]),false]
(%i20) m . first(%) - bcol;
(%o20) matrix([0],[0])

4.3.3 Symbolic Linear Equation Solutions: Matrix Methods

Here we use linsolve by lu for the pair of equations
ax + by = c, dx + ey = f,

seeking the values of (x,y) which simultaneously satisfy these two equations and checking the solutions.
(%i1) display2d:false$
(%i2) m : matrix( [a,b], [d,e] )$
(%i3) bcol : matrix( [c], [f] )$
(%i4) ls : linsolve_by_lu(m,bcol);
(%o4) [matrix([(c-b*(f-c*d/a)/(e-b*d/a))/a],[(f-c*d/a)/(e-b*d/a)]),false]
(%i5) xycol : ratsimp( first(ls) );
(%o5) matrix([-(b*f-c*e)/(a*e-b*d)],[(a*f-c*d)/(a*e-b*d)])
(%i6) ( m . xycol - bcol, ratsimp(%%) );
(%o6) matrix([0],[0])
(%i7) (display2d:true,xycol);

[ b f - c e ]
[ - --------- ]
[ a e - b d ]

(%o7) [ ]
[ a f - c d ]
[ --------- ]
[ a e - b d ]

(%i8) determinant(m);
(%o8) a e - b d
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We see the value of the determinant of the �coef�cient matrix� m in the denominator of the solution.

4.3.4 Multiple Solutions from Multiple Right Hand Sides
Next we show how one can solve for multiple solutions (with one call to linsolve by lu) corresponding to a
number of different �right hand sides�. We will turn back on the default matrix display, and re-de�ne the �rst
(right hand side) column vector as b1col, and the corresponding solution x1col.

(%i21) display2d:true$
(%i22) b1col : matrix( [4], [2] );

[ 4 ]
(%o22) [ ]

[ 2 ]
(%i23) x1col : first( linsolve_by_lu(m,b1col) );

[ 3 ]
[ - ]
[ 2 ]

(%o23) [ ]
[ 1 ]
[ - ]
[ 2 ]

(%i24) b2col : matrix( [3], [1] );
[ 3 ]

(%o24) [ ]
[ 1 ]

(%i25) x2col : first( linsolve_by_lu(m, b2col) );
[ 1 ]

(%o25) [ ]
[ 0 ]

(%i26) bmat : matrix( [4,3], [2,1] );
[ 4 3 ]

(%o26) [ ]
[ 2 1 ]

(%i27) linsolve_by_lu( m, bmat );
[ 3 ]
[ - 1 ]
[ 2 ]

(%o27) [[ ], false]
[ 1 ]
[ - 0 ]
[ 2 ]

(%i28) xsolns : first(%);
[ 3 ]
[ - 1 ]
[ 2 ]

(%o28) [ ]
[ 1 ]
[ - 0 ]
[ 2 ]
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(%i29) m . xsolns - bmat;
[ 0 0 ]

(%o29) [ ]
[ 0 0 ]

(%i30) x1col : col(xsolns,1);
[ 3 ]
[ - ]
[ 2 ]

(%o30) [ ]
[ 1 ]
[ - ]
[ 2 ]

(%i31) x2col : col(xsolns,2);
[ 1 ]

(%o31) [ ]
[ 0 ]

In input %i26 we de�ne the 2 x 2 matrix bmat whose �rst column is b1col and whose second column
is b2col. Using bmat as the second argument to linsolve by lu results in a return list whose �rst element
(what we call xsolns) is a 2 x 2 matrix whose �rst column is x1col (the solution vector corresponding
to b1col) and whose second column is x2col (the solution vector corresonding to b2col). In input %i29
we check both solutions simultaneously. The result is a matrix with every element equal to zero, which would
ordinarily be replaced by the number 0. In input %i30 we extract x1col using the col function.

4.3.5 Three Linear Equation Example
We next consider a simple three linear equation example. Although solve does not require the list [x,y,z]
in this problem, if you leave it out, the solution list returned will be in an order determined by the peculiarities
of the code, rather than by you. By including the variable list as [x,y,z], you are forcing the output list to
be in the same order.

(%i1) eqns : [2*x - 3*y + 4*z = 2, 3*x - 2*y + z = 0,
x + y - z = 1]$

(%i2) display2d:false$
(%i3) solns : solve( eqns,[x,y,z] );
(%o3) [[x = 7/10,y = 9/5,z = 3/2]]
(%i4) soln : solns[1];
(%o4) [x = 7/10,y = 9/5,z = 3/2]
(%i5) for i thru 3 do disp( ev(eqns[i],soln) )$
2 = 2
0 = 0
1 = 1

The Maxima function linsolve has the same syntax as solve (for a set of equations) but you cannot leave out
the list of unknowns.

(%i6) linsolve(eqns,[x,y,z]);
(%o6) [x = 7/10,y = 9/5,z = 3/2]

Notice that linsolve returns a list, while solve returns a list of lists.
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Next we use linsolve by lu on this three equation problem. Using the laws of matrix multiplication, we
�reverse engineer� the 3× 3 matrix m and the three element column vector bcol which provide an equivalent
problem in matrix form.

(%i7) m : matrix( [2,-3,4],[3,-2,1],[1,1,-1] )$
(%i8) xcol : matrix( [x],[y],[z] )$
(%i9) m . xcol;
(%o9) matrix([4*z-3*y+2*x],[z-2*y+3*x],[-z+y+x])
(%i10) bcol : matrix( [2],[0],[1] )$
(%i11) linsolve_by_lu(m,bcol);
(%o11) [matrix([7/10],[9/5],[3/2]),false]
(%i12) xyzcol : first(%);
(%o12) matrix([7/10],[9/5],[3/2])
(%i13) m . xyzcol - bcol;
(%o13) matrix([0],[0],[0])
(%i14) xyzlist : makelist( xyzcol[i,1],i,1,length(xyzcol) );
(%o14) [7/10,9/5,3/2]
(%i15) xyzrules : map("=",[x,y,z],xyzlist);
(%o15) [x = 7/10,y = 9/5,z = 3/2]

Both linsolve and solve can handle an �equation list� which is actually an �expression list� in which it is
understood that the required equations are generated by setting each expression to zero.

(%i16) exs : [2*x - 3*y + 4*z - 2, 3*x - 2*y + z ,
x + y - z - 1];

(%o16) [4 z - 3 y + 2 x - 2, z - 2 y + 3 x, - z + y + x - 1]
(%i17) linsolve(exs,[x,y,z]);

7 9 3
(%o17) [x = --, y = -, z = -]

10 5 2
(%i18) solve(exs);

3 9 7
(%o18) [[z = -, y = -, x = --]]

2 5 10

The Maxima manual presents a linear equation example in which there is an unde�ned parameter �a�.

(%i1) eqns : [x + z = y,2*a*x - y = 2*a�2,y - 2*z = 2]$
(%i2) solns : linsolve(eqns,[x,y,z] );
(%o2) [x = a + 1, y = 2 a, z = a - 1]
(%i3) solve(eqns,[x,y,z]);
(%o3) [[x = a + 1, y = 2 a, z = a - 1]]
(%i4) for i thru 3 do (

e: expand( ev(eqns[i],solns) ),disp(lhs(e) - rhs(e)) )$
0
0
0

(%i5) e;
(%o5) 2 = 2
(%i6) [kill(e),e];
(%o6) [done, e]

The code in input %i4 binds an equation to the symbol e which can be removed with kill.
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We can avoid introducing a global binding to a symbol by using %%, which allows use of the previous result
inside a piece of code.

(%i7) for i thru 3 do (
expand( ev(eqns[i],solns) ),disp(lhs(%%) - rhs(%%)) )$

0
0
0

Note the syntax used here: do ( job1, job2 ) .
Let's try out linsolve by lu on this three linear (in the unknowns (x,y,z)) equation problem which

involves the unbound parameter a.

(%i8) display2d:false$
(%i9) m : matrix([1,-1,1],[2*a,-1,0],[0,1,-2] )$
(%i10) xcol : matrix( [x],[y],[z] )$
(%i11) m . xcol;
(%o11) matrix([z-y+x],[2*a*x-y],[y-2*z])
(%i12) bcol : matrix( [0],[2*a�2], [2] )$
(%i13) soln : linsolve_by_lu(m,bcol)$
(%i14) xyzcol : ( first(soln), ratsimp(%%) );
(%o14) matrix([a+1],[2*a],[a-1])
(%i15) ratsimp( m . xyzcol - bcol);
(%o15) matrix([0],[0],[0])

In input %i15 we check the solution, and the result is a three element column vector, all of whose elements are
zero. Such a column matrix is ordinarily replaced by the number 0.

4.3.6 Surpressing rat Messages: ratprint
If we start with two linear equations with decimal coef�cients, solve (and the other methods) converts the deci-
mals to ratios of integers, and tries to �nd an exact solution. You can avoid seeing all the rational replacements
done by setting the option variable ratprint to false. Despite the assertion, in the manual section on rat, that

keepfloat if true prevents �oating point numbers from being converted to rational numbers.

setting keep�oat to true here does not stop solve from converting decimal numbers to ratios of integers.

(%i1) [keepfloat,ratprint];
(%o1) [false, true]
(%i2) display2d:false$
(%i3) fpprintprec:8$
(%i4) eqns : [0.2*x + 0.3*y = 3.3,0.1*x - 0.8*y = 6.6]$
(%i5) solns : solve(eqns, [x,y]);
`rat' replaced -3.3 by -33/10 = -3.3
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.3 by 3/10 = 0.3
`rat' replaced -6.6 by -33/5 = -6.6
`rat' replaced 0.1 by 1/10 = 0.1
`rat' replaced -0.8 by -4/5 = -0.8
(%o5) [[x = 462/19,y = -99/19]]
(%i6) linsolve(eqns,[x,y]);
`rat' replaced -3.3 by -33/10 = -3.3
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`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.3 by 3/10 = 0.3
`rat' replaced -6.6 by -33/5 = -6.6
`rat' replaced 0.1 by 1/10 = 0.1
`rat' replaced -0.8 by -4/5 = -0.8
(%o6) [x = 462/19,y = -99/19]
(%i7) m : matrix([0.2,0.3],[0.1,-0.8] )$
(%i8) bcol : matrix( [3.3], [6.6] )$
(%i9) linsolve_by_lu(m,bcol);
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.95 by 19/20 = 0.95
(%o9) [matrix([24.315789],[-5.2105263]),false]
(%i10) ratprint:false$
(%i11) solns : solve(eqns, [x,y]);
(%o11) [[x = 462/19,y = -99/19]]
(%i12) linsolve(eqns,[x,y]);
(%o12) [x = 462/19,y = -99/19]
(%i13) linsolve_by_lu(m,bcol);
(%o13) [matrix([24.315789],[-5.2105263]),false]
(%i14) float(solns);
(%o14) [[x = 24.315789,y = -5.2105263]]

Matrix methods for sets of linear equations can be solved using IEEE double �oats (as well as �big �oats�) by
including an optional �method� speci�cation 'floatfield after the input column vector (or matrix of input
column vectors).

(%i15) linsolve_by_lu(m,bcol, 'floatfield);
(%o15) [matrix([24.315789],[-5.2105263]),8.8815789]

In this example the lower bound of the matrix condition number appears as the second element of the returned
list.

4.3.7 Non-Linear Polynomial Equations
Here is an example of using solve to �nd a pair of exact solutions of a pair of equations, one equation being
linear, the other quadratic. The pair of solutions represent the two intersections of the unit circle with the line
y = −x/3.

(%i1) fpprintprec:8$
(%i2) eqns : [x�2 + y�2 = 1, x + 3*y = 0]$
(%i3) solns : solve(eqns,[x,y]);

3 1
(%o3) [[x = - --------, y = ---------------],

sqrt(10) sqrt(2) sqrt(5)
3 1

[x = --------, y = - ---------------]]
sqrt(10) sqrt(2) sqrt(5)
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(%i4) solns : rootscontract(solns);
3 1 3 1

(%o4) [[x = - --------, y = --------], [x = --------, y = - --------]]
sqrt(10) sqrt(10) sqrt(10) sqrt(10)

(%i5) for i thru 2 do for j thru 2 do (
ev(eqns[i],solns[j]), disp(lhs(%%)-rhs(%%)) )$

0
0
0
0

(%i6) float(solns);
(%o6) [[x = - 0.948683, y = 0.316228], [x = 0.948683, y = - 0.316228]]

The pair of solutions re�ect the symmetry of the given set of equations, which remain invariant under the
transformation x → −y, y → −x.

A set of two nonlinear polynomial equations with four solutions generated by solve is one of the examples
in the Maxima manual. One of the solutions is exact, one is a real inexact solution, and the other two solutions
are inexact complex solutions.

(%i1) fpprintprec:8$
(%i2) eqns : [4*x�2 - y�2 = 12, x*y - x = 2]$
(%i3) solns : solve( eqns, [x,y] );
(%o3) [[x = 2, y = 2], [x = 0.520259 %i - 0.133124,
y = 0.0767838 - 3.6080032 %i], [x = - 0.520259 %i - 0.133124,
y = 3.6080032 %i + 0.0767838], [x = - 1.7337518, y = - 0.153568]]
(%i4) for i thru 2 do for j thru length(solns) do (

expand( ev(eqns[i],solns[j]) ),
abs( lhs(%%) - rhs(%%) ), disp(%%) )$

0
2.36036653E-15
2.36036653E-15
1.13954405E-6

0
0.0
0.0

9.38499825E-8

To get real numbers from the complex solutions, we used the abs function, which calculates the absolute value
of a complex number. Note the syntax used to check the solutions: do ( job1, job2, job3).
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4.3.8 General Sets of Nonlinear Equations: eliminate, mnewton

Solving systems of nonlinear equations is much more dif�cult than solving one nonlinear equation. A wider
variety of behavior is possible: determining the existence and number of solutions or even a good starting
guess is more complicated. There is no method which can guarantee convergence to the desired solution. The
computing labor increases rapidly with the number of dimensions of the problem.

4.3.9 Intersections of Two Circles: implicit plot
Given two circles, we seek the intersections points. We �rst write down the de�ning equations of the two
circles, and look visually for points (x,y) which simultaneously lie on each circle. We use implicit plot for
this visual search.
(%i1) [eq1 : x�2 + y�2 = 1,eq2 : (x-2)�2 + (y-2)�2 = 4]$
(%i2) eqns : [eq1,eq2]$
(%i3) load(implicit_plot);
(%o3)

C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/contrib/implicit_plot.lisp
(%i4) implicit_plot(eqns,[x,-6,6],[y,-6,6],[nticks,200],

[gnuplot_preamble, "set zeroaxis" ])$

We are not taking enough care with the x and y ranges to make the �circles� circular, but we can use the cursor
to read off approximate intersections points: (x,y) = (0.26,0.98), (0.96,0.30). However, the
de�ning equations are invariant under the symmetry transformation x ↔ y, so the solution pairs must also
respect this symmetry. We next eliminate y between the two equations and use solve to �nd accurate values for
the x's. Since we know that both solutions have positive values for y, we enforce this condition on equation 1.
(%i5) solve(eq1,y);

2 2
(%o5) [y = - sqrt(1 - x ), y = sqrt(1 - x )]
(%i6) ysoln : second(%);

2
(%o6) y = sqrt(1 - x )
(%i7) eliminate(eqns,[y]);

2
(%o7) [32 x - 40 x + 9]
(%i8) xex : solve(first(%));

sqrt(7) - 5 sqrt(7) + 5
(%o8) [x = - -----------, x = -----------]

8 8
(%i9) (fpprintprec:8, xex : float(xex) );
(%o9) [x = 0.294281, x = 0.955719]
(%i10) [x1soln : first(xex), x2soln : second(xex) ]$
(%i11) [ev(%o7,x1soln), ev(%o7,x2soln)];
(%o11) [[- 4.4408921E-16], [0.0]]
(%i12) y1soln : ev(ysoln,x1soln);
(%o12) y = 0.955719
(%i13) y2soln : ev(ysoln,x2soln);
(%o13) y = 0.294281
(%i14) [soln1:[x1soln,y1soln],soln2:[x2soln,y2soln] ]$
(%i15) [ev(eqns,soln1), ev(eqns,soln2) ];
(%o15) [[1.0 = 1, 4.0 = 4], [1.0 = 1, 4.0 = 4]]
(%i16) [soln1,soln2];
(%o16) [[x = 0.294281, y = 0.955719], [x = 0.955719, y = 0.294281]]

37



We have solutions (%o16) which respect the symmetry of the equations. The solutions have been numerically
checked in input %i15.
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Intersections of Two Circles

Figure 5: two circles

4.3.10 Using Draw for Implicit Plots
The �gure above was created using the draw package with the following code in a separate work �le �implic-
itplot1.mac�. The code the the �le is

/* file implicitplot1.mac */
/* need load(implicit_plot); to use this code */
disp(" doplot() ")$

doplot() := block([ x,y, eq1, eq2, y1:-2, y2:4,r, x1 ,x2 ],
r : 1.56,
x1 : r*y1,
x2 : r*y2,
eq1 : x�2 + y�2 = 1,

eq2 : (x-2)�2 + (y-2)�2 = 4,
draw2d(

grid = true,
line_type = solid,
line_width = 3,
color = blue,
implicit(eq1, x, x1,x2, y, y1,y2),
color = red,
implicit(eq2, x, x1,x2, y, y1,y2),
color = black,
point_type = filled_circle,
point_size = 2,
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points( [ [0.294281,0.955719], [ 0.955719, 0.294281] ] ),
title = "Intersections of Two Circles" ,
terminal = 'eps ,

file_name = "c:/work2/mycircle2" )
)$

Here is record of use:

(%i1) load(draw);
(%o1) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/draw/draw.lisp
(%i2) load(implicitplot1);

doplot()

(%o2) c:/work2/implicitplot1.mac
(%i3) doplot();
(%o3) [gr2d(implicit, implicit, points)]

Note that no actual plot was drawn on the screen, since an �eps� �le was created �mycircle2.eps� in my
work folder c:\work2 for use in my latex �le. To use this code to get a �gure on your screen, you would
remove the last two lines: terminal = 'eps , file_name = "c:/work2/mycircle2" and,
very important!, also remove the comma at the end of �two circles�.

4.3.11 Another Example
We next work through Example 6.5.1 (page 149), in �Numerical Methods for Unconstrained Optimization and
Nonlinear Equations� by J. E. Dennis, Jr. and Robert B. Schnabel (Prentice-Hall, 1983).

(%i1) eq1 : x�2 + y�2 = 2;
2 2

(%o1) y + x = 2
(%i2) eq2 : exp(x - 1) + y�3 = 2;

3 x - 1
(%o2) y + %e = 2

We will concentrate on the solution (x,y) = (1,1). We can eliminate y and plot the resulting function of
x to visually locate the x solutions.

(%i3) eliminate([eq1,eq2],[y]);
2 x x + 1 2 6 2 4 2 2 2

(%o3) [%e - 4 %e + %e x - 6 %e x + 12 %e x - 4 %e ]
(%i4) ex : first(%);

2 x x + 1 2 6 2 4 2 2 2
(%o4) %e - 4 %e + %e x - 6 %e x + 12 %e x - 4 %e
(%i5) plot2d([0.0,ex],[x,-5,5] )$
(%i6) plot2d([0.0,ex],[x,0,2] )$
(%i7) x1 : find_root(ex,x,0.5,1.5);
(%o7) 1.0
(%i8) yeqn : ev(eq1,x = x1);

2
(%o8) y + 1.0 = 2
(%i9) solve(yeqn);
`rat' replaced -1.0 by -1/1 = -1.0
(%o9) [y = - 1, y = 1]
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(%i10) ysol : second(%);
(%o10) y = 1
(%i11) soln1 : [x = x1, ysol];
(%o11) [x = 1.0, y = 1]
(%i12) ev(eq1,soln1);
(%o12) 2.0 = 2
(%i13) ev(eq2,soln1);
(%o13) 2.0 = 2

One solution is then %o11 and the solution has been checked.
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Figure 6: Dennis and Schnabel Example

Let's try mnewton on this problem. Wikipedia, under �Newton's Method�, has the introduction:

In numerical analysis, Newton's method (also known as the Newton Raphson method or the Newton Fourier
method) is perhaps the best known method for �nding successively better approximations to the zeros (or
roots) of a real valued function. Newton's method can often converge remarkably quickly, especially if
the iteration begins �suf�ciently near� the desired root. Just how near �suf�ciently near� needs to be and
just how quickly �remarkably quickly� can be depends on the problem, as is discussed in detail below.
Unfortunately, far from the desired root, Newton's method can easily lead an unwary user astray, and astray
with little warning. Such users are advised to heed the advice of Press, et. al. (1992), who suggest embedding
Newton's method in a routine that also detects possible convergence failures.
Newton's method can also be used to �nd a minimum or maximum of such a function, by �nding a zero in
the function's �rst derivative, see Newton's method as an optimization algorithm.
The algorithm is �rst in the class of Householder's methods, succeeded by Halley's method.

The Maxima manual entry for mnewton begins:
Function: mnewton(FuncList,VarList,GuessList)
Multiple nonlinear functions solution using the Newton method. FuncList is the list of functions to solve,
VarList is the list of variable names, and GuessList is the list of initial approximations.
The solution is returned in the same format that solve() returns. If the solution isn't found, [] is returned.
This function is controlled by global variables newtonepsilon and newtonmaxiter.
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Here are the Maxima manual examples of mnewton:

(%i1) load(mnewton);
(%o1) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/contrib/mnewton.mac
(%i2) mnewton([2*a�a-5],[a],[1]);

(%o2) [[a = 1.70927556786144]]
(%i3) mnewton([2*3�u-v/u-5, u+2�v-4], [u, v], [2, 2]);
(%o3) [[u = 1.066618389595407, v = 1.552564766841786]]
(%i4) mnewton([x1+3*log(x1)-x2�2, 2*x1�2-x1*x2-5*x1+1],

[x1, x2], [5, 5]);
(%o4) [[x1 = 3.756834008012769, x2 = 2.779849592817898]]

In the above examples, mnewton is presented with a list of expressions. Here we use mnewton on the
Dennis and Schnabel problem we solved earlier using eliminate and �nd root. We rewrite the equations as
expressions here.

(%i1) fpprintprec:8$
(%i2) load(mnewton);
(%o2) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/contrib/mnewton.mac
(%i3) exs : [x�2 + y�2 -2, exp(x-1)+y�3-2]$
(%i4) mn(x0,y0) := mnewton(exs,[x,y],[x0,y0] )$
(%i5) mn(1.1,0.9);
(%o5) [[x = 1.0, y = 1.0]]
(%i6) mn(1.2,0.8);
(%o6) [[x = 1.0, y = 1.0]]
(%i7) mn(1.3,0.7);
(%o7) [[x = 1.0, y = 1.0]]
(%i8) mn(1.4,0.6);
(%o8) [[x = 1.0, y = 1.0]]
(%i9) mn(1.5,0.5);
(%o9) [[x = - 0.713747, y = 1.2208868]]
(%i10) mn(1.5,0.6);
(%o10) [[x = 1.0, y = 1.0]]
(%i11) mn(1.7,0.6);
(%o11) [[x = 1.0, y = 1.0]]
(%i12) mn(1.9,0.6);
(%o12) [[x = - 0.713747, y = 1.2208868]]
(%i13) mn(1.9,0.7);
(%o13) [[x = 1.0, y = 1.0]]
(%i14) mn(2,0.7);
(%o14) [[x = 1.0, y = 1.0]]
(%i15) mn(0.8,1.1);
(%o15) [[x = 1.0, y = 1.0]]
(%i16) mn(0.5,1.2);
(%o16) [[x = 1.0, y = 1.0]]
(%i17) mn(0.1,1.2);
(%o17) [[x = - 0.713747, y = 1.2208868]]

We have to be �close enough� to �nd the (1,1) root with mnewton. Note that Maxima's function mnewton
can't �nd the desired root starting with (x0,y0) = (2,0.5) as the textbook example does with eventual
success.
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4.3.12 Error Messages and Do It Yourself Mnewton
Let's explore the Newton Raphson method using an easy example which solve has no trouble with. As a by-
product, we show that mnewton can deal with a list of equations, rather than a list of expressions. After getting
an error message from Maxima's mnewton, we work this same problem �by hand�, using matrix methods. A
good reference is Chapter 5, Nonlinear Equations, of the text �Scienti�c Computing: An Introductory Survey�
(2nd ed.), by Michael T. Heath. ( see webpage:
http://www.cse.uiuc.edu/heath/scicomp/pubdata/index.html)

(%i18) eqns : [x+y=3,x�2+y�2=9]$
(%i19) mn(x0,y0) := mnewton(eqns,[x,y],[x0,y0] )$
(%i20) solve(eqns,[x,y]);
(%o20) [[x = 3, y = 0], [x = 0, y = 3]]
(%i21) mn(1,2);
(%o21) [[x = 6.37714165E-17, y = 3.0]]
(%i22) mn(-1,4);
(%o22) [[x = 6.37714165E-17, y = 3.0]]
(%i23) mn(-2,5);
(%o23) [[x = 1.13978659E-16, y = 3.0]]
(%i24) mn(0,0);
Maxima encountered a Lisp error:

Error in FUNCALL [or a callee]: Zero divisor.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i25) mn(0,1);
(%o25) [[x = 1.13978659E-16, y = 3.0]]
(%i26) mn(2,0);
(%o26) [[x = 3.0, y = 1.41267055E-16]]

The �zero divisor� message from the Maxima code for mnewton probably means that the starting point
(x,y) = (0,0) resulted in an attempted division by 0. To explore what kind of problems can arise, we
implement a naive (ie., a strategy-less) iteration algorithm as presented in Heath's text. We present the al-
gorithm �rst in terms of a 2 × 2 matrix and a two element column vector which are functions of the scalars
(x,y). We then convert the algorithm to a form which works with two element column vectors v and b.
We let the column vector b hold the elements x and y and we seek b such that the equation f(b) = 0,
where f is a column vector which de�nes the problem. If b is an approximate solution of this equation, then
bbetter = b + s, where s is the solution of the matrix equation j(b) . s = -f(b), and the 2 × 2 matrix
j(b) is the jacobian matrix: j[1,1] : diff( f[1,1],x ), j[1,2] : diff( f[1,1],y ),
and j[2,1] : diff( f[2,1],x), j[2,2] : diff( f[2,1],y ).

(%i1) (fpprintprec:8,ratprint:false)$
(%i2) g : matrix( [x + y -3],[x�2 + y�2 -9] );

[ y + x - 3 ]
(%o2) [ ]

[ 2 2 ]
[ y + x - 9 ]
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(%i3) gv : ev(g, x=v[1,1], y=v[2,1] );
[ v + v - 3 ]
[ 2, 1 1, 1 ]

(%o3) [ ]
[ 2 2 ]
[ v + v - 9 ]
[ 2, 1 1, 1 ]

(%i4) define(f(v), gv);
[ v + v - 3 ]
[ 2, 1 1, 1 ]

(%o4) f(v) := [ ]
[ 2 2 ]
[ v + v - 9 ]
[ 2, 1 1, 1 ]

(%i5) b : matrix([1],[2]);
[ 1 ]

(%o5) [ ]
[ 2 ]

(%i6) f(b);
[ 0 ]

(%o6) [ ]
[ - 4 ]

(%i7) (r1 : g[1,1], r2 : g[2,1] )$
(%i8) h : matrix( [diff(r1,x), diff(r1,y)],

[diff(r2,x), diff(r2,y) ] );
[ 1 1 ]

(%o8) [ ]
[ 2 x 2 y ]

(%i9) hv : ev(h, x=v[1,1], y=v[2,1] );
[ 1 1 ]

(%o9) [ ]
[ 2 v 2 v ]
[ 1, 1 2, 1 ]

(%i10) define( j(v), hv );
[ 1 1 ]

(%o10) j(v) := [ ]
[ 2 v 2 v ]
[ 1, 1 2, 1 ]

(%i11) j(b);
[ 1 1 ]

(%o11) [ ]
[ 2 4 ]

(%i12) ls : linsolve_by_lu(j(b),-f(b) );
[ - 2 ]

(%o12) [[ ], false]
[ 2 ]

(%i13) s : first(ls) ;
[ - 2 ]

(%o13) [ ]
[ 2 ]

43



(%i14) b : b + s;
[ - 1 ]

(%o14) [ ]
[ 4 ]

(%i15) b : b + first( linsolve_by_lu(j(b),-f(b) ) );
[ 1 ]
[ - - ]
[ 5 ]

(%o15) [ ]
[ 16 ]
[ -- ]
[ 5 ]

(%i16) b : b + first( linsolve_by_lu(j(b),-f(b) ) );
[ 1 ]
[ - -- ]
[ 85 ]

(%o16) [ ]
[ 256 ]
[ --- ]
[ 85 ]

(%i17) b : b + first( linsolve_by_lu(j(b),-f(b) ) );
[ 1 ]
[ - ----- ]
[ 21845 ]

(%o17) [ ]
[ 65536 ]
[ ----- ]
[ 21845 ]

(%i18) b : b + float( first( linsolve_by_lu(j(b),-f(b) ) ) );
[ - 6.98491931E-10 ]

(%o18) [ ]
[ 3.0 ]

(%i19) f(b);
[ 0.0 ]

(%o19) [ ]
[ 4.19095159E-9 ]

Starting with the guess (x0,y0) = (1,2), this iteration process has converged to the approximate solu-
tion given by %o18, which we check as an approximate solution in input %i19. Now let's start with the
�dangerous� guess: (x0,y0) = (0,0).
(%i20) b : matrix( [0], [0] );

[ 0 ]
(%o20) [ ]

[ 0 ]
(%i21) f(b);

[ - 3 ]
(%o21) [ ]

[ - 9 ]
(%i22) j(b);

[ 1 1 ]
(%o22) [ ]

[ 0 0 ]
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(%i23) ls : linsolve_by_lu(j(b),-f(b) );
Division by 0
-- an error. To debug this try debugmode(true);
(%i24) determinant(j(b));
(%o24) 0

Thus, a check of the non-vanishing of the determinant of the jacobian matrix would have kept us out of trouble.

4.3.13 Automated Code for mymnewton
Writing code for an arbitrary number of dimensions is a suggested homework problem. Here we just assume
the problem is two dimensional and assume the variables are called x and y. To check for the �nonvanishing�
of the determinant of the jacobian, we ask if the absolute value is less than some very small number. Here
is the code, written with notepad2 in a �le �mymnewton.mac�, placed in my work directory c:\work2\.
You can download this �le from the author's webpage, and experiment with it. You can reduce the size of
the output on the screen by adding the line �display2d:false,� in the program, or outside the pro-
gram in your work session. If you make changes to this code, add some extra �debug� printouts at �rst like
�display(newval1,newval2)�, or �print(" v1 = ",v1),� to make sure you are on the right
track. Once the program has been �debugged�, you can comment out the debug version in your work �le, copy
the whole code to a new section, remove the debug printouts, and use as your �working version�.

/* working version */
/* file: mymnewton.mac

e. woollett, april, 08 */

disp("working version mymnewton,
assumes two dimensional problem only,
syntax:

mymnewton( exprlist, guesslist, numiter )$

exprlist should have the form: [expr1, expr2],
to find (x,y) such that simultaneously expr1=0,expr2=0,
expr1, expr2 should be explicit functions of x and y,
guesslist should be in the form: [xguess,yguess],
numiter = number of iterations ")$

mymnewton( exprlist, guesslist, numiter) :=

block([numer,ratprint,fpprintprec, small : 1.0e-30 ,
g,x,y,gv,h,hv,b,v,ls,d ] , local(f,j),

numer:true, ratprint:false, fpprintprec:8,
/* g = col vec: row 1=expr 1, row 2=expr 2 depends on (x,y) */

g : matrix( [ exprlist[1] ],[ exprlist[2] ] ),
display(g),

gv : ev(g, x=v[1,1], y=v[2,1] ),

/* v is generic col vector */
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define( f(v), gv ),

/* h is jacobian matrix associated with col vec g(x,y) */

h : matrix( [diff( g[1,1], x), diff( g[1,1], y)],
[diff( g[2,1], x), diff(g[2,1], y) ] ),

hv : ev(h, x=v[1,1], y=v[2,1] ),

define( j(v), hv ),

/* b is col vec containing (x,y) values */

b : matrix([ guesslist[1] ],[ guesslist[2] ]),

/* start iterations */

for i:0 thru numiter do (

print(" "),
print(" i = ",i," b = ",b," f(b) = ",f(b) ),
if ( i = 0) then print(" starting values ") else

print(" condition number = ", second(ls) ),

/* check jacobian determinant */

d : ( determinant( j(b) ), float(%%) , abs(%%) ),

if ( d < small ) then (
print(" abs(det(jacobian)) is ", d," program halt " ),

return() ),

/* using 'floatfield arg gets condition number returned */

ls : linsolve_by_lu(j(b),-f(b), 'floatfield ),

/* improved (hopefully) estimates of values of (x,y)
which simultaneously satisfy expr1=0 and expr2=0 */

b : b + first(ls)

) /* end do */

)$ /* end block */
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and here is a little output from this code:

(%i1) load("mymnewton.mac");
working version mymnewton,
assumes two dimensional problem only,
syntax:
mymnewton( exprlist, guesslist, numiter )$
exprlist should have the form: [expr1, expr2],
to find (x,y) such that simultaneously expr1=0,expr2=0,
expr1, expr2 should be explicit functions of x and y,
guesslist should be in the form: [xguess,yguess],
numiter = number of iterations
(%o1) c:/work2/mymnewton.mac
(%i2) mymnewton([x+y-3, x�2+y�2-9],[1,2], 5)$

[ y + x - 3 ]
g = [ ]

[ 2 2 ]
[ y + x - 9 ]

[ 1 ] [ 0 ]
i = 0 b = [ ] f(b) = [ ]

[ 2 ] [ - 4 ]
starting values

[ - 1.0 ] [ 0.0 ]
i = 1 b = [ ] f(b) = [ ]

[ 4.0 ] [ 8.0 ]
condition number = 22.5

[ - 0.2 ] [ 0.0 ]
i = 2 b = [ ] f(b) = [ ]

[ 3.2 ] [ 1.28 ]
condition number = 19.5

[ - 0.0117647 ] [ 0.0 ]
i = 3 b = [ ] f(b) = [ ]

[ 3.0117647 ] [ 0.0708651 ]
condition number = 10.92

[ - 4.57770657E-5 ] [ 4.4408921E-16 ]
i = 4 b = [ ] f(b) = [ ]

[ 3.0000458 ] [ 2.74666585E-4 ]
condition number = 7.212872

[ - 6.98491837E-10 ] [ 0.0 ]
i = 5 b = [ ] f(b) = [ ]

[ 3.0 ] [ 4.19095159E-9 ]
condition number = 7.000824
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Here is a test of the �dangerous� initial condition case:

(%i3) mymnewton([x+y-3, x�2+y�2-9],[0,0], 5)$
[ y + x - 3 ]

g = [ ]
[ 2 2 ]
[ y + x - 9 ]

[ 0 ] [ - 3 ]
i = 0 b = [ ] f(b) = [ ]

[ 0 ] [ - 9 ]
starting values
abs(det(jacobian)) is 0.0 program halt

It is left as a homework problem to incorporate a criterion for �nding an �accurate enough� solution without
providing the program a number of iterations, and allowing the program to �hide� the details of the iteration
process, providing the user with an �answer� and an estimate of the likely �error�.
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5 2D Plots and Graphics using qdraw
5.1 Quick Plots for Explicit Functions: ex(...)
This chapter provides an introduction to a new graphics interface developed by the author of the Maxima by
Example tutorial notes. The qdraw package ( qdraw.mac: available for download on the Maxima by Example
webpage ) is an interface to the draw package function draw2d; to obtain a plot you must load draw as well
as qdraw. You can just use load(qdraw) if you have the �le in your work folder and have set up your
�le search as described in Chap. 1. Otherwise just put qdraw.mac into your ...maxima...share\draw
folder where it will be found.

The primary motivation for the qdraw package is to provide �quick� (hence the �q� in �qdraw�) plotting
software which provides the kinds of plotting defaults which are of interest to students and researchers in the
physical sciences and engineering. There are two �quick� plotting functions you can use with qdraw: ex(...)
and imp(...).

An entry like

(%i1) load(draw)$
(%i2) load(qdraw)$
(%i3) qdraw( ex( [x,x�2,x�3],x,-3,3 ) )$

will produce a plot of the three explicit functions of x in the �rst argument list, using line width = 3, an
automatic rotating series of default colors, clearly visible x and y axes, and also a �grid� as well. The ex
function passes its arguments on to a series of calls to draw2d's explicit function.
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Figure 1: Using ex() for x, x2, x3

Since 33 = 27, draw2d extends the vertical axis to ± 27 by default.
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You can control the vertical range of the �canvas� with the yr(...) function, which passes its arguments to a
draw2d entry yrange = [y1,y2].

(%i4) qdraw( ex([x,x�2,x�3],x,-3,3 ),yr(-2,2) )$

which produces the plot:
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Figure 2: Adding yr(−2, 2)

You can make the lines thinner or thicker than the default line width (3) by using the lw(n) option, which
only affects the quick plotting functions ex(...) and imp(...), as in

(%i5) qdraw(ex([x,x�2,x�3],x,-3,3 ),yr(-2,2), lw(6))$

to get:
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Figure 3: Adding lw(6)

4



You can place the plot �key� (legend) at the bottom right by using the key(bottom) option, as in:

(%i6) qdraw( ex( [x,x�2,x�3],x,-3,3 ),yr(-2,2),lw(6),key(bottom) )$

to get:
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Figure 4: Adding key(bottom)

You can remove the default grid and xy axes by adding cut(grid,xyaxes) as in:

(%i7) qdraw( ex( [x,x�2,x�3],x,-3,3 ),yr(-2,2),
lw(6),key(bottom), cut(grid, xyaxes) )$
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Figure 5: Adding cut(grid, xyaxes)
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You can remove the grid, axes, the key, and all the borders using cut( all ), as in:

(%i8) qdraw( ex( [x,x�2,x�3],x,-3,3 ),yr(-2,2),
lw(6), cut( all ) )$

which results in a �clean� canvas:

Figure 6: Adding cut(all)

Restoring the (default) grid and axes, we can place points (default size 3 and color black) at the intersection
points using the pts(...) option, which passes a points list to draw2d's points function:

(%i9) qdraw( ex([x,x�2,x�3],x,-3,3 ),yr(-2,2),lw(6),
key(bottom),pts( [ [-1,-1],[0,0],[1,1] ] ) )$

which produces:
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Figure 7: Adding pts(ptlist)
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We can overide the default size and color of those points by including inside the pts function the optional
ps(n) and pc(c) arguments, as in:

(%i10) qdraw( ex( [x,x�2,x�3],x,-3,3 ),yr(-2,2), lw(6),key(bottom),
pts([ [-1,-1],[0,0],[1,1] ],ps(2),pc(magenta) ) )$

which produces:
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Figure 8: Adding pts(ptlist, ps(2), pc(magenta))

We can include a key entry for the points using the pk(string) option for the pts function, as in:

(%i11) qdraw( ex( [x,x�2,x�3],x,-3,3 ),yr(-2,2), lw(6),key(bottom),
pts([ [-1,-1],[0,0],[1,1] ],ps(2),pc(magenta),pk("intersections") ) )$

which produces:
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Figure 9: pts(ptlist, ps(2), pc(magenta), pk(”intersections”))
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The �eps� �le ch5p9.eps used to get the last �gure in the Tex �le which is the source of this pdf �le was
produced using the pic(type, �lename) option to qdraw, as in:
(%i12) qdraw( ex( [x,x�2,x�3],x,-3,3 ),yr(-2,2), lw(6),key(bottom),

line(-3,0,3,0,lw(2)),line(0,-2,0,2,lw(2)),
pts([ [-1,-1],[0,0],[1,1] ],ps(2),pc(magenta),pk("intersections")),

pic(eps,"ch5p9") )$

We have discussed, at the end of Chapter 1, Getting Started, how we insert such an �eps� �le into our Tex �le
in order to get the �gures you see here.

The extra, optional, arguments we have included inside qdraw can be entered in any order; in fact, all
arguments to qdraw are optional and can be entered in any order. For example
(%i13) qdraw( yr(-2,2),lw(6), ex( [x,x�2,x�3],x,-3,3 ),

key(bottom), ex(sin(3*x)*exp(x/3),x,-3,3),
pts([ [-1,-1],[0,0],[1,1] ]) )$

which adds sin(3 x) ex/3 with a separate ex(...) argument to qdraw, and produces
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Figure 10: Adding sin(3 x) ex/3

We next add a label �qdraw at work� to our plot.
Using Windows, the font size must be adjusted only after getting the plot drawn in a Gnuplot window by

right clicking the icon in the upper left hand corner, and selecting Options, Choose Font,... If you increase the
windows graphics font from the default value of 10 to 20, say, you will see a dramatic increase in the size of
the label, but also in the size of the x and y axis coordinate numbers, and also a large increase in size of any
features of the graphics which used a call to draw2d's points function (such as qdraw's pts function).

This behavior seems to be related to the limitations of the present incarnation of the adaptation of Gnuplot
to the Windows system, and hopefully will be addressed in the future by the volunteers who work on Gnuplot
software.

Our illustration of the use of labels will simply be what one gets by sending the graphics object to a graphics
�le �ch5p11.eps� and including that �le in our Tex/pdf �le. In Maxima, we use the code:
(%i14) qdraw( yr(-2,2),lw(6), ex( [x,x�2,x�3],x,-3,3 ),

key(bottom), ex(sin(3*x)*exp(x/3),x,-3,3),
pts([ [-1,-1],[0,0],[1,1] ]) ,
label(["qdraw at work",-2.9,1.5]),
pic(eps,"ch5p11",font("Times-Bold",20) ) );
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The resulting plot is then
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Figure 11: Adding a label at (-2.9,1.5)

If you look in the html Maxima manual under the index item �font�, which takes you to a subsection of
the draw package documentation, you will �nd a listing of the available postscript fonts, which one can use
with the pic(eps, �lename, font( name, size ) ) function call. These options have the names Times-Roman,
Times-Bold, Helvetica, Helvetica-Bold, Courier, Courier-Bold, also -Italic options.

If you want to save the graphics as a jpeg �le, the font name should be a string containing the path to
the desired font �le. Using the Windows XP operating system, the available windows fonts are in the folder
c:\windows\fonts\. Here is Maxima code to get a jpeg graphics �le based on our present drawing:

(%i15) qdraw( yr(-2,2),lw(6), ex( [x,x�2,x�3],x,-3,3 ),
key(bottom), ex(sin(3*x)*exp(x/3),x,-3,3),
pts([ [-1,-1],[0,0],[1,1] ]) ,
label(["qdraw at work",-2.9,1.5]),
pic(jpg,"ch5p11",font("c:/windows/fonts/timesbd.ttf",20) ) );

The resulting jpeg �le has thicker lines and bolder labels, so some experimentation may be called for to get the
desired result. The font �le requested corresponds to times roman bold. The font �le extension �ttf� stands for
�true type fonts�. If you look in the windows, fonts folder you can �nd other interesting choices.
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5.2 Quick Plots for Implicit Functions: imp(...)
The quick plotting function imp(...) has the syntax

imp( eqnlist, x,x1,x2,y,y1,y2 )
or imp( eqn, x,x1,x2,y,y1,y2 ) .
If the equation(s) are actually functions of (u,v) then x → u and y → v. The numbers (x1,x2) determine the
horizontal canvas extent, and the numbers (y1,y2) determine the vertical canvas extent. Here is an example
using the single equation form:

(%i16) qdraw( imp( sin(2*x)*cos(y)=0.4,x,-3,3,y,-3,3 ) ,
cut(key) );

which produces the �implicit plot�:
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Figure 12: Implicit plot of sin(2 x) cos(y)

which uses the default line width = 3, the �rst of the default rotating colors (blue), and, of course, the
default axes and grid. To remove the default key, we have used the cut function. Since the left hand side of
this equation will periodically return to the same numerical value in both the x and the y directions, there is no
�limit� to the solutions obtained by setting the left hand side equal to some numerical value between zero and
one.

This looks like one piece of a contour plot for the given function. We can add more contour lines using the
imp function by using the list of equations form:

(%i17) qdraw( imp( [sin(2*x)*cos(y)=0.4,
sin(2*x)*cos(y)=0.7,
sin(2*x)*cos(y)=0.9] ,x,-3,3,y,-3,3 ) ,
cut(key) );

The resulting plot with the default rotating color set is shown on the top of the next page.
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Figure 13: contour plot of sin(2 x) cos(y) using imp()

Of course if we de�ne g, say, to be the expression sin(2 x) cos(y) �rst, we can use that binding to simplify
our call to imp(...) :

(%i18) g : sin(2*x)*cos(y)$
(%i19) qdraw( imp( [g = 0.4,g = 0.7,g = 0.9] ,x,-3,3,y,-3,3 ) ,

cut(key) );

to achieve the same plot.
We can also use symbols like %pi, which will evaluate to a real number, in our horizontal and vertical limit

slots, as in:

(%i20) qdraw( imp( [g = 0.4,g = 0.7,g = 0.9] ,x,-%pi,%pi,y,-%pi,%pi ) ,
cut(key) );

We need to arrange that the horizontal canvas width is about 1.4 time the vertical canvas height in order that
geometrical shapes look closer to reality. For the present plot we simply change the numerical values of the
imp(...) function (x1,x2) parameters:

(%i21) qdraw( imp( [g = 0.4,g = 0.7,g = 0.9] ,x,-4.2,4.2,y,-3,3 ) ,
cut(key) );

which produces a slightly different looking plot:
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Figure 14: using (x1, x2) = (−4.2, 4.2)
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5.3 Contour Plots with contour(...)
Since we are talking about contour plots, this is a natural place to give some examples of the qdraw package's
contour(...) function which has two forms:
contour( expr,x,x1,x2,y,y1,y2,cvals( v1,v2,...),options )
contour( expr,x,x1,x2,y,y1,y2, crange(n,min,max), options ) .

where expr is assumed to be a function of (x,y) and the �rst form allows the setting of expr to the supplied
numerical values, while the second form allows one to supply the number of contours (n), the minimum value
for a contour (min) and the maximum value for a contour (max). If we use the most basic cvals(...) form
(ignoring options):

(%i22) qdraw( contour(g, x,-4.2,4.2, y,-3,3, cvals(0.4,0.7,0.9) ) );

we get a �plain jane� contour plot having line width 1, the key, grid, and xy-axes removed, in �black�: Since
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Figure 15: simplest default contour example

the quick plot functions ex and imp both use the rotating default colors which cannot be turned off, we would
have to use the imp1 function (which we have not yet discussed) with some of its options, to get the same
results as the default use of contour produces. The available �options� which can be used in any order but after
the required �rst eight arguments, are lw(n), lc(color), and add(options), where the �add options� are any or
all of the set [grid,xaxis,yaxis,xyaxes].

Thus the following invocation of contour:

(%i23) qdraw( contour(g,x,-4.2,4.2,y,-3,3,cvals(0.4,0.7,0.9),
lw(2),lc(brown) ), ipgrid(15) );

produces:
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Figure 16: adding lw(2), lc(brown)
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We also added the separate qdraw function ipgrid with argument 15 to over-ride the qdraw default value of
the draw2d parameter ip_grid_in . The draw2d default for this parameter is 5, which results in some �jag-
gies� in implicit plots. The default value inside the qdraw package is 10, which generally produces smoother
plots, but the drawing process takes more time, of course. For our example here, we increased this parameter
from 10 to 15 to get a smoother plot at the price of increased drawing time.

Here is an example of using the second, �crange�, form of contour:

(%i24) qdraw( contour(g,x,-4.2,4.2,y,-3,3,crange(4,0.2,0.9),
lw(2),lc(brown) ), ipgrid(15) )$

which produces the plot:
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Figure 17: using crange(4, .2, .9)

A �nal example illustrates the contour option add:

(%i25) qdraw( contour(sin(x)*sin(y),x,-2,2,y,-2,2,crange(4,0.2,0.9),
lw(3),lc(blue),add(xyaxes) ), ipgrid(15) )$

with the plot:
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Figure 18: using add( xyaxes )
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5.4 Density Plots with qdensity(...)
A type of plot closely related to the contour plot is the density plot, which paints small regions of the graphics
window with a variable color chosen to highlight regions where the function of two variables takes on large
values. A completely separate density plotting function, qdensity, is supplied in the qdraw package. The
qdensity function in completely independent of the default conventions and syntax associated with the function
qdraw.

The syntax of qdensity is:
qdensity(expr,[x,x1,x2,dx],[y,y1,y2,dy], options palette(p),pic(..)) , where
the two optional arguments are palette(p) and pic(type,�lename). The x interval (x1,x2) is divided into
subintervals of size dx, and likewise the y interval (y1,y2) is divided into subintervals of size dy.

If the palette(p) option is not present, a default �shades of blue� density plot is drawn (which corresponds
to palette = [1,3,8]). To use the paletter option, the argument �p� can be either blue, gray, color,
or a three element list [n1,n2,n3], where (n1,n2,n3) are positive integers which select functions to apply
respectively to red, green, and blue.

To use the pic(...) option, the type is eps, eps color, jpg, or png, and the �lename is a string like �case5a�.
As usual, use �x� and �y� if expr depends explicitly on x and y, or use �u� and �v� if expr depends explicitly
on u and v, etc.

A simple function of two variables to try is f(x, y) = x y, which increases from zero at the origin to 1 at
(1,1).

(%i26) qdensity(x*y,[x,0,1,0.2],[y,0,1,0.2] )$

This produces the density plot:

Figure 19: default palette density plot
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If we use the gray palette opton

(%i27) qdensity(x*y,[x,0,1,0.2],[y,0,1,0.2],
palette(gray) )$

we get

Figure 20: palette(gray) option

while if we use palette(color), we get

Figure 21: palette(color) option
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To get a �ner sampling of the function, you should decrease the values of dx and dy to 0.05 or less. Using
the default palette choice with the interval choice 0.05,

(%i28) qdensity(x*y,[x,0,1,0.05],[y,0,1,0.05] )$

yields a re�ned density plot with 20 x 20 = 400 painted rectangular panels.

Figure 22: interval set to 0.05

A more interesting function to look at is f(x, y) = sin(x) sin(y).

(%i29) qdensity(sin(x)*sin(y),[x,-2,2,0.05],[y,-2,2,0.05] )$

which yields

Figure 23: sin(x) sin(y)
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5.5 Explicit Plots with Greater Control: ex1(...)
If we are willing to deal with one explicit function or expression at a time, we get more control over the plot
elements if we use the qdraw function ex1(...), which has the syntax:
ex1( expr, x, x1,x2, lc(c), lw(n),lk(string) ) .

As usual, if the expression expr is actually a function of u, then x → u. The �rst four arguments are
required and must be in the �rst four slots. The last three arguments are all optional and can be in any order.

Let's illustrate the use of ex1(...) by displaying a simple curve and the tangent and normal at one point of
the curve. We will use the curve y = x2 with the �slope� dy/dx = 2 x, and construct the tangent line tangent
at the point (x0, y0):

(y − y0) = m (x− x0)

where m is the slope at (x0, y0). As we discuss in the next chapter, the normal line through the same point is

(y − y0) = (−1/m) (x− x0).

For the point x0 = 1, y0 = 1,m = 2, the tangent line is y = 2 x− 1 and the normal line is y = −x/2 + 3/2.

(%i30) qdraw( xr(-1.4,2.8),yr(-1,2),
ex1(x�2,x,-2,2,lw(5),lc(brown),lk("X�2")),
ex1(2*x-1,x,-2,2,lw(2),lc(blue),lk("TANGENT")),
ex1(-x/2 + 3/2,x,-2,2,lw(2),lc(magenta),lk("NORMAL") ) ,
pts( [ [1,1] ],ps(2),pc(red) ) )$

Note that we were careful to force the x-range to be about 1.4 times as great as the y-range (to get the correct
geometry of the tangent and normal lines). The resulting plot is:
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Figure 24: plot using ex1(...)

17



Here we use ex1 to plot the �rst few Bessel functions of the �rst kind Jn(x) for integral n and real x,

(%i31) qdraw( ex1(bessel_j(0,x),x,0,20,lc(red),lw(6),lk("bessel_j ( 0, x)") ),
ex1(bessel_j(1,x),x,0,20,lc(blue),lw(5),lk("bessel_j ( 1, x)")),
ex1(bessel_j(2,x),x,0,20,lc(brown),lw(4),lk("bessel_j ( 2, x)") ),
ex1(bessel_j(3,x),x,0,20,lc(green),lw(3),lk("bessel_j ( 3, x)") ) )$

which produces the plot:
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Figure 25: Jn(x)

Here is a plot of J0(
√

x):

(%i32) qdraw(line(0,0,50,0,lc(red),lw(2) ),
ex1(bessel_j(0, sqrt(x)),x,0,50 ,lc(blue),
lw(7),lk("J0( sqrt(x) )") ) )$
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J0( sqrt(x) )

Figure 26: J0(
√

x)

We chose to emphasize the axis y = 0 with a red line supplied by another of the qdraw functions, line,
which we will discuss later in the section on geometric �gures. Placing the line element before ex1(..) causes
the curve to write �over� the line, rather than the reverse.
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5.6 Explicit Plots with ex1(...) and Log Scaled Axes
The name �log plot� usually refers to a plot of ln(y) vs x using linear graph paper, which is equivalent to a plot
of y vs x on graph paper which uses a �logarithmic scale� on the vertical axis. Given an expression g depend-
ing on x, you can either use the syntax qdraw( ex1( log(g),x,x1,x2 ), other options ) to
generate such a �log plot� or qdraw( ex1(g, x, x1, x2), log(y) , other options ).

Let's show the differences using the function f(x) = x e−x, but using an expression called g rather than a
Maxima function.

(%i33) g : x*exp(-x)$
(%i34) qdraw( ex1( log(g),x,0.001,10, lc(red) ),yr(-8,0) )$

which displays the plot
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Figure 27: Linear Graph Paper Plot of ln(g)

The numbers on the vertical axis correspond to values of ln(g). Since g is singular at x = 0, we have
avoided that region by using x1 = 0.001.

The second way to get a �log plot� of g is to request �semi-log� graph paper which has the vertical axis
marked using a logarithmic scale for the values of g. Using the log(y) option of the qdraw function, we use:

(%i35) qdraw( ex1(g, x, 0.001,10,lc(red) ),
yr(0.0001, 1), log(y) )$

The yr(y1,y2) option takes into account the numerical limits of g over the x interval requested. The minimum
value of g is 0.005 which occurs at x = 10. The maximum value of g is about 0.37. The resulting plot is:
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Figure 28: Log Paper Plot of g
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The name �log-linear plot� can be used to mean �x axis marked with a log scale, y axis marked with a linear
scale�. Using the same function, we generate this plot by using the log(x) option to qdraw:

(%i36) qdraw( ex1(g, x, 0.001,10,lc(red),lw(7) ),
yr(0,0.4), log(x) )$

This generates the plot
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Figure 29: Log-Linear Plot of g

Scientists and engineers normally like to use a log scaled axis for a variable which varies over many powers
of ten, which is not the case for our example.

Finally, we can request �log-log paper� which has both axes marked with a log scale, by using the log(xy)
option to qdraw.

(%i37) qdraw( ex1(g, x, 0.001,10,lc(red) ),
yr(0.0001,1), log(xy) )$

which produces
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Figure 30: Log-Log Plot of g
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5.7 Data Plots with Error Bars: pts(...) and errorbars(...)
In Chapter One of Maxima by Example, Section 1.5.8, we created a data �le called ��t1.dat�, which can be
downloaded from the author's webpage. We will use that data �le, together with ��t2.dat�, also available, to
illustrate making simple data plots using the qdraw functions pts(...) and errorbars(...). The syntax of pts(...)
is:
pts( pointlist, pc(c), ps(s), pt(t), pj(lw), pk(string) )
The only required argument is the �rst argument �pointlist� which has the form:
[ [x1,y1], [x2,y2], [x3,y3],...] .
The remaining arguments are all optional and may be entered in any order following the �rst required argu-
ment.
The optional argument pc(c) overrides the default color (black), for example, pc(red).
The optional argument ps(s) overrides the default size (3), and an example is ps(2).
The optional argument pt(t) overrides the default type (7, which is the integer used for �lled circle: see
the Maxima manual index entry for �point type�); an example would be pt(8), which would use an open
�up triangle� instead of a �lled circle.
The optional argument pj(lw), if present, will cause the points provided by the nested list �pointlist� to be
joined using a line whose width is given by the argument of pj; an example is pj(2) which would set the
line width to the value 2.
The optional argument pk(string) provides text for a key entry for the set of points represented by pointlist;
as example is pk("case x�2").

Before making the data plot, let's look at the data �le contents from inside Maxima:

(%i38) printfile("fit1.dat")$
1 1.8904
2 3.0708
3 3.9215
4 5.1813
5 5.9443
6 7.0156
7 7.8441
8 8.8806
9 9.8132
10 11.129

We next use Maxima's read nested list function to create a list of data points from the data �le.

(%i39) plist : read_nested_list("fit1.dat");
(%o39) [[1, 1.8904], [2, 3.0708], [3, 3.9215], [4, 5.1813], [5, 5.9443],

[6, 7.0156], [7, 7.8441], [8, 8.880599999999999], [9, 9.8132], [10, 11.129]]
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The most basic plot of this data uses the pts(...) function defaults:

(%i40) qdraw( pts(plist) )$

which produces:
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Figure 31: Using pts(...) Defaults

We can use the qdraw functions xr(...) and yr(...) to override the default range selected by draw2d, and
decrease the point size:

(%i41) qdraw( pts(plist, ps(2)), xr(0,12),yr(0,15) )$

with the result:
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Figure 32: Adding ps(2), xr(..), yr(..)
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Now we add color and a key string, as well as simple error bars corresponding to an assumed uncertainty
of the y value of plus or minus 1 for all the data points.

(%i42) qdraw( pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),
key(bottom), errorbars( plist, 1) )$

which looks like:
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Figure 33: Adding pc(blue) and Simple Error Bars

The default error bar line width of 1 is almost too small to see, so we thicken the error bars and add color

(%i43) qdraw( pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),
key(bottom), errorbars( plist, 1, lw(3),lc(red) ) )$

with the result:
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Figure 34: Adding lw(3), lc(red) to errorbars(...)

The difference in the fonts is due to my using pic(eps, "ch5p27h", font("Times-Roman",18) )
to create the eps graphic instead of just pic(eps, "ch5p27h" ) as another argument to qdraw.
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If the data set has individual uncertainties in the y value, we create a list dyl, say,
of the values dy1, dy2, dy3,... and use the syntax:

errorbars( pointlist, dylist, lw(n), lc(c) )
Here is an example:

(%i44) dyl : [0.2,0.3,0.5,1.5,0.8,1,1.4,1.8,2,2];
(%o44) [0.2, 0.3, 0.5, 1.5, 0.8, 1, 1.4, 1.8, 2, 2]
(%i45) map(length,[plist,dyl] );
(%o45) [10, 10]
(%i46) qdraw( pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars( plist, dyl, lw(3),lc(red) ) )$

with the result
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Figure 35: Using a list of dy values with errorbars(..)

We now repeat the least squares �t of this data which we carried out in Chapter 1. See our discussion there
for an explanation of what we are doing here.

(%i47) display2d:false$
(%i48) pmatrix : apply( 'matrix, plist );
(%o48) matrix([1,1.8904],[2,3.0708],[3,3.9215],[4,5.1813],[5,5.9443],

[6,7.0156],[7,7.8441],[8,8.880599999999999],[9,9.8132],
[10,11.129])

(%i49) load(lsquares);
(%o49) "C:/PROGRA�1/MAXIMA�4.0/share/maxima/5.15.0/share/contrib/lsquares.mac"
(%i50) soln : (lsquares_estimates(pmatrix,[x,y],y=a*x+b,

[a,b]), float(%%) );
(%o50) [[a = 0.99514787679748,b = 0.99576667381004]]
(%i51) [a,b] : (fpprintprec:5, map( 'rhs, soln[1] ) )$
(%i52) [a,b];
(%o52) [0.995,0.996]
(%i53) qdraw( pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars( plist, dyl, lw(3),lc(red) ),
ex1( a*x + b,x,0,12, lc(brown),lk("linear fit") ) )$
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We use the qdraw function ex1(...) to add the line f(x) = a x + b to the data plot. The resulting plot with
the least squares �t added is then:
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Figure 36: Adding the Linear Fit Line

Now we add the data in the �le ��t2.dat�:
(%i54) printfile("fit2.dat");
1 0.9452
2 1.5354
3 1.9608
4 2.5907
5 2.9722
6 3.5078
7 3.9221
8 4.4403
9 4.9066
10 5.5645
(%o54) "fit2.dat"
(%i55) p2list: read_nested_list("fit2.dat");
(%o55) [[1,0.945],[2,1.5354],[3,1.9608],[4,2.5907],[5,2.9722],[6,3.5078],

[7,3.9221],[8,4.4403],[9,4.9066],[10,5.5645]]
(%i56) qdraw( pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars( plist, dyl, lw(3),lc(red) ),
ex1( a*x + b,x,0,12, lc(brown),lk("linear fit 1") ),
pts(p2list, pc(magenta),pk("fit2"),ps(2)),
errorbars( p2list,0.5,lw(3) ) )$

25



Here is the plot with the second data set:
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Figure 37: Adding the Second Set of Data

We could then �nd the least squares �t to the data set 2 and again use the function ex1(...) to add that �t to
our plot, and add any other features desired.
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5.8 Implicit Plots with Greater Control: imp1(...)
If we are willing to deal with one implicit equation of two variables at a time, we get more control over the plot
elements if we use the qdraw function imp1(...), which has the syntax:
imp1( eqn, x, x1,x2, y, y1,y2, lc(c), lw(n),lk(string) ) .

As usual, if the equation eqn is actually a function of the pair of variables u and v, then let x → u, and
y → v. The �rst seven arguments are required and must be in the �rst seven slots. The last three arguments are
all optional and can be in any order.

Let's illustrate the use of imp1(...) by displaying a translated and rotated ellipse, together with the rotated x
and y axes. In the following, eqn1 describes the rotated ellipse, eqn2 describes the rotated x axis, and eqn3
describes the rotated y axis. The angle of rotation is about 63.4 deg (counter clockwise), which corresponds to
tan φ = 2. Notice that we take care to get the x-axis range about 1.4 times the y-axis range, in order to get the
geometry approximately right.

(%i1) eqn1 : 5*x�2 + 4*x*y + 8*y�2 - 16*x + 8*y - 16 = 0$
(%i2) eqn2 : y+1 = 2*(x-2)$
(%i3) eqn3 : y+1 = -(x-2)/2$
(%i4) qdraw( imp1(eqn1,x,-2,6.4,y,-4,2,lc(red),lw(6),lk("ELLIPSE")),

imp1(eqn2,x,-2,6.4,y,-4,2,lc(blue),lw(4),lk("ROT X AXIS")),
imp1(eqn3,x,-2,6.4,y,-4,2,lc(brown),lw(4),lk("ROT Y AXIS") ),

pts([ [2,-1] ],ps(2),pc(magenta),pk("TRANSLATED ORIGIN") ) )$

We get the following �gure, if we increase the font size,
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Figure 38: Rotated and Translated Ellipse
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As a second example with imp1 we make a simple plot based on the equation y3 = x2.

(%i5) qdraw( imp1(y�3=x�2,x,-3,3,y,-1,3,lw(10),lc(dark-blue)) )$

which produces the plot:
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Figure 39: Implicit Plot of y3 = x2

Notice that you can use hyphenated color choices (see Maxima color index) without the double quotes, or
with the double quotes.
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5.9 Parametric Plots with para(...)
The qdraw function para can be used to draw parametric plots and has the syntax
para(xofu,yofu,u,u1,u2,lw(n),lc(c),lk(string) )
where, as usual, the line width, line color, and key string are optional and can be in any order. The parameter
�u� can, of course, be any symbol.

A simple example, in which we use �t� for the parameter, and let the x coordinate corresponding to some
value of t be sin(t), and let the y coordinate corresponding to that same value of t be sin(2 t) is:

(%i6) qdraw(xr(-1.5,2),yr(-2,2),
para(sin(t),sin(2*t),t,0,2*%pi ) ,
pts( [ [sin(%pi/8),sin(%pi/4)] ],ps(2),pc(blue),pk("t = pi/8")),
pts( [ [1,0] ],ps(2),pc(red),pk("t = pi/2")) )$

produces the plot:
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Figure 40: x = sin(t), y = sin(2 t)
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A second example of a parametric plot has u as the parameter, x = 2 cos(u), and y = u2:

(%i7) qdraw(xr(-3,4),yr(-1,40), para(2*cos(u),u�2,u,0,2*%pi) ,
pts([ [2,0] ],ps(2),pc(blue),pk("u = 0")),
pts( [ [0,(%pi/2)�2] ],ps(2), pc(red), pk("u = pi/2")),
pts([ [-2,%pi�2]],ps(2),pc(green),pk("u = pi")),
pts( [[0,(3*%pi/2)�2]],ps(2),pc(magenta),pk("u = 3*pi/2")) )$

which yields the plot:
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Figure 41: x = 2 cos(u), y = u2
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5.10 Polar Plots with polar(...)
A �polar plot� plots the points (x = r(θ) cos(θ), y = r(θ) sin(θ)), where the function r(θ) is supplied.

The qdraw function polar has the syntax:
polar( roftheta, theta, th1,th2, lc(c), lw(n), lk(string) )
where theta, th1, and th2 are in radians, and the last three arguments are optional.

A simple example is provided by the hyperbolic spiral r(θ) = 10/θ.

(%i8) qdraw( polar(10/t,t,1,3*%pi,lc(brown),lw(5)),nticks(200),
xr(-4,6),yr(-3,9),key(bottom) ,

pts( [[10*cos(1),10*sin(1)]],ps(3),pc(red),pk("t = 1 rad")),
pts([[5*cos(2),5*sin(2)]],ps(3),pc(blue),pk("t = 2 rad") ),

line(0,0,5*cos(2),5*sin(2)) )$

which looks like:
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Figure 42: Polar Plot with r = 10/θ
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5.11 Geometric Figures: line(...)
The qdraw function line has the syntax:

line( x1,y1,x2,y2, lc(c), lw(n), lk(string) )
which draws a line from (x1,y1) to (x2,y2). The last three arguments are optional and can be in any order
after the �rst four arguments.

For example, line(0,0,1,1,lc(blue),lw(6),lk("radius") ) will draw a line from (0, 0)
to (1, 1) in blue with line width 6 and with a key entry with the text 'radius'. The defaults are color black, line
width 3, and no key entry.

(%i9) qdraw( line(0,0,1,1) )$

produces the default line with draw2d's default range:
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Figure 43: Default line(..)

Adding some options and extending the canvas range in both directions

(%i10) qdraw( line(0,0,1,1,lc(blue),lw(6),lk("radius") ),
xr(0,2),yr(0,2),key(bottom),
pts([ [1,1] ] ,pc(red),pk("point")) )$

produces a line to a point marked in red:
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Figure 44: Adding options to line(..)
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Here we de�ne a Maxima function �doplot1(n)� in a �le �doplot1.mac� which has the following contents:
/* file doplot1.mac */

disp("doplot1(nlw)")$

doplot1(nlw) := block([cc,qlist,x,val,i ],
/* list of 20 single name colors */
cc : [aquamarine,beige,blue,brown,cyan,gold,goldenrod,green,khaki,

magenta,orange,pink,plum,purple,red,salmon,skyblue,turquoise,
violet,yellow ],

qlist : [ xr(-3.3,3) ],
for i thru length(cc) do (
x : -3.3 + 0.3*i,
val : line( x,-1,x,1, lc( cc[i] ),lw(nlw) ),
qlist : append(qlist, [val] )

),
qlist : append( qlist,[ cut(all) ] ),
apply('qdraw, qlist)

)$

Here is a record of loading and using the function de�ned to produce a series of vertical colored lines.
(%i11) load(doplot1);

doplot1(nlw)
(%o11) c:/work2/doplot1.mac
(%i12) doplot1(20);

which produces the graphic (note use of cut(all) to get a blank canvas):

Figure 45: Using line(...) to Display Colors
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5.12 Geometric Figures: rect(...)
The qdraw function rect has the syntax:

rect( x1,y1,x2,y2, lc(c), lw(n), fill(c) )
which will draw a rectangle with opposite corners (x1,y1) and (x2,y2). The last three arguments are
optional; without them the rectangle is drawn in black with line thickness 3 and with no �ll color. An example
is rect(0,0,1,1,lc(brown),lw(2),fill(khaki) ) . We start with the basic rectangle call:

(%i13) qdraw( xr(-1,2),yr(-1,2),rect(0,0,1,1) )$

with the result
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Figure 46: Default rect(0,0,1,1)

We now add some color, thickness and �ll:

(%i14) qdraw( xr(-1,2),yr(-1,2),
rect(0,0,1,1,lw(5),lc(brown),fill(khaki) ) )$

with the output:
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Figure 47: rect(0,0,1,1,lc(brown),lw(5),�ll(khaki) )
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Finally, we use rect for a set of nested rectangles.

(%i15) qdraw( xr(-3,3),yr(-3,3), rect( -2.5,-2.5,2.5,2.5,lw(4),lc(blue) ),
rect( -2,-2,2,2,lw(4),lc(red) ),
rect( -1.5,-1.5,1.5,1.5,lw(4),lc(green) ),
rect( -1,-1,1,1,lw(4),lc(brown) ),
rect( -.5,-.5,.5,.5,lw(4),lc(magenta) ),
cut(all) )$

which produces:

Figure 48: Nested Rectangles using rect(..)

5.13 Geometric Figures: poly(...)
The qdraw function poly has the syntax:

poly( pointlist, lc(c), lw(n), fill(c) )
in which �pointlist� has the same form as when used with pts:

[ [x1,y1], [x2,y2], ... [xn,yn] ] ,
and the arguments lc, lw, and �ll are optional and can be in any order after pointlist. The last point in the list
will be automatically connectd to the �rst.

The default call to poly has color black, line width 3 and no �ll color.

(%i16) qdraw( xr(-2,2),yr(-1,2),cut(all),
poly([ [-1,-1],[1,-1], [2,2] ] ) )$
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This default use of poly produces a �plain jane� triangle:

Figure 49: Default use of poly(...)

Next we create the work �le �doplot2.mac� which contains the following Maxima function which will draw
eighteen right triangles in various colors:

/* eighteen triangles */
disp("doplot2()")$
print("eighteen colored triangles")$
doplot2() :=
block([cc, qlist,x1,x2,y1,y2,i,val ],

cc : [aquamarine,beige,blue,brown,cyan,gold,goldenrod,green,khaki,
magenta,orange,pink,plum,purple,red,salmon,skyblue,turquoise,
violet,yellow ],

qlist : [ xr(-3.3,3.3), yr(-3.3,3.3) ],
/* top row of triangles */

y1 : 1,
y2 : 3,
for i:0 thru 5 do (
x1 : -3 + i,
x2 : x1 + 1,
val : poly( [ [x1,y1],[x2,y1],[x1,y2]], fill( cc[i+1] ) ),
qlist : append(qlist, [val ] )

),
/* middle row of triangles */

y1 : -1,
y2 : 1,
for i:0 thru 5 do (

x1 : -3 + i,
x2 : x1 + 1,
val : poly( [ [x1,y1],[x1,y2],[x2,y2]], fill( cc[i+7] ) ),
qlist : append(qlist, [val ] )

),
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/* bottom row of triangles */
y1 : -3,
y2 : -1,
for i:0 thru 5 do (
x1 : -3 + i,
x2 : x1 + 1,
val : poly( [ [x1,y1],[x2,y1],[x1,y2]], fill( cc[i+13] ) ),
qlist : append(qlist, [val ] )

),
qlist : append(qlist,[ cut(all) ] ),
apply( 'qdraw, qlist )

)$

Here is a record of use of this work �le:

(%i17) load(doplot2);
doplot2()

eighteen colored triangles
(%o17) c:/work2/doplot2.mac
(%i18) doplot2();

and the resulting �gure:

Figure 50: Using poly(...) with Color

For �homework�, use poly and pts to draw the following �gure. (Hint: you should also use xr(...) ).

Figure 51: Homework Problem
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5.14 Geometric Figures: circle(...) and ellipse(...)
The qdraw function circle has the syntax:

circle( xc,yc, r, lc(c), lw(n), fill(c) )
to draw a circle centered at (xc,yc) and having radius r. The last three arguments are optional and may be
entered in any order after the required �rst three arguments. This object will not �look� like a circle unless you
take care to make the horizontal extent of the �canvas� about 1.4 times the vertical extent (by using xr(...) and
yr(...) ).

Here is the default circle in black, with line width 3, and no �ll color.

(%i19) qdraw( xr(-2, 2), yr(-2, 2), circle( 0, 0, 1 ) )$

which looks like:
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Figure 52: Default �circle�

By using xr(...) and yr(...) we try for a �round� circle and also add what should be a 45 degree line.

(%i20) qdraw(xr(-2.1,2.1),yr(-1.5,1.5),cut(all),
circle(0,0,1,lw(5),lc(brown),fill(khaki) ),
line(-1.5,-1.5,1.5,1.5,lw(8), lc(red) ),
key(bottom) )$

with the result:

Figure 53: line over �round� circle
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The line painted over the circle because of the order of the arguments to qdraw. If we reverse the order,
drawing the line before the circle:

(%i21) qdraw(xr(-2.1,2.1),yr(-1.5,1.5),cut(all),
line(-1.5,-1.5,1.5,1.5,lw(8),lc(red) ),
circle(0,0,1,lw(8),lc(brown),fill(khaki) ),

key(bottom) )$

then the circle color will hide the line:

Figure 54: circle over line

The qdraw function ellipse has the syntax:
ellipse( xc,yc,xsma,ysma,th0deg,dthdeg, lw(n), lc(c), fill(c) )

which will plot a partial or whole ellipse centered at (xc,yc), oriented with ellipse axes aligned along the x
and y axes, having horizontal semi-axis xsma, vertical semi-axis ysma, beginning at th0deg degrees measured
counter clockwise from the positive x axis, and drawn for dthdeg degrees in the counter clockwise direction.

The last three arguments are optional. The default is the outline of an ellipse for the speci�ed angular range
in color black, line width 3, and no �ll color.

Here is the default behavior:

(%i22) qdraw( xr(-4.2,4.2),yr(-3,3),
ellipse(0,0,3,2,90,270) )$
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Figure 55: ellipse(0,0,3,2,90,270)
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If we add color, �ll, and some curvy background, as in
(%i23) qdraw( xr(-5.6,5.6),yr(-4,4),ex1(x,x,-4,4,lc(blue),lw(5)),

ex1(4*cos(x),x,-4,4,lc(red),lw(5) ),
ellipse(0,0,3,1,90,270,lc(brown),lw(5),fill(khaki)) ,

cut(all) )$

we get

Figure 56: Filled Ellipse

5.15 Geometric Figures: vector(..)
The qdraw function vector has the syntax:
vector([x,y],[dx,dy],ha(thdeg),hb(v),hl(v),ht(t),lw(n),lc(c),lk(string) )
which draws a vector with components [dx,dy] starting at [x,y].
The �rst two list arguments are required, all others are optional and can be entered in any order after the �rst
two required arguments.
The default �head angle� is 30 deg; change to 45 deg using ha(45) for example.
The default �head both� value is f for false; use hb(t) to set it to true, and hb(f) to return to false.
The default �head length� is 0.5; use hl(0.7) to change to 0.7.
The default �head type� is �no�lled�; use ht(e) for �empty�, ht(f) for ��lled�, and ht(n) to change back to
�no�lled�.
Once one of the �head properties� has been changed in a call to vector, the next calls to vector assume the
change is still in force.
The default line width is 3; use lw(5) to change to 5.
The default line color is black; use lc(brown) to change to brown.
The default is no key string; use lk(�A1�), for example, to create a text string for the key.
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Here is a use of vector which accepts all defaults:

(%i24) qdraw( xr(-2,2), yr(-2,2), vector( [-1,-1], [2,2] ) )$

with the result:
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Figure 57: Default Vector

We can thicken and apply color to this basic vector with

(%i25) qdraw(xr(-2,2),yr(-2,2),
vector([-1,-1],[2,2],lw(5),lc(brown),lk("vec 1")),
key(bottom) )$

which looks like:
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Figure 58: Adding Color, etc.
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Next we can alter the �head� properties, but let's also make this vector shorter. We use ht(e) to set
head type to �empty�, hb(t) to set head both to �true�, and ha(45) to set head angle to 45 degrees.

(%i26) qdraw(xr(-2,2),yr(-2,2),
vector([0,0],[1,1],lw(5),lc(blue),lk("vec 1"),

ht(e),hb(t),ha(45) ), key(bottom) )$

which produces:
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Figure 59: Changing Head Properties

Once you invoke the head properties options, the new settings are used on your next calls to vector (unless
you deliberately change them). Here is an example of that memory feature at work:

(%i27) qdraw(xr(-2.8,2.8),yr(-2,2),
vector([0,0],[1,1],lw(5),lc(blue),lk("vec 1"),

ht(e),hb(t),ha(45) ),
vector([0,0],[-1,-1],lw(5),lc(red),lk("vec 2")),
key(bottom) )$

and we also used the x-range setting to get the geometry closer to reality, with the result:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1  0  1  2

vec 1
vec 2

Figure 60: Head Properties Memory at Work
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5.16 Geometric Figures: arrowhead(..)
The syntax of the qdraw function arrowhead is:

arrowhead( x, y, theta-degrees, s, lc(c), lw(n) )
which will draw an arrow head with the vertex at (x,y).
The �rst four arguments are required and must be numbers.
The third argument theta is an angle in degrees and is the direction the arrowhead is to point relative to the
positive x axis, ccw from x axis taken as a positive angle.
The fourth argument s is the length of the sides of the arrowhead.
The arguments lc(c) and lw(n) are optional, and are used to alter the default color (black) and line width (3).
The opening half angle is hardwired to be phi = 25 deg = 0.44 radians.
The geometry will look better if the x-range is about 1.4 times the y-range.

Here are four arrow heads drawn with the default line widths and color and �size� 0.3, which show the use
of the direction argument in degrees.

(%i28) qdraw(xr(-2.8,2.8),yr(-2,2),
arrowhead(1.5,0,180,.3),arrowhead(0,1,270,.3),
arrowhead(-1.5,0,0,.3),arrowhead(0,-1,90,.3) )$
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Figure 61: Using arrowhead(..)

5.17 Labels with Greek Letters
5.17.1 Enhanced Postscript Methods
Here we combine line(..), ellipse, arrowhead and label, using the enhanced postscript abilities of draw2d's
terminal = eps option, which became effective with the June 11, 2008 draw package update. This update
includes an extension of the terminal = eps abilities to include local conversion of font properties and
the use of Greek and some math characters. As of the writing of this section, it was necessary to download this
update from the webpage
http://maxima.cvs.sourceforge.net/maxima/maxima/share/draw/draw.lisp. On that
webpage you will see Log of /maxima/share/draw/draw.lisp, and the top entry is
Revision 1.31 - (view) (download) (annotate) - [select for diffs]
Wed Jun 11 18:19:55 2008 UTC. Click on the �download� link, and the text of draw.lisp will appear
in your browser with the top looking like:
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;;; COPYRIGHT NOTICE
;;;
;;; Copyright (C) 2007 Mario Rodriguez Riotorto
;;;
;;; This program is free software; you can redistribute
;;; it and/or modify it under the terms of the
;;; ........................ etc

This is a program written in the Lisp language, and down near the bottom is a series of lines which provide for
the enhanced postscript behavior:

($eps (format cmdstorage "set terminal postscript eps enhanced �a
size �acm, �acm�%set out '�a.eps'"

(write-font-type) ; other alternatives are Arial, Courier
(get-option '$eps_width)
(get-option '$eps_height)
(get-option '$file_name)))

If you save this text �le with the name �draw.lisp� and place it in the draw package folder (on my Windows
computer, the rather complicated path:
drive c, program files, maxima-5.15.0, share, maxima, 5.15.0, share, draw )
to replace the old �draw.lisp� (which you could rename prior to the save as ), then you can use the label syntax
inside strings as shown in the following.

(%i29) qdraw(xr(0,2.8),yr(0,2),
line(0,0,2.8,0,lw(2)),
line(0,0,2,2,lc(blue),lw(8) ),

ellipse(0,0,1,1,0,45 ),
arrowhead(0.707,0.707,135,0.15),

label(["{/=36 {/Symbol q \\254 } The Incline Angle}",1,0.4]),
cut(all),
pic(eps,"ch5p52" ) );

The result looks like:

θ   ←   The Incline Angle

Figure 62: line(..), ellipse(..), arrowhead(..), label(..)

A summary of the enhanced postscript syntax can be downloaded:
http://www.telefonica.net/web2/biomates/maxima/gpdraw/ps/ps_guide.ps although
the examples of using the �characters� works for me only if I use two back slashes, as in the example just shown,
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where the entry \\254 inside the {/Symbol } structure produces the leftward pointing arrow (thanks to the
draw package developer, Mario Rodriguez Riotorto, for the enhanced postscript abilities, and for aiding my
understanding of how to use these features). An example of creating text for a label which includes the integral
sign and Greek letters is given on the webpage:
http://www.telefonica.net/web2/biomates/maxima/gpdraw/ps/.

The entry {/Symbol q } by itself would produce just the Greek letter θ. Wrapping the text entry in the
structure {/=36 } accepts the default font type and sets the font size to 36 for the text inside the pair of
braces.

Here we make a lower case Latin to Greek conversion reminder using four instances of label, although we
could alternatively have used the syntax label( [s1,x1,x2], [s2,x2,y2],... ).

(%i30) qdraw(xr(-3,3),yr(-2,2),label_align(c),
label( ["{/=48 a b c d e f g h i j k l m}",0,1.5] ),
label( ["{/Symbol=48 a b c d e f g h i j k l m}",0,0.5] ),
label( ["{/=48 n o p q r s t u v w x y z}",0,-.5] ),
label( ["{/Symbol=48 n o p q r s t u v w x y z}",0,-1.5] ),
cut(all), pic(eps,"ch5p53") )$

Note how we increase the font size of the latin alphabet a,b,c.... Here is the resulting eps �gure:

a b c d e f g h i j k l m

α β χ δ ε φ γ η ι ϕ κ λ µ

n o p q r s t u v w x y z

ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ

Figure 63: Lower Case Latin to Greek

We can repeat that label �gure using upper case Latin letters:

(%i31) qdraw(xr(-3,3),yr(-2,2),label_align(c),
label( ["{/=48 A B C D E F G H I J K L M}",0,1.5] ),
label( ["{/Symbol=48 A B C D E F G H I J K L M}",0,0.5] ),
label( ["{/=48 N O P Q R S T U V W X Y Z}",0,-.5] ),
label( ["{/Symbol=48 N O P Q R S T U V W X Y Z}",0,-1.5] ),
cut(all), pic(eps,"ch5p54") )$

You can see the resulting �gure on the next page.
Useful character codes, used as {/Symbol \\abc \\rst etc }

or as {/Symbol=36 \\abc \\rst etc } are:
\\243 (less than or equal )
\\245 (in�nity symbol)
\\253 (double ended arrow)
\\254 (left arrow)
\\256 (right arrow)
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\\261 (plus or minus)
\\263 (greater than or equal)
\\264 (times)
\\271 (not equal)
\\273 (approx equal)
\\345 (summation sign)
\\362 (integral sign)

A B C D E F G H I J K L M

Α Β Χ ∆ Ε Φ Γ Η Ι ϑ Κ Λ Μ

N O P Q R S T U V W X Y Z

Ν Ο Π Θ Ρ Σ Τ Υ ς Ω Ξ Ψ Ζ

Figure 64: Upper Case Latin to Greek

Here we use label to illustrate these possible symbols you can use:

(%i32) s1 : "{/Symbol=48 \\243 \\245 \\253 \\254 \\256}"$
(%i33) s2 : "{/Symbol=48 \\261 \\263 \\264 \\271 \\273 \\345 \\362}"$
(%i34) qdraw(xr(-3,3),yr(-2,2),label_align(c),

label( [s1,0,1] ), label( [s2,0,-1] ), cut(all), pic(eps,"ch5p55") )$

which produces the �gure:

≤   ∞   ↔   ←   →

±   ≥   ×   ≠   ≈   ∑   ∫

Figure 65: Useful Character Code Symbols
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5.17.2 Windows Fonts Methods with jpeg Files
We can produce the Greek letter θ in a jpeg �le or a png �le by using the Greek font �les in the
c:\windows\fonts folder as follows:

(%i35) qdraw(xr(0,2.8),yr(0,2),
line(0,0,2.8,0),
line(0,0,2,2,lc(blue),lw(5) ),

ellipse(0,0,1,1,0,45 ),
arrowhead(0.707,0.707,135,0.15),
label(["q",1,0.4]), cut(all),
pic(jpg,"ch5p52p",font("c:/windows/fonts/grii.ttf",36)) );

which produces the �le ch5p52.jpg, which we converted to an eps �le using cygwin's convert function:
convert name.jpg name.eps which will also work to convert a png graphics �le.

Figure 66: Greek in jpg converted to eps

Here we use the label function to show all the greek letters available via the windows, fonts folder:

(%i36) qdraw(xr(-3,3),yr(-2,2),
label(["a b c d e f g h i j k l m",-2.5,1.5],

["n o p q r s t u v w x y z",-2.5,0.5],
["A B C D E F G H I J K L M",-2.5,-0.5],
["N O P Q R S T U V W X Y Z",-2.5,-1.5] ),

cut(all),
pic(png,"ch5p60",font("c:/windows/fonts/grii.ttf",24)) );
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After conversion of the png to an eps graphics �le using Cygwin's convert function, we get:

Figure 67: windows fonts conv. of a - Z to Greek

5.17.3 Using Windows Fonts with the Gnuplot Console Window

In the default Windows Gnuplot console mode, you can convert some Latin letters to Greek as follows:

(%i37) qdraw(xr(0,2.8),yr(0,2),
line(0,0,2.8,0),
line(0,0,2,2,lc(blue),lw(5) ),

ellipse(0,0,1,1,0,45 ),
arrowhead(0.707,0.707,135,0.15),
label(["q",1,0.4]), cut(all) );

When the console graphics window appears, right click on the upper left corner icon and select Options, Choose
Font. In the Font panels, choose Graecall font, �regular� from the middle panel, and size 36 from the right panel
and click �ok�. The English letter �q� (lower case) is then converted to the Greek lower case theta. Use the
Gnuplot window menu again to save the resulting image to the clipboard, and open an image viewer. I use the
freely available Infanview. If you use View, Paste, the clipboard image appears inside Infanview, and you can
save the image as a jpeg �le in your choice of folder. Since I am using eps graphics �les for this latex �le, I
converted the jpg to eps using Cygwin's convert function:
convert name.jpg name.eps.

Here is the result:

Figure 68: Greek via Windows Clipboard
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Unfortunately, saving the Gnuplot window image to the Window's clipboard also saves the current cursor
position, which is not desirable.

5.18 Even More with more(...)
You can use the qdraw function more(...), containing any legal draw2d elements, as we illustrate by adding a
label to the x-axis and a title. We focus here on producing an eps graphics �le to display the enhanced ability
to show subscripts and superscripts.

(%i38) qdraw( lw(8), ex([x,x�2,x�3],x,-2,2),
more(xlabel = "X AXIS", title="intersections of x, x�2, x�3" ),

cut(key),line(-2,0,2,0,lw(2)),line(0,-8,0,8,lw(2)),
vector([-1,5],[-0.4,-2.7],lc(red),hl(0.1) ),
label(["x�2",-0.9,6]),
vector([-1.2,-6],[-0.5,0],lc(turquoise),lw(8)),
label( ["x�3", -1,-5.5] ),
pts( [[-1,-1],[0,0],[1,1]],ps(2),pc(magenta) ),
pic(eps,"ch5p56",font("Times-Roman",28)) )$

The lines for the x and y axes need special emphasis to show up clearly with an eps �le, so we have used
qdraw's line function for that task. We also need to increase the line width setting for the eps �le case, which
we have done with the qdraw top level function lw, which only affects the �quick plotting� functions ex and
imp. We have used qdraw's more function to provide an x-axis label and a title. The font setting in the pic
function supplies an overall drawing font type and size which affects all elements unless locally over-ridden
with the special enhanced postscript features. In the title and labels, x�n is converted automatically to xn.

Here is the resulting plot:

-8
-6
-4
-2
 0
 2
 4
 6
 8

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

X AXIS

intersections of x, x2, x3

x2

x3

Figure 69: Using more(...) for Title and X Axis Label
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5.19 Programming Homework Exercises
5.19.1 General Comments

The �le qdraw.mac is a text �le which you can modify with a good text editor such as notepad2. This Maxima
code is heavily commented as an aid to passing on some Maxima language programming examples. You
can get some experience with the Maxima programming language elements by copying the �le qdraw.mac to
another name, say myqdraw.mac, and use that copy to make modi�cations to the code which might interest
you. By frequently loading in the modi�ed �le with load(myqdraw), you can let Maxima check for syntax
errors, which it does immediately.

The most common syntax errors involve parentheses and commas, with strange error messages such as
� BLANK IS NOT AN INFIX OPERATOR�, or �TOO MANY PARENTHESES�, etc. Placing a comma
just before a closing parenthsis is a fatal error which can nevertheless creep in. This sounds obvious, but
you may �nd it useful to insert some special debug printouts, such as print("in blank, a = ",a) or
display(a), perhaps at the end of a do loop, so you are working with the structure:

for i thru n do (
job1,
job2,
job3,

print(" i = ",i," blank = ",blank)
/* end do loop */

),
...program continues...

When you are �nished debugging a section, you either will comment out the debug printout or simply delete it
to clean up the code. If you are not fully awake, you might then load into Maxima

for i thru n do (
job1,
job2,
job3,
/* end do loop */

),
...program continues...

and, of course, Maxima will object, since that extra comma no longer makes sense.
It is crucial to use a good text editor which will �balance� parentheses, brackets, and braces to minimize

parentheses etc errors.
If you look at the general structure of qdraw, you will see that most of the real work is done by qdraw1.

If you call qdraw1 instead of qdraw, you will be presented with a rather long list of elements which are
understood by draw2d. Even if you use qdraw, you will see the same long list wrapped by �draw2d� if you
have not loaded the draw package.

One feature you should look at is how a function which takes an arbitrary number of arguments, depending
on the user (as does the function draw2d), is de�ned. If this seems strange to you, experiment with a toy
function having a variable number of arguments, and use printouts inside the function to see what Maxima is
doing.
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5.19.2 XMaxima Tips

It is useful to �rst try out a small code idea directly in XMaxima, even if the code is ten or �fteen lines long,
since the XMaxima interface has been greatly improved. When you want to edit your previous �try�, use
Alt-p to enter your previous code, and immediately backspace over the �nal ); or )$. You can then cursor
up to an area where you want to add a new line of code, and with the cursor placed just after a comma, press
ENTER to create a new (blank) line. Since the block of code has not been properly concluded with either a );
or )$, Maxima will not try to �run� with the version you are working on when you press ENTER. Once you
have made the changes you want, cursor your way to the end and put back the correct ending and then pressing
ENTER will send your code to the Maxima engine.

The use of HOME, END, PAGEUP, PAGEDOWN, CNTRL-HOME, and CNTRL-END greatly speeds up work-
ing with XMaxima. For example to copy a code entry up near the top of your current workspace, �rst enter
HOME to put the cursor at the beginning of the current line, then PAGEUP or CNTRL-HOME to get up to the
top fast, then drag over the code (don't include the (%i5) part) to the end but not to the concluding ); or )$.
You can hold down the SHIFT key and use the right (and left) cursor key to help you select a region to copy.
Then press CNTRL-C to copy the selected code to Window's clipboard. Then press CTRL-END to have the
cursor move to the bottom of your workspace where XMaxima is waiting for your next input. Press CNTRL-V
to paste your selection. If the selection extends over multiple lines, use the down cursor key to �nd the end
of the selection which should be without the proper code ending ); or )$. You are then in the driver's seat
and can cursor your way around the code and make any changes without danger of XMaxima pre-emptively
sending your work to the computing engine until you go to that end and provide the proper ending.

5.19.3 Suggested Projects

You will have noticed that we used the qdraw function more in order to insert axis labels and a title into
our plot. Design qdraw functions xlabel(string), ylabel(string), and title(string). Place
them in the �scan 3� section of qdraw and try them out. You will need to pay attention to how new elements get
passed to draw2d. In particular, look at the list drlist, using your text editor search function ( in notepad2,
Ctrl-f ) to see how that list is constructed based on the user input.

A second small project would be to add a �line type� option for the qdraw function line. My experience
is that setting line_type = dots in draw2d produces no immediate change in the Windows Gnuplot
console window, produces a �nely dotted line for jpeg and png image �les, and produces a dashed line with
eps image �les. Your addition to qdraw should follow the present style, so the user would use the syn-
tax line(x1,y1,x2,y2,lc(c),lw(n),lk(string),lt(type) ), where type is either s or d (for
solid or dots).

A third small project would be to design a function triangle for qdraw, including the options which are
presently in poly.

A fourth small project would be to include the option cbox(..) in the qdensity function. The present default
is to include the colorbox key next to the density plot, but if the user entered qdensity(....,cbox(f) ) ,
the colorbox would be removed.

A more challenging project would be to write a qdraw function which would directly access the creation of
bar charts. These notes are written with the needs of the typical physical science or engineering user in mind,
so no attention has been paid to bar charts here. Naturally, if you frequently construct bar charts, this project
would be interesting for you. Start this project by �rst working with draw2d directly, to get familiar with what
is already available, and to avoid �re-creating the wheel�.

One general principle to keep in mind is that the Maxima language is an �interpretive language�; Maxima
does not make multiple passes over your code to reconcile function references, such as a compiler does. This
means that if a part of your code �calls� some user de�ned function, Maxima needs to have already read about
that function de�nition in your code.
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Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the XMaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.21.1
(2010). http://maxima.sourceforge.net/

The homemade function fll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
automatically loaded in with mbe1util.mac from Ch. 1. We will include a reference to this definition when working with lists.

This function has the definitions

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxima html help manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html.

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
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6 DIFFERENTIAL CALCULUS 3

6 Differential Calculus

The methods of calculus lie at the heart of the physical sciences and engineering.

The student of calculus needs to take charge of his or her own understanding, taking the subject apart and putting it back
together again in a way that makes logical sense. The best way to learn any subject is to work through a large collection
of problems. The more problems you work on your own, the more you “own” the subject. Maxima can help you make
faster progress, if you are just learning calculus.

For those who are already calculus savvy, the examples in this chapter will offer an opportunity to see some Maxima tools
in the context of very simple examples, but you will likely be thinking about much harder problems you want to solve as
you see these tools used here.

After examples of using diff and gradef, we present examples of finding the critical and inflection points of plane
curves defined by an explicit function.

We then present examples of calculating and plotting the tangent and normal to a point on a curve, first for explicit func-
tions and then for implicit functions.

We also have two examples of finding the maximum or minimum of a function of two variables.

We then present several examples of using Maxima’s powerful limit function, followed by several examples of using
taylor.

The next section shows examples of using the vector calculus functions (as well as cross product) in the package
vcalc.mac, developed by the author and available on his webpage with this chapter, to calculate the gradient, di-
vergence, curl, and Laplacian in cartesian, cylindrical, and spherical polar coordinate systems. An example of using this
package would be curl([r*cos(theta),0,0]); (if the current coordinate system has already been changed to
spherical polar) or curl([r*cos(theta),0,0], s(r,theta,phi) ); if the coordinate system needs to be
shifted to spherical polar from either cartesian (the starting default) or cylindrical.

The order of list vector components corresponds to the order of the arguments in s(r,theta,phi). The Maxima
output is the list of the vector curl components in the current coordinate system, in this case [0, 0, sin(theta)]
plus a reminder to the user of what the current coordinate system is and what symbols are currently being used for the
independent variables.

Thus the syntax is based on lists and is similar (although better!) than Mathematica’s syntax.

There is a separate function to change the current coordinate system. To set the use of cylindrical coordinates(rho,phi,z):

setcoord( cy(rho,phi,z) );

and to set cylindrical coordinates (r,t,z):

setcoord( cy(r,t,z) );

The package vcalc.mac also contains the plotting function plotderiv which is useful for “automating” the plotting
of a function and its first n derivatives.

The next two sections dicuss the use of the batch file mode of problem solving by presenting Maxima based derivations
of the form of the gradient, divergence, curl, and Laplacian by starting with the cartesian forms and changing variables to
(separately) cylindrical and spherical polar coordinates. (The batch files used are cylinder.mac and sphere.mac.)
These two sections show Maxima’s implementation of the calculus chain rule at work with use of both depends and
gradef.
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6.1 Differentiation of Explicit Functions

We begin with explicit functions of a single variable. After giving a few examples of the use of Maxima’s diff function,
we will discuss critical and inflection points of curves defined by explicit functions, and the construction and plotting of
the tangent and normal of a point of such curves.

6.1.1 All About diff

The command diff(expr,var,num) will differentiate the expresssion in slot one with respect to the variable entered
in slot two a number of times determined by a positive integer in slot three. Unless a dependency has been established,
all parameters and “variables” in the expression are treated as constants when taking the derivative.

Thus diff(expr,x,2) will yield the second derivative of expr with respect to the variable x.

The simple form diff(expr, var) is equivalent to diff(expr,var,1).

If the expression depends on more than one variable, we can use commands such as diff(expr,x,2,y,1) to find
the result of taking the second derivative with respect to x (holding y fixed) followed by the first derivative with respect
to y (holding x fixed).

Here are some simple examples.

We first calculate the derivative of xn.

(%i1) diff(xˆn,x);
n - 1

(%o1) n x

Next we calculate the third derivative of xn.

(%i2) diff(xˆn,x,3);
n - 3

(%o2) (n - 2) (n - 1) n x

Here we take the derivative (with respect to x) of an expression depending on both x and y.

(%i3) diff(xˆ2 + yˆ2,x);
(%o3) 2 x

You can differentiate with respect to any expression that does not involve explicit mathematical operations.

(%i4) diff( x[1]ˆ2 + x[2]ˆ2, x[1] );
(%o4) 2 x

1

Note that x1 is Maxima’s way of “pretty printing” x[1]. We can use the grind function to display the output %o4 in
the “non-pretty print mode” (what would have been returned if we had set the display2d switch to false).

(%i5) grind(%)$
2*x[1]$
(%i6) display2d$

Note the dollar sign grind adds to the end of its output.

Finally, an example of using one invocation of diff to differentiate with respect to more than one variable:

(%i7) diff(xˆ2*yˆ3,x,1,y,2);
(%o7) 12 x y
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6.1.2 The Total Differential

If you use the diff function without a symbol in slot two, Maxima returns the “total differential” of the expression in
slot one, and by default assumes every parameter is a variable.

If an expression contains a single parameter, say x, then diff(expr) will generate

d f(x) =

(
d f(x)

dx

)
dx (6.1)

In the first example below, we calculate the differential of the expression x2, that is, the derivative of the expression (with
respect to the variable x) multiplied by “the differential of the independent variable x”, dx. Maxima uses del(x) for
the differential of x, a small increment of x.

(%i1) diff(xˆ2);
(%o1) 2 x del(x)

If the expression contains two parameters x and y, then the total differential is equivalent to the Maxima expression

diff(expr,x)*del(x) + diff(expr,y)*del(y) ,

which generates (using conventional notation):

d f(x,y) =

(
∂f(x,y)

∂x

)

y
dx +

(
∂f(x,y)

∂y

)

x
dy. (6.2)

Each additional parameter induces an additional term of the same form.

(%i2) diff(xˆ2*yˆ3);
2 2 3

(%o2) 3 x y del(y) + 2 x y del(x)
(%i3) diff(a*xˆ2*yˆ3);

2 2 3 2 3
(%o3) 3 a x y del(y) + 2 a x y del(x) + x y del(a)

We can use the subst function to replace, say del(x), by anything else:

(%i4) subst(del(x) = dx, %o1);
(%o4) 2 dx x
(%i5) subst([del(x)= dx, del(y) = dy, del(a) = da],%o3 );

2 3 3 2 2
(%o5) da x y + 2 a dx x y + 3 a dy x y

You can use the declare function to prevent some of the symbols from being treated as variables when calculating the
total differential:

(%i6) declare (a, constant)$
(%i7) diff(a*xˆ2*yˆ3);

2 2 3
(%o7) 3 a x y del(y) + 2 a x y del(x)
(%i8) declare([b,c],constant)$
(%i9) diff( a*xˆ3 + b*xˆ2 + c*x );

2
(%o9) (3 a x + 2 b x + c) del(x)
(%i10) properties(a);
(%o10) [database info, kind(a, constant)]
(%i11) propvars(constant);
(%o11) [a, b, c]
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(%i12) kill(a,b,c)$
(%i13) propvars(constant);
(%o13) []
(%i14) diff(a*x);
(%o14) a del(x) + x del(a)

We can “map” diff on to a list of functions of x, say, and divide by del(x), to generate a list of derivatives, as in

(%i15) map(’diff,[sin(x),cos(x),tan(x) ] )/del(x);
2

(%o15) [cos(x), - sin(x), sec (x)]
(%i16) map(’diff,%)/del(x);

2
(%o16) [- sin(x), - cos(x), 2 sec (x) tan(x)]

6.1.3 Controlling the Form of a Derivative with gradef

We can use gradef to select one from among a number of alternative ways of writing the result of differentiation. The
large number of “trigonometric identities” means that any given expression containing trig functions can be written in
terms of a different set of trig functions.

As an example, consider trig identities which express sin(x), cos(x), and sec2(x) in terms of tan(x) and tan(x/2):

sec2(x) = 1 + tan2(x), (6.3)

sin x = 2 tan(x/2)/(1 + tan2(x/2)), (6.4)

cosx = (1− tan2(x/2))/(1 + tan2(x/2)). (6.5)
The default Maxima result for the first derivatives of sinx, cosx, and tanx is:

(%i1) map(’diff,[sin(x),cos(x),tan(x)] )/del(x);
2

(%o1) [cos(x), - sin(x), sec (x)]

Before using gradef to alter the return value of diff for these three functions, let’s check that Maxima agrees with the
trig “identities” displayed above. Variable amounts of expression simplification are needed to get what we want.

(%i2) trigsimp( 1 + tan(x)ˆ2 );
1

(%o2) -------
2

cos (x)
(%i3) ( trigsimp( 2*tan(x/2)/(1 + tan(x/2)ˆ2) ), trigreduce(%%) );
(%o3) sin(x)
(%i4) ( trigsimp( (1-tan(x/2)ˆ2)/(1 + tan(x/2)ˆ2) ),

trigreduce(%%), expand(%%) );
(%o4) cos(x)

Recall that trigsimpwill convert tan, sec, etc to sin and cos of the same argument. Recall also that trigreduce
will convert an expression containing cos(x/2) and sin(x/2) into an expression containing cos(x) and sin(x).
Finally, remembering that secx = 1/cosx, we see that Maxima has “passed the test”.
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Now let’s use gradef to express the derivatives in terms of tanx and tan(x/2):

(%i5) gradef(tan(x), 1 + tan(x)ˆ2 );
(%o5) tan(x)
(%i6) gradef(sin(x),(1-tan(x/2)ˆ2 )/(1 + tan(x/2)ˆ2 ) );
(%o6) sin(x)
(%i7) gradef(cos(x), -2*tan(x/2)/(1 + tan(x/2)ˆ2 ) );
(%o7) cos(x)

Here we check the behavior:

(%i8) map(’diff,[sin(x),cos(x),tan(x)] )/del(x);
2 x x

1 - tan (-) 2 tan(-)
2 2 2

(%o8) [-----------, - -----------, tan (x) + 1]
2 x 2 x

tan (-) + 1 tan (-) + 1
2 2

6.2 Critical and Inflection Points of a Curve Defined by an Explicit Function

The critical points of a function f(x) are the points xj such that f ′(xj) = 0. We will use f ′ to indicate the first derivative,
and f ′′ to indicate the second derivative. The extrema (ie., maxima and minima) are the values of the function at the
critical points, provided the “slope” f ′ actually has a different sign on the opposite sides of the critical point.

Maximum: f ′(a) = 0, f ′(x) changes from + to − , f ′′(a) < 0
Minimum: f ′(a) = 0, f ′(x) changes from − to + , f ′′(a) > 0

If f(x) is a function with a continuous second derivative, and if, as x increases through the value a, f ′′(x) changes sign,
then the plot of f(x) has an inflection point at x = a and f ′′(a) = 0. The inflection point requirement that f ′′(x) changes
sign at x = a is equivalent to f ′′′(a) 6= 0. We consider some simple examples taken from Sect. 126 of Analytic Geometry
and Calculus, by Lloyd L. Smail, Appleton-Century-Crofts, N.Y., 1953 (a reference which “dates” the writer of these
notes!).

6.2.1 Example 1: A Polynomial

To find the maxima and minima of the function f(x) = 2x3 − 3x2 − 12x + 13, we use an “expression” (called g)
rather than a Maxima function. We use gp (g prime) for the first derivative, and gpp (g double prime) as notation for the
second derivative. Since we will want to make some simple plots, we use the package qdraw, available on the author’s
webpage, and discussed in detail in chapter five of these notes.

(%i1) load(draw)$
(%i2) load(qdraw);

qdraw(...), qdensity(...), syntax: type qdraw();
(%o2) c:/work2/qdraw.mac
(%i3) g : 2*xˆ3 - 3*xˆ2 - 12*x + 13$
(%i4) gf : factor(g);

2
(%o4) (x - 1) (2 x - x - 13)
(%i5) gp : diff(g,x);

2
(%o5) 6 x - 6 x - 12
(%i6) gpf : factor(gp);
(%o6) 6 (x - 2) (x + 1)
(%i7) gpp : diff(gp,x);
(%o7) 12 x - 6
(%i8) qdraw( ex(g,x,-4,4), key(bottom) )$
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Since the coefficients of the given polynomial are integral, we have tried out factor on both the given expression
and its first derivative. We see from output %o6 that the first derivative vanishes when x = -1, 2 . We can confirm
these critical points of the given function by using qdraw with the quick plotting argument ex, which gives us the plot:

-100

-80

-60

-40

-20

 0

 20

 40

-4 -3 -2 -1  0  1  2  3  4

1

Figure 1: Plot of g over the range [−4, 4]

We can use the cursor on the plot to find that g takes on the value of roughly -7 when x = 2 and the value of about
20 when x = -1. We can use solve to find the roots of the equation gp = 0, and then evaluate the given expression
g, as well as the second derivative gpp at the critical points found:

(%i9) solve(gp=0);
(%o9) [x = 2, x = - 1]
(%i10) [g,gpp],x=-1;
(%o10) [20, - 18]
(%i11) [g,gpp],x=2;
(%o11) [- 7, 18]

We next look for the inflection points, the points where the curvature changes sign, which is equivalent to the points
where the second derivative vanishes.

(%i12) solve(gpp=0);
1

(%o12) [x = -]
2

(%i13) g,x=0.5;
(%o13) 6.5

We have found one inflection point, that is a point on a smooth curve where the curve changes from concave downward
to concave upward, or visa versa (in this case the former).
We next plot g, gp, gpp together.

(%i14) qdraw2( ex([g,gp,gpp],x,-3,3), key(bottom),
pts([[-1,20]],ps(2),pc(magenta),pk("MAX") ),

pts([[2,-7]],ps(2),pc(green),pk("MIN") ),
pts([[0.5, 6.5]],ps(2),pk("INFLECTION POINT") ) )$
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with the resulting plot:
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Figure 2: Plot of 1: g, 2: gp, and 3: gpp

The curve g is concave downward until x = 0.5 and then is concave upward. Note that each successive differentia-
tion tends to flatten out the kinks in the previous expression (function). In other words, gp is “flatter” than g, and gpp is
“flatter” than gp. This behavior under diff is simply because each successive differentiation reduces by one the degree
of the polynomial.

6.2.2 Automating Derivative Plots with plotderiv

In a separate text file vcalc.mac (available on the author’s webpage) is a small homemade Maxima function called
plotderiv which will plot a given expression together with as many derivatives as you want, using qdraw from Ch.5.

/* vcalc.mac */
plotderiv_syntax() :=

disp("plotderiv(expr,x,x1,x2,y1,y2,numderiv) constructs a list of
the submitted expression expr and its first numderiv derivatives
with respect to the independent variable, and then passes
this list to qdraw(..). You need to have used load(draw)
and load(qdraw) before using this function ")$

/* version 1 commented out
plotderiv(expr,x,x1,x2,y1,y2,numderiv) :=

block([plist],
plist : [],
for i thru numderiv do

plist : cons(diff(expr,x,i), plist),
plist : reverse(plist),
plist : cons(expr, plist),
display(plist),
apply( ’qdraw, [ ex( plist,x,x1,x2 ),yr(y1,y2), key(bottom) ]))$ */
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/* version 2 slightly more efficient */
plotderiv(expr,x,x1,x2,y1,y2,numderiv) :=

block([plist,aa],
plist : [],
aa[0] : expr,
for i thru numderiv do (

aa[i] : diff(aa[i-1],x),
plist : cons(aa[i], plist)
),

plist : reverse(plist),
plist : cons(expr, plist),
display(plist),
apply( ’qdraw, [ ex( plist,x,x1,x2 ),yr(y1,y2), key(bottom) ]))$

We have provided two versions of this function, the first version commented out. If the expression to be plotted is a
very complicated function and you are concerned with computing time, you can somewhat improve the efficiency of
plotderiv by introducing a “hashed array” called aa[j], say, to be able to simply differentiate the previous deriva-
tive expression. That is the point of version 2 which is not commented out.

We have added the line display(plist) to print a list containing the expression as well as all the derivatives re-
quested. We test plotderiv on the expression uˆ3. Both draw.lisp and qdraw.mac must be loaded for this to
work.

(%i15) load(vcalc)$
vcalc.mac: for syntax, type: vcalc_syntax();

CAUTION: global variables set and used in this package:
hhh1, hhh2, hhh3, uuu1, uuu2, uuu3, nnnsys

(%i16) plotderiv(uˆ3,u,-3,3,-27,27,4)$
3 2

plist = [u , 3 u , 6 u, 6, 0]

which produces the plot:
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Figure 3: 1: u3, 2: 3u2, 3: 6u, 4: 6, 5: 0



6 DIFFERENTIAL CALCULUS 11

6.2.3 Example 2: Another Polynomial

We find the critical points, inflection points, and extrema of the expression 3x4 − 4x3. We first look at the expression
and its first two derivatives using plotderiv.

(%i17) plotderiv(3*xˆ4 - 4*xˆ3,x,-1,3,-5,5,2)$
4 3 3 2 2

plist = [3 x - 4 x , 12 x - 12 x , 36 x - 24 x]

which produces the plot:
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Figure 4: 1: f = 3x4 − 4x3, 2: f ′, 3: f ′′

We have inflection points at x = 0, 2/3 since the second derivative is zero at both points and changes sign as we
follow the curve through those points. The curve changes from concave up to concave down passing through x = 0,
and changes from concave down to concave up passing through x = 2/3. The following provides confirmation of our
inferences from the plot:

(%i18) g:3*xˆ4 - 4*xˆ3$
(%i19) g1: diff(g,x)$
(%i20) g2 : diff(g,x,2)$
(%i21) g3 : diff(g,x,3)$
(%i22) x1 : solve(g1=0);
(%o22) [x = 0, x = 1]
(%i23) gcrit : makelist(subst(x1[i],g),i,1,2);
(%o23) [0, - 1]
(%i24) x2 : solve(g2=0);

2
(%o24) [x = -, x = 0]

3
(%i25) ginflec : makelist( subst(x2[i],g ),i,1,2 );

16
(%o25) [- --, 0]

27
(%i26) g3inflec : makelist( subst(x2[i],g3),i,1,2 );
(%o26) [24, - 24]

We have critical points where the first derivative vanishes at x = 0, 1. Since the first derivative does not change sign as
the curve passes through the point x = 0, that point is neither a maximum nor a mimimum point. The point x = 1 is a
minimum point since the first derivative changes sign from negative to positive as the curve passes through that point.
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6.2.4 Example 3: x2/3, Singular Derivative, Use of limit

Searching for points where a function has a minimum or maximum by looking at points where the first derivative is zero is
useful as long as the first derivative is well behaved. Here is an example in which the given function of x has a minimum
at x = 0, but the first derivative is singular at that point. Using the expression g = xˆ(2/3) with plotderiv:

(%i27) plotderiv(xˆ(2/3),x,-2,2,-2,2,1)$
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 2
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1
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Figure 5: Plot of 1 : f(x) = x2/3, 2 : f ′

We see that the first derivative is singular at x = 0 and approaches either positive or negative infinity, depending on your
direction of approaching the point x = 0. We can see from the plot of f(x) = x2/3 that the tangent line (the “slope”) of
the curve is negative for x < 0 and becomes increasingly negative (approaching minus infinity) as we approach the point
x = 0 from the negative side. We also see from the plot of f(x) that the tangent line (“slope”) is positive for positive
values of x and as we pass x = 0, moving from smaller x to larger x that the sign of the first derivative f ′(x) changes
from − to +, which is a signal of a local minimum of a function.

We can practice using the Maxima function limit with this example:

(%i28) gp : diff(xˆ(2/3),x);
2

(%o28) ------
1/3

3 x
(%i29) limit(gp,x,0,plus);
(%o29) inf
(%i30) limit(gp,x,0,minus);
(%o30) minf
(%i31) limit(gp,x,0);
(%o31) und

The most frequent use of the Maxima limit function has the syntax

Function: limit (expr, x, val, dir)
Function: limit (expr, x, val)
The first form computes the limit of expr as the real variable x approaches the value val from the direction
dir. dir may have the value plus for a limit from above, minus for a limit from below.
In the second form, dir is omitted, implying a “two-sided limit” is to be computed.
limit uses the following special symbols: inf (positive infinity) and minf (negative infinity). On output
it may also use und (undefined), ind (indefinite but bounded) and infinity (complex infinity).

Returning to our example, if we ignore the point x = 0, the slope is always decreasing, so the second derivative is always
negative.
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6.3 Tangent and Normal of a Point of a Curve Defined by an Explicit Function

The equation of a line with the form y = m (x− x0) + y0, where m, x0, and y0 are constants, is identically satisfied if
we consider the point (x,y) = (x0,y0). Hence this line passes through the point (x0,y0). The “slope” of this line (the
first derivative) is the constant m.

Now we also assume that the point (x0,y0) is a point of a curve given by some explicit function of x, say y = f(x);
hence y0 = f(x0). The first derivative of this function, evaluated at the point x0 is the local “slope”, which defines the
local tangent line, y = m (x− x0) + y0, if we use for m the value of f ′(x0), where the notation means first take the
derivative for arbitrary x and then evaluate the derivative at x = x0.

Let the two dimensional vector tvec be a vector parallel to the tangent line (at the point of interest) with components
(tx,ty), such that the vector makes an angle θ with the positive x axis. Then tan(θ) = ty/tx = m = dy/dx is the
slope of the tangent (line) at this point. Let the two dimensional vector nvec with components (nx,ny) be parallel to
the line perpendicular to the tangent at the given point. This normal line will be perpendicular to the tangent line if the
vectors nvec and tvec are perpendicular (i.e., “orthogonal”).

In Maxima, we can represent vectors by lists:

(%i1) tvec : [tx,ty];
(%o1) [tx, ty]
(%i2) nvec : [nx, ny];
(%o2) [nx, ny]

Two vectors are “orthogonal” if the “dot product” is zero. A simple example will illustrate this general property. Consider
the pair of unit vectors: ivec = [1,0], parallel to the positive x axis and jvec = [0,1], parallel to the positive y
axis.

(%i3) ivec : [1,0]$
(%i4) jvec : [0,1]$
(%i5) ivec . jvec;
(%o5) 0

Since Maxima allows us to use a period to find the dot product (inner product) of two lists (two vectors), we will ensure
that the normal vector is “at right angles” to the tangent vector by requiring nvec . tvec = 0

(%i6) eqn : nvec . tvec = 0;
(%o6) ny ty + nx tx = 0
(%i7) eqn : ( eqn/(nx*ty), expand(%%) );

tx ny
(%o7) -- + -- = 0

ty nx

We represent the normal (the line perpendicular to the tangent line) at the point (x0,y0) as y = mn (x− x0) + y0,
where mn is the slope of the normal line: mn = ny/nx = - (1/(ty/tx)) = -1/m .

In words, the slope of the normal line is the negative reciprocal of the slope of the tangent line.

Thus the equation of the local normal to the curve at the point (x0,y0) can be written as y = −(x− x0)/m + y0,
where m is the slope of the local tangent.
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6.3.1 Example 1: x2

As an easy first example, let’s use the function f(x) = x2 and construct the tangent line and normal line to this plane
curve at the point x = 1, y = f(1) = 1. (We have discussed this same example in Ch. 5). The first derivative is
2x, and its value at x = 1 is 2. Thus the equation of the local tangent to the curve at (x,y) = (1,1) is y = 2x− 1.
The equation of the local normal at the same point is y = −x/2 + 3/2.

We will plot the curve y = x2, the local tangent, and the local normal together. Special care is needed to get the horizontal
“canvas” width about 1.4 times the vertical height to achieve a geometrically correct plot; otherwise the “normal” line
would not cross the tangent line at right angles.

(%i8) qdraw( ex([xˆ2,2*x-1,-x/2+3/2],x,-1.4,2.8), yr(-1,2) ,
pts( [ [1,1]],ps(2) ) )$

The plot looks like:
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Figure 6: Tangent and Normal to x2 at point (1,1)

We can see directly from the plot that the slope of the tangent line has the value 2. Remember that we can think of
“slope” as being the number derived from dividing the “rise” by the “run”. Thus if we choose a “run” to be the x interval
(0,1), from the plot this corresponds to the “rise” of 1− (−1) = 2. Hence “rise/run” is 2.

6.3.2 Example 2: ln(x)

Our next example repeats the analysis of Example 1 for the function ln(x), using the point (x = 2,y = ln(2)). Maxima’s
natural log function is written log. Maxima does not have a “log to the base 10 function”, although you can “roll your
own” with a definition like log10(x) := log(x)/log(10), which is equivalent to log(x)/2.303. Thus in
Maxima, log(10) = 2.303, log(2) = 0.693, etc. We are constructing the local tangent and normal at the
point (x = 2,y = 0.693). The derivative of the natural log is

(%i9) diff(log(x),x);
1

(%o9) -
x

so the “slope” of our curve (and the tangent) at the chosen point is 1/2, and the slope of the local normal is -2.
The equation of the tangent is then (y − ln(2)) = (1/2) (x− 2), or y = x/2− 0.307. The equation of the normal
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is (y − ln(2)) = −2 (x− 2), or y = −2x + 4.693. In order to get a decent plot, we need to stay away from the sin-
gular point x = 0, so we start the plot with x a small positive number. We choose to use the x-axis range (0.1,4), then
∆x = 3.9. Since we want the “canvas width” ∆x ≈ 1.4∆y, we need ∆y = 2.786, which is satisfied if we choose the
y-axis range to be (−1,1.786).

(%i10) qdraw(key(bottom), yr(-1,1.786),
ex([log(x), x/2 - 0.307, -2*x + 4.693],x,0.1,4),
pts( [ [2,0.693]],ps(2) ) );

which produces the plot:
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Figure 7: Tangent and Normal to ln(x) at point (2, ln(2))

6.4 Maxima and Minima of a Function of Two Variables
You can find proofs of the following criteria in calculus texts.

If f(x,y) and its first derivatives are continuous in a region including the point (a,b), a necessary condition that f(a,b)
shall be an extreme (maximum or minimum) value of the function f(x,y) is that (I):

∂f(a, b)

∂x
= 0,

∂f(a, b)

∂y
= 0 (6.6)

in which the notation means first take the partial derivatives for arbitrary x and y and then evaluate the resulting deriva-
tives at the point (x,y) = (a,b).

Examples show that these two conditions (I) do not guarantee that the function actually takes on an extreme value at the
point (a,b), although in many practical problems the existence and nature of an extreme value is often evident from
the problem itself and no extra test is needed; all that is needed is the location of the extreme value.

If condition (I) is satisfied and if, in addition, at the point (a,b) we have (II):

∆ =
(

∂2 f

∂ x2

) (
∂2 f

∂ y2

)
−

(
∂2 f

∂x ∂y

)2

> 0 (6.7)

then f(x,y) will have a maximum value or a minimum value given by f(a,b) according as ∂2 f/∂ x2

( or ∂2 f/∂ y2 ) is negative or positive for x = a,y = b. If condition (I) holds and ∆ < 0 then f(a,b) is neither a
maximum nor a minimum; if ∆ = 0 the test fails to give any information.
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6.4.1 Example 1: Minimize the Area of a Rectangular Box of Fixed Volume

Let the sides of a “rectangular box” (rectangular prism, or cuboid, if you wish) of fixed volume v be x, y, and z. We wish
to determine the shape of this box (for fixed v) which minimizes the surface area s = 2 (xy + y z + zx). We can use
the fixed volume relation to express z as a function of x and y and then achieve an expression for the surface area which
only depends of the two variables x and y. We then know that a necessary condition that the surface area be an extremum
is that the two equations of condition I above be satisfied. We need to expose the hidden dependence of z on x and y via
the volume constraint before we can correctly derive the two equations of condition I.

You probably already know the answer to this shape problem is a cube, in which all sides are equal in length, and the
length of a side is the same as the cube root of the volume.

We require three equations to be satisfied, the first being the fixed volume v = xy z, and the other two being the equations
of condition I above. There are multiple paths to such a solution in Maxima. Perhaps the simplest is to use solve to
generate a solution of the three equations for the variables (x,y, z), although the solutions returned will include non-
physical solutions and we must select the physically realizable solution.

(%i1) eq1 : v = x*y*z;
(%o1) v = x y z
(%i2) solz : solve(eq1,z);

v
(%o2) [z = ---]

x y
(%i3) s : ( subst(solz,2*(x*y + y*z + z*x) ), expand(%%) );

2 v 2 v
(%o3) 2 x y + --- + ---

y x
(%i4) eq2 : diff(s,x)=0;

2 v
(%o4) 2 y - --- = 0

2
x

(%i5) eq3 : diff(s,y) = 0;
2 v

(%o5) 2 x - --- = 0
2

y
(%i6) solxyz: solve([eq1,eq2,eq3],[x,y,z]);

1/3 1/3 1/3
(%o6) [[x = v , y = v , z = v ],

1/3 1/3
2 v (sqrt(3) %i + 1) v

[x = --------------, y = - ---------------------,
sqrt(3) %i - 1 2

1/3 1/3
(sqrt(3) %i + 1) v 2 v

z = - ---------------------], [x = - --------------,
2 sqrt(3) %i + 1

1/3 1/3
(sqrt(3) %i - 1) v (sqrt(3) %i - 1) v

y = ---------------------, z = ---------------------]]
2 2

Since the physical solutions must be real, the first sublist is the physical solution which implies the cubical shape as the
answer.
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An alternative solution path is to solve eq2 above for y as a function of x and v and use this to eliminate y from
eqn3.

(%i7) soly : solve(eq2,y);
v

(%o7) [y = --]
2

x
(%i8) eq3x : ( subst(soly, eq3),factor(%%) );

3
2 x (x - v)

(%o8) - ------------ = 0
v

The factored form %o7 shows that, since x 6= 0, the solution must have x = v1/3. We can then use this solution for x to
generate the solution for y and then for z.

(%i9) solx : x = vˆ(1/3);
1/3

(%o9) x = v
(%i10) soly : subst(solx, soly);

1/3
(%o10) [y = v ]
(%i11) subst( [solx,soly[1] ], solz );

1/3
(%o11) [z = v ]

We find that ∆ > 0 and that the second derivative of s(x,y) with respect to x is positive, as needed for the cubical
solution to define a minimum surface solution.

(%i12) delta : ( diff(s,x,2)*diff(s,y,2) - diff(s,x,1,y,1), expand(%%) );
2

16 v
(%o12) ----- - 2

3 3
x y

(%i13) delta : subst([xˆ3=v,yˆ3=v], delta );
(%o13) 14
(%i14) dsdx2 : diff(s,x,2);

4 v
(%o14) ---

3
x

(%i15) dsdy2 : diff(s,y,2);
4 v

(%o15) ---
3

y
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6.4.2 Example 2: Maximize the Cross Sectional Area of a Trough

A long rectangular sheet of aluminum of width L is to be formed into a flat bottom trough by bending both a left and right
hand length x up by an angle θ with the horizontal. A cross section view is then:

Figure 8: Flat Bottomed Trough

The lower base is l = L− 2x, the upper base is u = l + 2x cos(θ). The altitude is h = x sin(θ). The area of a trape-
zoid whose parallel sides are l and u and whose altitude is h is (h/2) (l + u) (ie., the height times the average width:
Exercise: check this by calculating the area of a rectange hu, where u is the larger base, and then subtracting the area
of the two similar right triangles on the left and right hand sides.) Hence the area of the cross section (called s in our
Maxima work) is A = L x sin(θ) − 2 x2 sin(θ) + x2 sin(θ) cos(θ)

Using condition I equations, we proceed to find the extremum solutions for x and θ (which is called th in our Maxima
work). Our method is merely one possible path to a solution.

(%i1) s : L*x*sin(th) - 2*xˆ2*sin(th) + xˆ2*sin(th)*cos(th);
2 2

(%o1) sin(th) x L + cos(th) sin(th) x - 2 sin(th) x
(%i2) dsdx : ( diff(s,x), factor(%%) );
(%o2) sin(th) (L + 2 cos(th) x - 4 x)

We see that one way we can get dsdx to be zero is to set sin(θ) = 0, however this would mean the angle of bend was zero degrees,
which is not the solution of interest. Hence our first equation comes from setting the second factor of dsdx equal to zero.

(%i3) eq1 : dsdx/sin(th) = 0;
(%o3) L + 2 cos(th) x - 4 x = 0
(%i4) solx : solve(eq1,x);

L
(%o4) [x = - -------------]

2 cos(th) - 4
(%i5) dsdth : ( diff(s,th), factor(%%) );

2 2
(%o5) x (cos(th) L - sin (th) x + cos (th) x - 2 cos(th) x)
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We see that we can get dsdth to be zero if we set x = 0, but this is not the physical situation we are examining. We
assume (of course) that x 6= 0, and arrive at our second equation of condition I by setting the second factor of dsdth
equal to zero.

(%i6) eq2 : dsdth/x = 0;
2 2

(%o6) cos(th) L - sin (th) x + cos (th) x - 2 cos(th) x = 0
(%i7) eq2 : ( subst(solx,eq2), ratsimp(%%) );

2 2
(sin (th) + cos (th) - 2 cos(th)) L

(%o7) ----------------------------------- = 0
2 cos(th) - 4

The only way we can satisfy eq2 is to set the numerator of the left hand side equal to zero, and divide out the factor L
which is positive:

(%i8) eq2 : num(lhs(eq2) )/L = 0;
2 2

(%o8) sin (th) + cos (th) - 2 cos(th) = 0
(%i9) eq2 : trigsimp(eq2);
(%o9) 1 - 2 cos(th) = 0
(%i10) solcos : solve( eq2, cos(th) );

1
(%o10) [cos(th) = -]

2
(%i11) solx : subst(solcos, solx);

L
(%o11) [x = -]

3
(%i12) solth : solve(solcos,th);
‘solve’ is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o12) [th = ---]

3

6.5 Tangent and Normal of a Point of a Curve Defined by an Implicit Function

In the following, Maxima assumes that y is independent of x:

(%i1) diff(xˆ2 + yˆ2,x);
(%o1) 2 x

We can indicate explicitly that y depends on x for purposes of taking this derivative by replacing y by y(x).

(%i2) diff(xˆ2 + y(x)ˆ2,x);
d

(%o2) 2 y(x) (-- (y(x))) + 2 x
dx
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Instead of using the functional notation to indicate dependency, we can use the depends function before taking the
derivative.

(%i3) depends(y,x);
(%o3) [y(x)]
(%i4) g : diff(xˆ2 + yˆ2, x);

dy
(%o4) 2 y -- + 2 x

dx
(%i5) grind(g)$
2*y*’diff(y,x,1)+2*x$
(%i6) gs1 : subst(’diff(y,x) = xˆ3, g );

3
(%o6) 2 x y + 2 x

In %i4 we defined g as the derivative (with respect to x) of the expression xˆ2 + yˆ2, after telling Maxima that the
symbol y is to be considered dependent on the value of x. Since Maxima, as yet, has no specific information about the
nature of the dependence of y on x, the output is expressed in terms of the ”noun form” of diff, which Maxima’s pretty
print shows as dy

dx . To see the ”internal” form, we again use the grind function, which shows the explicit noun form
’diff(y,x,1). This is useful to know if we want to later replace that unknown derivative with a known result, as we
do in input %i6.

However, Maxima doesn’t do anything creative with the derivative substitution done in %i6, like working backwards to
what the explicit function of x the symbol y might stand for (different answers differ by a constant). The output %o6 still
contains the symbol y.

Two ways to later implement our knowledge of y(x) are shown in steps %i7 and %i8, which use the ev function. (In
Chapter 1 we discussed using ev for making substitutions, although the use of subst is more generally recommended
for that job.)

(%i7) ev(g,y=xˆ4/4,diff);
7
x

(%o7) -- + 2 x
2

(%i8) ev(g,y=xˆ4/4,nouns);
7
x

(%o8) -- + 2 x
2

(%i9) y;
(%o9) y
(%i10) g;

dy
(%o10) 2 y -- + 2 x

dx

We see that Maxima does not bind the symbol y to anything when we call ev with an equation like y = xˆ4/4, and
that the binding of g has not changed.

A list which reminds you of all dependencies in force is dependencies. The Maxima function diff is the only
core function which makes use of the dependencies list. The functions integrate and laplace do not use the
depends assignments; one must indicate the dependence explicitly by using functional notation.
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In the following, we first ask for the contents of the dependencies list and then ask Maxima to remove the above
dependency of y on x, using remove, then check the list contents again, and carry out the previous differentiation with
Maxima no longer assuming that y depends on x.

(%i11) dependencies;
(%o11) [y(x)]
(%i12) remove(y, dependency);
(%o12) done
(%i13) dependencies;
(%o13) []
(%i14) diff(xˆ2 + yˆ2,x);
(%o14) 2 x

On can also remove the properties associated with the symbol y by using kill (y), although this is more drastic than
using remove.

(%i15) depends(y,x);
(%o15) [y(x)]
(%i16) dependencies;
(%o16) [y(x)]
(%i17) kill(y);
(%o17) done
(%i18) dependencies;
(%o18) []
(%i19) diff(xˆ2+yˆ2,x);
(%o19) 2 x

There are many varieties of using the kill function. The way we are using it here corresponds to the syntax:

Function: kill (a_1, ..., a_n)
Removes all bindings (value, function, array, or rule) from the arguments a_1, ..., a_n. An argument a_k may
be a symbol or a single array element.

The list dependencies is one of the lists Maxima uses to hold information introduced during a work session. You can
use the command infolists to obtain a list of the names of all of the information lists in Maxima.

(%i1) infolists;
(%o2) [labels, values, functions, macros, arrays, myoptions, props, aliases,

rules, gradefs, dependencies, let_rule_packages, structures]

When you first start up Maxima, each of the above named lists is empty.

(%i2) functions;
(%o2) []

6.5.1 Tangent of a Point of a Curve Defined by f(x,y) = 0

Suppose some plane curve is defined by the equation f(x,y) = 0. Every point (x,y) belonging to the curve must satisfy
that equation. For such pairs of numbers, changing x forces a change in y so that the equation of the curve is still satisfied.
When we start plotting tangent lines to plane curves, we will need to evaluate the change in y, given a change in x, such
that the numbers (x,y) are always points of the curve. Let’s then regard y as depending on x via the equation of the
curve. Given that the equation f(x,y) = 0 is valid, we obtain another valid equation by taking the derivative of both sides
of the equation with respect to x. Let’s work just on the left hand side of the resulting equation for now:

(%i1) depends(y,x);
(%o1) [y(x)]
(%i2) diff(f(x,y),x);

d
(%o2) -- (f(x, y))

dx
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We can make progress by assigning values to the partial derivative of f(x,y) with respect to the first argument x and
also to the partial derivative of f(x,y) with respect to the second argument y, using the gradef function. The assigned
values can be explicit mathematical expressions or symbols. We are going to adopt the symbol dfdx to stand for the
partial derivative

dfdx =
(

∂f(x,y)
∂x

)

y

,

where the y subscript means “treat y as a constant when evaluating this derivative”.

Likewise, we will use the symbol dfdy to stand for the partial derivative of f(x,y) with respect to y, holding x
constant:

dfdy =
(

∂f(x,y)
∂y

)

x

.

(%i3) gradef(f(x,y), dfdx, dfdy );
(%o3) f(x, y)
(%i4) g : diff( f(x,y), x );

dy
(%o4) dfdy -- + dfdx

dx
(%i5) grind(g)$
dfdy*’diff(y,x,1)+dfdx$
(%i6) g1 : subst(’diff(y,x) = dydx, g);
(%o6) dfdy dydx + dfdx

We have adopted the symbol dydx for the “rate of change” of y as x varies, subject to the constraint that the numbers
(x,y) always satisfy the equation of the curve f(x,y) = 0, which implies that g1 = 0.

(%i7) solns : solve(g1=0, dydx);
dfdx

(%o7) [dydx = - ----]
dfdy

We see that Maxima knows enough about the rules for differentiation to allow us to get to a famous calculus formula. If

x and y are constrained by the equation f(x,y) = 0, then the “slope” of the local tangent to the point (x,y) is

dy

dx
= −

(
∂f(x,y)

∂x

)
y(

∂f(x,y)
∂y

)
x

. (6.8)

Of course, this formal expression has no meaning at a point where the denominator is zero.

In your calculus book you will find the derivation of the differentiation rule embodied in our output %o4 above:

d

d x
f(x, y(x)) =

(
∂f(x, y)

∂x

)

y

+

(
∂f(x, y)

∂y

)

x

d y(x)

d x
(6.9)

Remember that Maxima knows only what the code writers put in; we normally assume that the correct laws of mathemat-
ics are encoded as an aid to calculation. If Maxima were not consistent with the differentiation rule Eq. (6.9), then a bug
would be present and would have to be removed.

The result Eq.(6.8) provides a way to find the slope (which we call m) at a general point (x,y).
This “slope” should be evaluated at the curve point (x0,y0) of interest to get the tangent and normal in numerical

form. Recall our discussion in the first part of Section(6.3) where we derived the relation between the slopes of the tangent
and normal. If the numerical value of the slope is m0, then the tangent (line) is the equation y = m0 (x− x0) + y0, and
the normal (line) is the equation y = −(x− x0)/m0 + y0
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A Function which Solves for dy/dx given that f(x,y) = 0

Given an equation relating x and y, we assume we can rewrite that equation in the form f(x,y) = 0, and then define the
following function:

(%i1) dydx(expr,x,y) := -diff(expr,x)/diff(expr,y);
- diff(expr, x)

(%o1) dydx(expr, x, y) := ---------------
diff(expr, y)

As a first example, consider finding dy/dx given that x3 + y3 = 1.

(%i2) dydx( xˆ3+yˆ3-1,x,y);
2

x
(%o2) - --

2
y

Next find dy/dx given that cos(x2 − y2) = y cos(x).

(%i3) r1 : dydx( cos(xˆ2 - yˆ2) - y*cos(x),x,y );
2 2

- 2 x sin(y - x ) - sin(x) y
(%o3) -----------------------------

2 2
- 2 y sin(y - x ) - cos(x)

(%i4) r2 : (-num(r1))/(-denom(r1));
2 2

2 x sin(y - x ) + sin(x) y
(%o4) ---------------------------

2 2
2 y sin(y - x ) + cos(x)

Maxima does not simplify r1 by cancelling the minus signs automatically, and we have resorted to dividing the negative
of the numerator by the negative of the denominator(!) to get the form of r2. Notice also that Maxima has chosen to
write sin(y2 − x2) instead of sin(x2 − y2).

Finally, find dy/dx given that 3y4 + 4x− x2 sin(y)− 4 = 0.

(%i5) dydx(3*yˆ4 +4*x -xˆ2*sin(y) - 4, x, y );
2 x sin(y) - 4

(%o5) -----------------
3 2

12 y - x cos(y)

6.5.2 Example 1: Tangent and Normal of a Point of a Circle

As an easy first example, lets consider a circle of radius r defined by the equation x2 + y2 = r2. Let’s choose r = 1.
Then f(x,y) = x2 + y2 − 1 = 0 defines the circle of interest, and we use the “slope” function above to calculate the
slope m for a general point (x,y).

(%i1) dydx(expr,x,y) := -diff(expr,x)/diff(expr,y)$
(%i2) f:xˆ2 + yˆ2-1$
(%i3) m : dydx(f,x,y);

x
(%o3) - -

y
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We then choose a point of the circle, evaluate the slope at that point, and construct the tangent and normal at that point.

(%i4) fpprintprec:8$
(%i5) [x0,y0] : [0.5,0.866];
(%o5) [0.5, 0.866]
(%i6) m : subst([x=x0,y=y0],m );
(%o6) - 0.577367
(%i7) tangent : y = m*(x-x0) + y0;
(%o7) y = 0.866 - 0.577367 (x - 0.5)
(%i8) normal : y = -(x-x0)/m + y0;
(%o8) y = 0.866 - 1.732 (0.5 - x)

We can then use qdraw to show the circle with both the tangent and normal.

(%i9) load(draw);
(%o9) C:/PROGRA˜1/MAXIMA˜4.0/share/maxima/5.15.0/share/draw/draw.lisp
(%i10) load(qdraw);

qdraw(...), qdensity(...), syntax: type qdraw();

(%o10) c:/work2/qdraw.mac
(%i11) ratprint:false$
(%i12) qdraw(key(bottom),ipgrid(15),

imp([ f = 0,tangent,normal],x,-2.8,2.8,y,-2,2 ),
pts([ [0.5,0.866]],ps(2) ) )$

The result is
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Figure 9: Tangent and Normal to x2 + y2 = 1 at point (0.5,0.866)
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6.5.3 Example 2: Tangent and Normal of a Point of the Curve sin(2 x) cos(y) = 0.5

A curve is defined by f(x,y) = sin(2x) cos(y)− 0.5 = 0, with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2. Using Eq. (6.8) we
calculate the slope of the tangent to this curve at some point (x,y) and then specialize to the point (x = 1,y = y0) with
y0 to be found:

(%i13) f : sin(2*x)*cos(y) - 0.5$
(%i14) m : dydx(f,x,y);

2 cos(2 x) cos(y)
(%o14) -----------------

sin(2 x) sin(y)
(%i15) s1 : solve(subst(x=1,f),y);
‘solve’ is using arc-trig functions to get a solution.
Some solutions will be lost.

1
(%o15) [y = acos(--------)]

2 sin(2)
(%i16) fpprintprec:8$
(%i17) s1 : float(s1);
(%o17) [y = 0.988582]
(%i18) m : subst([ x=1, s1[1] ], m);

1.3166767 cos(2)
(%o18) ----------------

sin(2)
(%i19) m : float(m);
(%o19) - 0.602587
(%i20) mnorm : -1/m;
(%o20) 1.6595113
(%i21) y0 : rhs( s1[1] );
(%o21) 0.988582
(%i22) qdraw( imp([f = 0, y - y0 = m*(x - 1),

y - y0 = mnorm*(x - 1) ],x,0,2,y,0,1.429),
pts( [ [1,y0] ], ps(2) ), ipgrid(15))$

which produces the plot
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Figure 10: Tangent and Normal to sin(2x) cos(y) = 0.5 at point (1,0.988)
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6.5.4 Example 3: Tangent and Normal of a Point on a Parametric Curve: x = sin(t),y = sin(2 t)

This example is the parametric curve example we plotted in Ch. 5. If we divide the differential of y by the differential of
x, the common factor of d t will cancel out and we will have an expression for the slope of the tangent to the curve at a
point determined by the value the parameter t, which in this example must be an angle expressed in radians (as usual in
calculus).

We then specialize to a point on the curve corresponding to x = 0.8, with 0 ≤ t ≤ π/2, which we solve for:

(%i23) m : diff(sin(2*t))/diff(sin(t));
2 cos(2 t)

(%o23) ----------
cos(t)

(%i24) x0 : 0.8;
(%o24) 0.8
(%i25) tsoln : solve(x0 = sin(t), t);

4
(%o25) [t = asin(-)]

5
(%i26) tsoln : float(tsoln);
(%o26) [t = 0.927295]
(%i27) t0 : rhs( tsoln[1] );
(%o27) 0.927295
(%i28) m : subst( t = t0, m);
(%o28) - 0.933333
(%i29) mnorm : -1/m;
(%o29) 1.0714286
(%i30) y0 : sin(2*t0);
(%o30) 0.96
(%i31) qdraw( xr(0, 2.1), yr(0,1.5), ipgrid(15),nticks(200),

para(sin(t),sin(2*t),t,0,%pi/2, lc(brown) ),
ex([y0+m*(x-x0),y0+mnorm*(x-x0)],x,0,2.1 ),

pts( [ [0.8, 0.96]],ps(2) ) )$

with the resulting plot
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Figure 11: Tangent and Normal to x = sin(t), y = sin(2 t) at point t = 0.927 radians
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6.5.5 Example 4: Tangent and Normal of a Point on a Polar Plot: x = r(t) cos(t),y = r(t) sin(t)

We use the polar plot example from ch. 5, in which we took r(t) = 10/t, and again t is in radians, and we consider
the interval 1 ≤ t ≤ π and find the tangent and normal at the curve point corresponding to t = 2 radians. We find the
general slope of the tangent by again forming the ratio of the differential dy to the differential dx.

(%i32) r : 10/t$
(%i33) xx : r * cos(t)$
(%i34) yy : r * sin(t)$
(%i35) m : diff(yy)/diff(xx)$
(%i36) m : ratsimp(m);

sin(t) - t cos(t)
(%o36) -----------------

t sin(t) + cos(t)
(%i37) m : subst(t = 2.0, m);
(%o37) 1.2418222
(%i38) mnorm : -1/m;
(%o38) - 0.805268
(%i39) x0 : subst(t = 2.0, xx);
(%o39) - 2.0807342
(%i40) y0 : subst(t = 2.0, yy);
(%o40) 4.5464871
(%i41) qdraw(polar(10/t,t,1,3*%pi,lc(brown) ),

xr(-6.8,10),yr(-3,9),
ex([y0 + m*(x-x0),y0 + mnorm*(x-x0)],x,-6.8,10 ),
pts( [ [x0,y0] ], ps(2),pk("t = 2 rad") ) );

which produces the plot:
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Figure 12: Tangent and Normal to x = 10 cos(t)/t, y = 10 sin(t)/t at point t = 2 radians
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6.6 Limit Examples Using Maxima’s limit Function
Maxima has a powerful limit function which uses l’Hospital’s rule and Taylor series expansions to investigate the limit
of a univariate function as the variable approaches some point. The Maxima manual has the following description the
Maxima function limit:

Function: limit(expr, x, val, dir)
Function: limit(expr, x, val)
Function: limit(expr)
Computes the limit of expr as the real variable x approaches the value val from the direction dir. dir may have
the value plus for a limit from above, minus for a limit from below, or may be omitted (implying a two-sided limit
is to be computed).
limit uses the following special symbols: inf (positive infinity) and minf (negative infinity). On output it may also
use und (undefined), ind (indefinite but bounded) and infinity (complex infinity).
lhospitallim is the maximum number of times L’Hospital’s rule is used in limit. This prevents infinite looping
in cases like limit (cot(x)/csc(x), x, 0).
tlimswitch when true will allow the limit command to use Taylor series expansion when necessary.
limsubst prevents limit from attempting substitutions on unknown forms. This is to avoid bugs like
limit (f(n)/f(n+1),n,inf) giving 1. Setting limsubst to true will allow such substitutions.
limit with one argument is often called upon to simplify constant expressions, for example, limit (inf-1).
example (limit) displays some examples.

Here is the result of calling Maxima’s example function:

(%i1) example(limit)$
(%i2) limit(x*log(x),x,0,plus)
(%o2) 0
(%i3) limit((x+1)ˆ(1/x),x,0)
(%o3) %e
(%i4) limit(%eˆx/x,x,inf)
(%o4) inf
(%i5) limit(sin(1/x),x,0)
(%o5) ind

Most use of limit will use the first two ways to call limit. The “direction” argument is optional. The default values
of the option switches mentioned above are:

(%i6) [lhospitallim,tlimswitch,limsubst];
(%o6) [4, true, false]

Thus the default Maxima behavior is to allow the use of a Taylor series expansion in finding the correct limit. (We will
discuss Taylor series expansions soon in this chapter.) The default is also to prevent “substitutions” on unknown (formal)
functions. The third (single argument) syntax is illustrated by

(%i7) limit(inf - 1);
(%o7) inf

The expression presented to the limit function in input %i7 contains only known constants, so there are no unbound
(formal) parameters like x for limit to worry about.

Here is a use of limit which mimics the calculus definition of a derivative of a power of x.

(%i8) limit( ( (x+eps)ˆ3 - xˆ3 )/eps, eps, 0 );
2

(%o8) 3 x

And a similar use of limit with ln(x):

(%i9) limit( (log(x+eps) - log(x))/eps, eps,0 );
1

(%o9) -
x
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What does Maxima do with a typical calculus definition of a derivative of a trigonometric function?

(%i10) limit((sin(x+eps)-sin(x))/eps, eps,0 );
Is sin(x) positive, negative, or zero?
p;
Is cos(x) positive, negative, or zero?
p;
(%o10) cos(x)

We see above a typical Maxima query before producing an answer. Using p; instead of positive; is allowed. Likewise
one can use n; instead of negative;.

6.6.1 Discontinuous Functions

A simple example of a discontinuous function can be created using Maxima’s abs function.
abs(expr) returns either the absolute value expr, or (if expr is complex) the complex modulus of expr.

We first plot the function |x|/x.

(%i11) load(draw)$
(%i12) load(qdraw)$
(%i13) qdraw( yr(-2,2),lw(8),ex(abs(x)/x,x,-1,1 ) )$

Here is that plot of |x|/x:
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Figure 13: |x|/x
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Maxima correctly evaluates the one-sided limits:

(%i14) limit(abs(x)/x,x,0,plus);
(%o14) 1
(%i15) limit(abs(x)/x,x,0,minus);
(%o15) - 1
(%i16) limit(abs(x)/x,x,0);
(%o16) und

and Maxima also computes a derivative:

(%i17) g : diff(abs(x)/x,x);
1 abs(x)

(%o17) ------ - ------
abs(x) 2

x
(%i18) g, x = 0.5;
(%o18) 0.0
(%i19) g, x = - 0.5;
(%o19) 0.0
(%i20) g,x=0;
Division by 0
-- an error. To debug this try debugmode(true);

(%i21) limit(g,x,0,plus);
(%o21) 0
(%i22) limit(g,x,0,minus);
(%o22) 0
(%i23) load(vcalc)$
(%i24) plotderiv(abs(x)/x,x,-2,2,-2,2,1)$

abs(x) 1 abs(x)
plist = [------, ------ - ------]

x abs(x) 2
x

The derivative does not simplify to 0 since the derivative is undefined at x = 0. The plot of the step function and its
derivative, as returned by plotderiv is
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Figure 14: |x|/x and its Maxima derivative
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A homemade unit step function can now be defined by adding 1 to lift the function up to the value of 0 for x < 0 and
then dividing the result by 2 to get a ”unit step function”.

(%i25) mystep : ( (1 + abs(x)/x)/2 , ratsimp(%%) );
abs(x) + x

(%o25) ----------
2 x

We then use qdraw to plot the definition

(%i26) qdraw(yr(-1,2),lw(5),ex(mystep,x,-1,1) )$

with the result:
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Figure 15: mystep

Maxima has a function called unit_step available if you load the orthopoly package. This function is “left
continuous”, since it has the value 0 for x ≤ 1. However, no derivative is defined, although you can use gradef.

(%i27) load(orthopoly)$
(%i28) map(unit_step,[-1/10,0,1/10] );
(%o28) [0, 0, 1]
(%i29) diff(unit_step(x),x);

d
(%o29) -- (unit_step(x))

dx
(%i30) gradef(unit_step(x),0);
(%o30) unit_step(x)
(%i31) diff(unit_step(x),x);
(%o31) 0

Of course, defining the derivative to be 0 everywhere can be dangerous in some circumstances. You can use unit_step
in a plot using, say, qdraw(yr(-1,2),lw(5),ex(unit_step(x),x,-1,1) );. Here we use unit_step to
define a “unit pulse” function upulse(x,x0,w) which is a function of x which becomes equal to 1 when x = x0 and
has width w.

(%i32) upulse(x,x0,w) := unit_step(x-x0) - unit_step(x - (x0+w))$

and then make a plot of three black pulses of width 0.5.

(%i33) qdraw(yr(-1,2), xr(-3,3),
ex1( upulse(x,-3,0.5),x,-3,-2.49,lw(5)),

ex1( upulse(x,-1,0.5),x,-1,-.49,lw(5)),
ex1( upulse(x,1,0.5),x,1,1.51,lw(5)) )$
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with the result:
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Figure 16: Using upulse(x,x0,w)

Of course, the above drawing can be done more easily with the poly function in qdraw, which uses draw2d’s
polygon function.

6.6.2 Indefinite Limits

The example run showed that sin(1/x) has no definite limit as the variable x approaches zero. This function oscillates
increasingly rapidly between ±1 as x → 0. It is instructive to make a plot of this function near the origin using the
smallest line width:

(%i34) qdraw(lw(1),ex(sin(1/x),x,0.001,0.01));

The eps image reproduced here actually uses a finer line width than the Windows Gnuplot console window:
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Figure 17: sin(1/x) Behavior Near x = 0
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The Maxima limit function correctly returns ind for “indefinite but bounded” when asked to find the limit as
x → 0+.

(%i35) limit(sin(1/x),x,0,plus);
(%o35) ind

An example of a function which is well behaved at x = 0 but whose derivative is indefinite but bounded is x2 sin(1/x),
which approaches the value 0 at x = 0.

(%i36) g : xˆ2*sin(1/x)$
(%i37) limit(g,x,0);
(%o37) 0
(%i38) dgdx : diff(g,x);

1 1
(%o38) 2 sin(-) x - cos(-)

x x
(%i39) limit(dgdx,x,0);
(%o39) ind

In the first term of the derivative, x sin(1/x) is driven to 0 by the factor x, but the second term oscillates increasingly
rapidly between ±1 as x → 0. For a plot, we use the smallest line width and color blue for the derivative, and use a
thicker red curve for the original function x2 sin(1/x).

(%i40) qdraw( yr(-1.5,1.5),ex1(2*x*sin(1/x)-cos(1/x),x,-1,1,lw(1),lc(blue)),
ex1(xˆ2*sin(1/x),x,-1,1,lc(red) ) )$

Here is the plot:
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Figure 18: Indefinite but Bounded Behavior of Derivative
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6.7 Taylor Series Expansions using taylor

A Taylor (or Laurent) series expansion of a univariate expression has the syntax
taylor( expr, x, a, n )

which will return a Taylor or Laurent series expansion of expr in the variable x about the point x = a, through terms
proportional to (x - a)ˆn . Here are some examples of first getting the expansion, then evaluating the expansion at
some other point, using both at and subst.

(%i1) t1 : taylor(sqrt(1+x),x,0,5);
2 3 4 5

x x x 5 x 7 x
(%o1)/T/ 1 + - - -- + -- - ---- + ---- + . . .

2 8 16 128 256
(%i2) [ at( t1, x=1 ),subst(x=1, t1 ) ];

365 365
(%o2) [---, ---]

256 256
(%i3) float(%);
(%o3) [1.42578125, 1.42578125]
(%i4) t2: taylor (cos(x) - sec(x), x, 0, 5);

4
2 x

(%o4)/T/ - x - -- + . . .
6

(%i5) [ at( t2, x=1 ),subst(x=1, t2 ) ];
7 7

(%o5) [- -, - -]
6 6

(%i6) t3 : taylor(cos(x),x,%pi/4,4);
%pi %pi 2 %pi 3

sqrt(2) (x - ---) sqrt(2) (x - ---) sqrt(2) (x - ---)
sqrt(2) 4 4 4

(%o6)/T/ ------- - ----------------- - ------------------ + ------------------
2 2 4 12

%pi 4
sqrt(2) (x - ---)

4
+ ------------------ + . . .

48
(%i7) ( at(t3, x = %pi/3), factor(%%) );

4 3 2
sqrt(2) (%pi + 48 %pi - 1728 %pi - 41472 %pi + 497664)

(%o7) ---------------------------------------------------------
995328

To expand an expression depending on two variables, say (x,y), there are two essentially different forms. The first form
is
taylor(expr, [x,y], [a,b],n )

which will expand in x about x = a and expand in the variable y about y = b, up through combined powers of order
n. If a = b, then the simpler syntax:
taylor(expr, [x,y], a, n )

will suffice.
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(%i8) t4 : taylor(sin(x+y),[x,y],0,3);
3 2 2 3

x + 3 y x + 3 y x + y
(%o8)/T/ y + x - ------------------------- + . . .

6
(%i9) (subst( [x=%pi/2, y=%pi/2], t4), ratsimp(%%) );

3
%pi - 6 %pi

(%o9) - ------------
6

(%i10) ( at( t4, [x=%pi/2,y=%pi/2]), ratsimp(%%) );
3

%pi - 6 %pi
(%o10) - ------------

6

Note the crucial difference between this last example and the next.

(%i11) t5 : taylor(sin(x+y),[x,0,3],[y,0,3] );
3 2 3
y y y y 2

(%o11)/T/ y - -- + . . . + (1 - -- + . . .) x + (- - + -- + . . .) x
6 2 2 12

2
1 y 3

+ (- - + -- + . . .) x + . . .
6 12

(%i12) (subst([x=%pi/2,y=%pi/2],t5),ratsimp(%%) );
5 3

%pi - 32 %pi + 192 %pi
(%o12) ------------------------

192

Thus the syntax
taylor( expr, [x,a,nx], [y,b,ny] )

will expand to higher combined powers in x and y.

We can differentiate and integrate a taylor series returned expression:

(%i13) t6 : taylor(sin(x),x,0,7 );
3 5 7

x x x
(%o13)/T/ x - -- + --- - ---- + . . .

6 120 5040
(%i14) diff(t6,x);

2 4 6
x x x

(%o14)/T/ 1 - -- + -- - --- + . . .
2 24 720

(%i15) integrate(%,x);
7 5 3

x x x
(%o15) - ---- + --- - -- + x

5040 120 6
(%i16) integrate(t6,x);

8 6 4 2
x x x x

(%o16) - ----- + --- - -- + --
40320 720 24 2
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A common use of the Taylor series is to expand a function of x in the form f(x + dx), for dx small.

(%i17) taylor(f(x+dx),dx,0,3);
!

2 !
d ! 2

(---- (f(x + dx))! ) dx
2 !

! ddx !
d ! !dx = 0

(%o17)/T/ f(x) + (--- (f(x + dx))! ) dx + -----------------------------
ddx ! 2

!dx = 0
!

3 !
d ! 3

(---- (f(x + dx))! ) dx
3 !

ddx !
!dx = 0

+ ----------------------------- + . . .
6

(%i18) taylor(cos(x+dx),dx,0,4);
2 3 4

cos(x) dx sin(x) dx cos(x) dx
(%o18)/T/ cos(x) - sin(x) dx - ---------- + ---------- + ---------- + . . .

2 6 24

Another frequent use of the Taylor series is the expansion of a function which contains a small parameter which we will
symbolize by e.

(%i19) g : log(a/e + sqrt(1+(a/e)ˆ2 ) );
2

a a
(%o19) log(- + sqrt(-- + 1))

e 2
e

(%i20) taylor(g,e,0,2);
2

e
(%o20)/T/ - log(e) + log(2 a) + . . . + ---- + . . .

2
4 a

More examples of Taylor and Laurent series expansions can be found in the Maxima manual.

6.8 Vector Calculus Calculations and Derivations using vcalc.mac

The package vcalc.mac has been mentioned in the introduction to this chapter. Here we give a few examples of using
this package for vector calculus work.

General Comments: Working with the Batch File vcalcdem.mac

A separate file vcalcdem.mac is available with this chapter on the author’s webpage. This file is designed to be intro-
duced into Maxima using the command batch(vcalcdem) (if vcalcdem.mac is in your work directory, say, and
you have set up your file search paths as suggested in Ch. 1) or batch("vcalcdem.mac"). You should first load in
the vcalc.mac file which contains the definitions of the vcalc vector calculus functions.

There are three points to emphasize when using batch files in this mode. The first feature is the use of lines like
"this is a comment"$ in the file, which allow you to place readable comments between the usual Maxima in-
put lines. Secondly, a Maxima input which simply defines something and for which there is no need to see the “output”
line should end with the dollar sign $. Finally, when you “batch in” the file, you see neither the dollar signs, nor the
semi-colons which end the other inputs. However, input and output numbers of the form (%i12) and (%o12) will be
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seen for inputs which end with a semi-colon, whereas there are no output numbers for inputs which end with the dollar
sign. Once you get a little practice reading the text form of the batch file and comparing that to the Maxima display of the
“batched in” file, you should have no problem understanding what is going on. The first lines of vcalcdem.mac are:

" vcalcdem.mac: sample calculations and derivations"$
" default coordinates are cartesian (x,y,z)"$
" gradient and laplacian of a scalar field "$
depends(f,[x,y,z]);
grad(f);
lap(f);

Here is what you will see in your Maxima session:

(%i1) load(vcalc);
vcalc.mac: for syntax, type: vcalc_syntax();

CAUTION: global variables set and used in this package:

hhh1, hhh2, hhh3, uuu1, uuu2, uuu3, nnnsys, nnnprint, tttsimp

(%o1) c:/work2/vcalc.mac
(%i2) batch(vcalcdem)$
read and interpret file: #pc:/work5/vcalcdem.mac
(%i3) vcalcdem.mac: sample calculations and derivations
(%i4) default coordinates are cartesian (x,y,z)
(%i5) gradient and laplacian of a scalar field
(%i6) depends(f, [x, y, z])
(%o6) [f(x, y, z)]
(%i7) grad(f)
cartesian [x, y, z]

df df df
(%o7) [--, --, --]

dx dy dz
(%i8) lap(f)
cartesian [x, y, z]

2 2 2
d f d f d f

(%o8) --- + --- + ---
2 2 2

dz dy dx

The default coordinates are cartesian (x,y,z), and by telling Maxima that the otherwise undefined symbol f is to be
treated as an explicit function of (x,y,z), we get symbolic output from grad(f) and lap(f) which respectively
produce the gradient and laplacian in the current coordinate system.

For each function used, a reminder is printed to your screen concerning the current coordinate system and the current
choice of independent variables.

Three dimensional vectors (the only kind allowed by this package) are represented by lists with three elements. In the
default cartesian coordinate system (x,y,z), the first slot is the x component of the vector, the second slot is the y
component, and the third slot is the z component.

Now that you have seen the difference between the file vcalcdem.mac and the Maxima response when using “batch”,
we will just show the latter for brevity. You can, of course, look at the file vcalcdem.mac with a text editor.
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Here the batch file displays the divergence and curl of a general 3-vector in a cartesian coordinate system.

(%i9) divergence and curl of a vector field
(%i10) avec : [ax, ay, az]
(%o10) [ax, ay, az]
(%i11) depends(avec, [x, y, z])
(%o11) [ax(x, y, z), ay(x, y, z), az(x, y, z)]
(%i12) div(avec)
cartesian [x, y, z]

daz day dax
(%o12) --- + --- + ---

dz dy dx
(%i13) curl(avec)
cartesian [x, y, z]

daz day dax daz day dax
(%o13) [--- - ---, --- - ---, --- - ---]

dy dz dz dx dx dy

We next have two vector calculus identities:

(%i14) vector identities true in any coordinate system
(%i15) curl(grad(f))
cartesian [x, y, z]
cartesian [x, y, z]
(%o15) [0, 0, 0]
(%i16) div(curl(avec))
cartesian [x, y, z]
cartesian [x, y, z]
(%o16) 0

and an example of finding the Laplacian of a vector field (rather than a scalar field) with an explicit example:

(%i17) laplacian of a vector field
3 3 2 3

(%i18) aa : [x y, x y z, x y z ]
3 3 2 3

(%o18) [x y, x y z, x y z ]
(%i19) lap(aa)
cartesian [x, y, z]

3 2
(%o19) [6 x y, 6 x y z, 2 y z + 6 x y z]

and an example of the use of the vector cross product which is included with this package:

(%i20) vector cross product
(%i21) bvec : [bx, by, bz]
(%o21) [bx, by, bz]
(%i22) lcross(avec, bvec)
(%o22) [ay bz - az by, az bx - ax bz, ax by - ay bx]

We next change the current coordinate system to cylindrical with a choice of the symbols rho, phi, and z as the
independent variables. We again start with some general expressions

(%i23) cylindrical coordinates using (rho,phi,z)
(%i24) setcoord(cy(rho, phi, z))
(%o24) true
(%i25) gradient and laplacian of a scalar field
(%i26) depends(g, [rho, phi, z])
(%o26) [g(rho, phi, z)]
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(%i27) grad(g)
cylindrical [rho, phi, z]

dg
----

dg dphi dg
(%o27) [----, ----, --]

drho rho dz
(%i28) lap(g)
cylindrical [rho, phi, z]

2
d g

dg -----
---- 2 2 2
drho dphi d g d g

(%o28) ---- + ----- + --- + -----
rho 2 2 2

rho dz drho
(%i29) divergence and curl of a vector field
(%i30) bvec : [brh, bp, bz]
(%o30) [brh, bp, bz]
(%i31) depends(bvec, [rho, phi, z])
(%o31) [brh(rho, phi, z), bp(rho, phi, z), bz(rho, phi, z)]
(%i32) div(bvec)
cylindrical [rho, phi, z]

dbp
----

brh dphi dbz dbrh
(%o32) --- + ---- + --- + ----

rho rho dz drho
(%i33) curl(bvec)
cylindrical [rho, phi, z]

dbz dbrh
---- ----
dphi dbp dbrh dbz dphi bp dbp

(%o33) [---- - ---, ---- - ----, - ---- + --- + ----]
rho dz dz drho rho rho drho

Instead of using setcoord to change the current coordinate system, we can insert an extra argument in the vector
calculus function we are using. Here is an example of not changing the coordinate system, but telling Maxima to use r
instead of rho with the currently operative cylindrical coordinates.

(%i34) change from cylindrical coordinate label rho to r on the fly:
1

(%i35) bvec : [0, -, 0]
r

(%i36) div(bvec, cy(r, phi, z))
cylindrical [r, phi, z]
(%o36) 0

Here is an example of using this method to switch to spherical polar coordinates:

(%i37) change to spherical polar coordinates on the fly
sin(theta)

(%i38) cvec : [0, 0, ----------]
2

r
(%i39) div(cvec, s(r, theta, phi))
spherical polar [r, theta, phi]
(%o39) 0
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(%i40) coordinate system remains spherical unless explicitly changed
(%i41) cvec : [0, 0, r sin(theta)]
(%i42) div(cvec)
spherical polar [r, theta, phi]
(%o42) 0
(%i43) example of div(vec) = 0 everywhere except r = 0

1
(%i44) div([--, 0, 0])

2
r

spherical polar [r, theta, phi]
(%o44) 0

The best way to get familiar with vcalc.mac is just to play with it. Some syntax descriptions are built into the package.

6.9 Maxima Derivation of Vector Calculus Formulas in Cylindrical Coordinates

In this section we start with the cartesian (rectangular) coordinate expressions for the gradient and Laplacian of a scalar
expression, and the divergence and curl of a vector expression. We then use Maxima to find the correct forms of these
vector calculus formulas in a cylindrical coordinate system.

Figure 19: ρ and φ unit vectors

Consider a change of variable from cartesian coordinates (x, y, z) to cylindrical coordinates (ρ, ϕ, z). Given (ρ, ϕ),
we obtain (x, y) from the pair of equations x = ρ cosϕ and y = ρ sinϕ. Given (x, y), we obtain (ρ, ϕ) from the equa-
tions ρ =

√
x2 + y2 (or ρ2 = x2 + y2) and tanϕ = y/x ( or ϕ = arctan(y/x) ).

We consider the derivatives of a general scalar function f(ρ, ϕ, z) which is an explicit function of the cylindrical coordi-
nates (ρ, ϕ, z) and an implicit function of the cartesian coordinates (x, y) via the dependence of ρ and ϕ on x and y.

Likewise we consider a general three dimensional vector B(ρ, ϕ, z) which is an explicit function of ρ, ϕ, and z and an
implicit function of (x, y).

Since many of the fundamental equations governing processes in the physical sciences and engineering can be written
down in terms of the Laplacian, the divergence, the gradient, and the curl, we concentrate on using Maxima to do the
“heavy lifting” (ie., the tedious algebra) to work out formulas for these operations in cylindrical coordinates.

Our approach to the use of vectors here is based on choosing an explicit set of three element lists to represent the cartesian
unit vectors. We then use the built-in dot product of lists to implement the scalar product of three-vectors, used to check
orthonormality, and we also provide a simple cross product function which can be used to check that the unit vectors we
write down are related by the vector cross product to each other in the conventional way (the “right hand rule”).
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6.9.1 The Calculus Chain Rule in Maxima

Let g be some scalar function which depends implicitly on (x,y, z) via an explicit dependence on (u,v,w). We want
to express the partial derivative of g with respect to x, y, or z in terms of derivatives of g with respect to u, v, and w.

We first tell Maxima to treat g as an explicit function of (u,v,w).

(%i1) depends(g,[u,v,w]);
(%o1) [g(u, v, w)]

If, at this point, we ask for the derivative of g with respect to x, we get zero, since Maxima has no information yet about
dependence of u, v, and w on x.

(%i2) diff(g,x);
(%o2) 0

We now need to use further depends statements, as in

(%i3) depends([u,v,w],[x,y,z]);
(%o3) [u(x, y, z), v(x, y, z), w(x, y, z)]

which now allows Maxima to demonstrate its knowledge of the “calculus chain rule”, which Maxima writes as:

(%i4) diff(g,x);
dg dw dg dv dg du

(%o4) -- -- + -- -- + -- --
dw dx dv dx du dx

Note how Maxima writes the “chain rule” in this example, which would be written (using partial derivative notation) in a
calculus text as

∂g(u,v,w)
∂x

=
∂g(u,v,w)

∂u
∂ u(x,y, z)

∂ x
+

∂g(u,v,w)
∂v

∂ v(x,y, z)
∂ x

+
∂g(u,v,w)

∂w
∂ w(x,y, z)

∂ x
(6.10)

In addition to using a depends statement to tell Maxima about the (x,y, z) dependence of (u,v,w) , we can use the
gradef function to replace derivatives with chosen substitutes.

(%i5) (gradef(u,x,dudx),gradef(u,y,dudy),gradef(u,z,dudz),
gradef(v,x,dvdx),gradef(v,y,dvdy),gradef(v,z,dvdz),
gradef(w,x,dwdx),gradef(w,y,dwdy),gradef(w,z,dwdz) )$

Use of diff now produces the expression:

(%i6) diff(g,x);
dg dg dg

(%o6) dwdx -- + dvdx -- + dudx --
dw dv du

(%i7) grind(%)$
dwdx*’diff(g,w,1)+dvdx*’diff(g,v,1)+dudx*’diff(g,u,1)$

This is the method we will use in both this section on cylindrical coordinates and in the next section on spherical polar
coordinates.

In the following sections we discuss successive parts of a batch file cylinder.mac, available with this chapter on
the author’s webpage. This file is designed to be introduced into Maxima with the input: batch(cylinder) (if
cylinder.mac is in your work directory, say, and you have set up your file search paths as suggested in Ch. 1), or
batch("c:/work5/cylinder.mac") if you need to supply the complete path. We have given some orientation
concerning batch files in the previous section.
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Relating (x, y) to (ρ, ϕ)

In cylinder.mac we use rh to represent ρ and p to represent the angle ϕ expressed in radians. The ranges of the
independent variables are 0 < ρ < ∞, 0 ≤ ϕ ≤ 2π, and −∞ ≤ z ≤ +∞.

Here is the beginning of the batch file cylinder.mac. First is defined c3rule as a list of replacement “rules” in the
form of equations which can be used later by the subst function as described by c3sub. rhxy stands for an expression
which produces ρ given (x, y). To get automatic simplification of rh/abs(rh) we use the assume function.

" ------------ cylinder.mac ----------------------------"$
" cylindrical coordinates (rho, phi, z ) = (rh, p, z) "$

" replacement rules x,y,z to rh, p, z "$

c3rule : [x = rh*cos(p), y = rh*sin(p) ]$
c3sub(expr) := (subst(c3rule,expr),trigsimp(%%) )$

rhxy : sqrt(xˆ2 + yˆ2)$

assume(rh > 0)$

which Maxima displays as:

(%i1) batch("cylinder.mac")$
read and interpret file: #pc:/work5/cylinder.mac
(%i2) ------------ cylinder.mac ----------------------------
(%i3) cylindrical coordinates (rho, phi, z ) = (rh, p, z)
(%i4) replacement rules x,y,z to rh, p, z
(%i5) c3rule : [x = rh cos(p), y = rh sin(p)]
(%i6) c3sub(expr) := (subst(c3rule, expr), trigsimp(%%))

2 2
(%i7) rhxy : sqrt(y + x )
(%i8) assume(rh > 0)

Now that you have seen what Maxima does with a file introduced into Maxima via batch("cylinder.mac"),
we will stop displaying the contents of cylinder.mac but just show you Maxima’s response. You can look at
cylinder.mac with a text editor to compare input with output.

We next tell Maxima how to work with the cylindrical coordinates and their derivatives: We let the symbol drhdx, for
example, hold (for later use) ∂ ρ/∂ x.

(%i9) partial derivatives of rho and phi wrt x and y
(%i10) drhdx : (diff(rhxy, x), c3sub(%%))
(%o10) cos(p)
(%i11) drhdy : (diff(rhxy, y), c3sub(%%))
(%o11) sin(p)

y
(%i12) dpdx : (diff(atan(-), x), c3sub(%%))

x
sin(p)

(%o12) - ------
rh
y

(%i13) dpdy : (diff(atan(-), y), c3sub(%%))
x

cos(p)
(%o13) ------

rh
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We thus have established the derivatives
∂ρ(x, y)/∂x = cosϕ (6.11)

∂ρ(x, y)/∂y = sinϕ (6.12)

∂ϕ(x, y)/∂x = −sinϕ/ρ (6.13)

∂ϕ(x, y)/∂y = cosϕ/ρ (6.14)

The batch file has not used any depends or gradef assignments so far. What the batch file did could have been done
interactively, starting with the derivative of ρ with respect to x, say, as follows

(%i1) rhxy : sqrt(xˆ2 + yˆ2);
2 2

(%o1) sqrt(y + x )
(%i2) diff(rhxy,x);

x
(%o2) -------------

2 2
sqrt(y + x )

(%i3) subst([x=rh*cos(p),y=rh*sin(p)],%);
cos(p) rh

(%o3) -------------------------------
2 2 2 2

sqrt(sin (p) rh + cos (p) rh )
(%i4) trigsimp(%);

cos(p) rh
(%o4) ---------

abs(rh)
(%i5) assume(rh > 0)$
(%i6) ev (%o4);
(%o6) cos(p)

and if we had used assume(rh > 0) earlier, we would not have had to include the ev step later, as you can verify by
restarting Maxima or using kill(all) to redo the calculation.

Returning to the batch file, the necessary variable dependencies and the desired derivative replacements are assigned:

(%i14) tell Maxima rh=rh(x,y) and p = p(x,y)
(%i15) (gradef(rh, x, drhdx), gradef(rh, y, drhdy))
(%i16) (gradef(p, x, dpdx), gradef(p, y, dpdy))
(%i17) depends([rh, p], [x, y])

6.9.2 Laplacian ∇ 2 f(ρ, ϕ, z)

The Laplacian of a scalar function f depending on (x, y, z),is defined as

∇ 2 f(x, y, z) ≡ ∂ 2 f(x, y, z)
∂ x 2

+
∂ 2 f(x, y, z)

∂ y 2
+

∂ 2 f(x, y, z)
∂ z 2

(6.15)

The batch file now calculates the Laplacian of a scalar function f when the function depends explicitly on the cylindrical
coordinates (ρ, ϕ, z) and hence depends implicitly on (x, y) since ρ and ϕ each depend on (x, y). This latter dependence
has already been introduced via depends, together with an automatic derivative substitution via gradef.
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The batch file tells Maxima to treat f as an explicit function of rh, p, and z via depends(f,[rh,p,z]). At that
point, if the batch file had asked for the first derivative of f with respect to x, the response would be

(%i98) diff (f,x);
df
-- sin(p)

df dp
(%o98) --- cos(p) - ---------

drh rh

The cartesian form of the Laplacian of f can thus be expressed in terms of the fundamental set of derivatives ∂ ρ/∂ x,
etc., which have already been established above. The next section of cylinder.mac then produces the response:

(%i18) ------------------------------------------------
(%i19) Laplacian of a scalar function f
(%i20) ------------------------------------------------
(%i21) tell Maxima to treat scalar function f as an
(%i22) explicit function of (rh,p,z)
(%i23) depends(f, [rh, p, z])
(%o23) [f(rh, p, z)]
(%i24) calculate the Laplacian of the scalar function f(rh,p,z)
(%i25) using the cartesian definition
(%i26) (diff(f, z, 2) + diff(f, y, 2) + diff(f, x, 2), trigsimp(%%),

multthru(%%))
2

d f
df ---
--- 2 2 2
drh dp d f d f

(%o26) --- + --- + --- + ----
rh 2 2 2

rh dz drh
(%i27) grind(%)
’diff(f,rh,1)/rh+’diff(f,p,2)/rhˆ2+’diff(f,z,2)+’diff(f,rh,2)$

We then have the result:

∇ 2 f(ρ, ϕ, z) =
1
ρ

∂ f

∂ ρ
+

∂ 2 f

∂ ρ

2

+
1
ρ 2

∂ 2 f

∂ ϕ 2
+

∂ 2 f

∂ z2
(6.16)

The two terms involving derivatives with respect to ρ can be combined:

1
ρ

∂ f

∂ ρ
+

∂ 2 f

∂ ρ 2
=

1
ρ

∂

∂ ρ

(
ρ

∂ f

∂ρ

)
(6.17)

We clearly need to avoid points for which ρ = 0.

It is one thing to use Maxima to help derive the correct form of an operation like the Laplacian operator in cylindrical
coordinates, and another to build a usable function which can be used (without repeating a derivation each time!) to
calculate the Laplacian when we have some concrete function we are interested in.

The file vcalc.mac, available with this chapter on the author’s webpage, contains usable functions for the Laplacian,
gradient, divergence, and curl for the three coordinate systems: cartesian, cylindrical, and spherical polar.

However, here is a Maxima function specifically designed only for cylindrical coordinates which will calculate the Lapla-
cian of a scalar expression in cylindrical coordinates. No effort at simplification is made inside this function; the result
can be massaged by the alert user which Maxima always assumes is available. (Note: the Laplacian and other functions
in vcalc.mac start with the general expressions valid in any orthonormal coordinate system, using the appropriate
“scale factors” (h1,h2,h3), and some simplification is done. Also, the laplacian in vcalc.mac will correctly compute
the Laplacian of a vector field as well as a scalar field.)
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(%i1) cylaplacian(expr,rho,phi,z) :=
(diff(expr,rho)/rho + diff(expr,phi,2)/rhoˆ2 +

diff(expr,rho,2) + diff(expr,z,2))$

We can show that the combinations ρn cos(n ϕ) and ρ n sin(n ϕ) are each solutions of Laplace’s equation
∇2 u = 0.

(%i2) ( cylaplacian(rhˆn*cos(n*p),rh,p,z), factor(%%) );
(%o2) 0
(%i3) ( cylaplacian(rhˆn*sin(n*p),rh,p,z), factor(%%) );
(%o3) 0
(%i4) ( cylaplacian(rhˆ(-n)*cos(n*p),rh,p,z), factor(%%) );
(%o4) 0
(%i5) ( cylaplacian(rhˆ(-n)*sin(n*p),rh,p,z), factor(%%) );
(%o5) 0

Another general solution is ln(ρ):

(%i6) cylaplacian(log(rh),rh,p,z);
(%o6) 0

Here is another example of the use of this Maxima function. The expression u = (2/3) (ρ − 1/ρ) sin(ϕ) is proposed
as the solution to a problem defined by: (partial differential equation: pde) ∇2 u = 0 for 1 ≤ ρ ≤ 2, and (boundary
conditions: bc) u(1,ϕ) = 0, and u(2,ϕ) = sin(ϕ). Here we use Maxima to check the three required solution properties.

(%i7) u : 2*(rh - 1/rh)*sin(p)/3$
(%i8) (cylaplacian(u,rh,p,z), ratsimp(%%) );
(%o8) 0
(%i9) [subst(rh=1,u),subst(rh=2,u) ];
(%o9) [0, sin(p)]

6.9.3 Gradient ∇ f(ρ, ϕ, z)

There are several ways one can work with vector calculus problems. One method (not used here) is to use symbols for
a set of orthogonal unit vectors, and assume a set of properties for these unit vectors without connecting the set to any
specific list basis representation. One can then construct the dot product, the cross product and the derivative operations
in terms of the coefficients of these symbolic unit vectors (using ratcoeff, for example).

Alternatively (and used here), one can define 3-vectors in terms of three element lists, in which the first element of the list
contains the x axis component of the vector, the second element of the list contains the y axis component, and the third
element contains the z component.

This second method is less abstract and closer to the beginning student’s experience of vectors, and provides a straight-
forward path which can be used with any orthonormal coordinate system.

The unit vector along the x axis (x̂) is represented by xu = [1,0,0] (for “x - unit vector”), the unit vector along the
y axis (ŷ) is represented by yu = [0,1,0], and the unit vector along the z axis (ẑ) is represented by zu = [0,0,1].

Let’s return to the batch file cylinder.mac, where we define lcross(u,v) to calculate the vector cross product
u × v when we are using three element lists to represent vectors.

Note that our “orthonormality checks” use the built-in “dot product” of lists provided by the period . (which is also used for non-
commutative matrix multiplication). The dot product of two vectors represented by Maxima lists is obtained by placing a period
between the lists. We have checked that the cartesian vectors defined are “unit vectors” (the dot product yields unity) and are also
mutually orthogonal (ie., at right angles to each other) which is equivalent to the dot product of a pair of different unit vectors being
zero.



6 DIFFERENTIAL CALCULUS 46

This section of cylinder.mac begins with the code for lcross which looks like:

lcross(u,v) := (
( u[2]*v[3] - u[3]*v[2] )*xu +
( u[3]*v[1] - u[1]*v[3] )*yu +
( u[1]*v[2] - u[2]*v[1] )*zu )$

Note, in the batch file output, using display2d:true (the default), how the list element numbers are displayed as
subscripts.

(%i28) --------------------------------------------
(%i29) Unit Vectors
(%i30) --------------------------------------------
(%i31) cross product rule when using lists for vectors
(%i32) lcross(u, v) := (u v - u v ) zu + (u v - u v ) yu

1 2 2 1 3 1 1 3
+ (u v - u v ) xu

2 3 3 2
(%i33) cross product of parallel vectors is zero
(%i34) lcross([a, b, c], [n a, n b, n c])
(%o34) 0
(%i35) a function we can use with map
(%i36) apcr(ll) := apply(’lcross, ll)
(%i37) 3d cartesian unit vectors using lists
(%i38) (xu : [1, 0, 0], yu : [0, 1, 0], zu : [0, 0, 1])
(%i39) orthonormality checks on cartesian unit vectors
(%i40) [xu . xu, yu . yu, zu . zu, xu . yu, xu . zu, yu . zu]
(%o40) [1, 1, 1, 0, 0, 0]
(%i41) low tech check of cross products of cartesian unit vectors
(%i42) lcross(xu, yu) - zu
(%o42) [0, 0, 0]
(%i43) lcross(yu, zu) - xu
(%o43) [0, 0, 0]
(%i44) lcross(zu, xu) - yu
(%o44) [0, 0, 0]
(%i45) [lcross(xu, xu), lcross(yu, yu), lcross(zu, zu)]
(%o45) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
(%i46) high tech checks of cross products of cartesian unit vectors
(%i47) map(’apcr, [[xu, yu], [yu, zu], [zu, xu]]) - [zu, xu, yu]
(%o47) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
(%i48) map(’apcr, [[xu, xu], [yu, yu], [zu, zu]])
(%o48) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

Thus we have cartesian unit vector relations such as x̂ · x̂ = 1, and x̂ · ŷ = 0, and x̂ × ŷ = ẑ.

The unit vector ρ̂ along the direction of increasing ρ at the point (ρ, ϕ, z) is defined in terms of the cartesian unit vectors
x̂ and ŷ via

ρ̂ = x̂ cosϕ + ŷ sinϕ (6.18)

Because the direction of ρ̂ depends on ϕ, a more explicit notation would be ρ̂(ϕ), but following convention, we surpress
that dependence in the following.

The unit vector ϕ̂ along the direction of increasing ϕ at the point (ρ, ϕ, z) is

ϕ̂ = −x̂ sinϕ + ŷ cosϕ (6.19)

Again, because the direction of ϕ̂ depends on ϕ, a more explicit notation would be ϕ̂(ϕ), but following conventional use
we surpress that dependence in the following. We use the symbol rhu (“rh-unit-vec”) for ρ̂, and the symbol pu for ϕ̂.
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(%i49) cylindrical coordinate unit vectors rho-hat, phi-hat
(%i50) rhu : sin(p) yu + cos(p) xu
(%o50) [cos(p), sin(p), 0]
(%i51) pu : cos(p) yu - sin(p) xu
(%o51) [- sin(p), cos(p), 0]
(%i52) orthonormality checks on unit vectors
(%i53) ([rhu . rhu, pu . pu, zu . zu, rhu . pu, rhu . zu, pu . zu],

trigsimp(%%))
(%o53) [1, 1, 1, 0, 0, 0]
(%i54) low tech check of cross products
(%i55) (lcross(rhu, pu), trigsimp(%%)) - zu
(%o55) [0, 0, 0]
(%i56) (lcross(pu, zu), trigsimp(%%)) - rhu
(%o56) [0, 0, 0]
(%i57) (lcross(zu, rhu), trigsimp(%%)) - pu
(%o57) [0, 0, 0]
(%i58) [lcross(rhu, rhu), lcross(pu, pu)]
(%o58) [[0, 0, 0], [0, 0, 0]]
(%i59) high tech checks of cross products
(%i60) (map(’apcr, [[rhu, pu], [pu, zu], [zu, rhu]]), trigsimp(%%))

- [zu, rhu, pu]
(%o60) [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
(%i61) map(’apcr, [[rhu, rhu], [pu, pu]])
(%o61) [[0, 0, 0], [0, 0, 0]]

Thus we have cylindrical unit vector relations such as ρ̂ · ρ̂ = 1, ρ̂ · ϕ̂ = 0, and ρ̂ × ϕ̂ = ẑ.

The gradient of a scalar function f(x, y, z) is defined by

∇ f(x, y, z) = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(6.20)

For a scalar function f which depends explicitly on (ρ, ϕ, z) and hence implicitly on (x, y), we can use the relations al-
ready established in cylinder.mac to convert the cartesian expression of the gradient of f (called here fgradient)
into an expression in terms of derivatives with respect to (ρ, ϕ, z).

Returning to the output of cylinder.mac:

(%i62) --------------------------------------------
(%i63) Gradient of a Scalar Function f
(%i64) --------------------------------------------
(%i65) cartesian def. of gradient of scalar f
(%i66) fgradient : diff(f, z) zu + diff(f, y) yu + diff(f, x) xu

The ρ component of a vector A (at the point (ρ, ϕ, z)) is given by

Aρ = ρ̂ · A, (6.21)

and the ϕ component of a vector A at the point (ρ, ϕ, z) is given by

Aϕ = ϕ̂ · A. (6.22)

Our batch file follows this pattern to get the (ρ, ϕ, z) components of the vector ∇ f :

(%i67) rho, phi, and z components of grad(f)
(%i68) fgradient_rh : (rhu . fgradient, trigsimp(%%))

df
(%o68) ---

drh
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(%i69) fgradient_p : (pu . fgradient, trigsimp(%%))
df
--
dp

(%o69) --
rh

(%i70) fgradient_z : (zu . fgradient, trigsimp(%%))
df

(%o70) --
dz

Hence we have derived
∇ f(ρ, ϕ, z) = ρ̂

∂f

∂ρ
+ ϕ̂

1
ρ

∂f

∂ϕ
+ ẑ

∂f

∂z
. (6.23)

6.9.4 Divergence ∇ · B(ρ, ϕ, z)

In cartesian coordinates the divergence of a three dimensional vector field B(x, y, z) can be calculated with the equation

∇ · B(x, y, z) =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
(6.24)

Consider a vector field B(ρ, ϕ, z) which is an explicit function of the cylindrical coordinates ρ, ϕ, z) and hence an im-
plicit function of (x, y). We will use the symbol bvec to represent B(ρ, ϕ, z), and use the symbols bx, by, and bz to
represent the x, y, and z components of B(ρ, ϕ, z).

The ρ component (the component in the direction of increasing ρ with constant ϕ and constant z) of B(ρ, ϕ, z) at the
point (ρ, ϕ, z) is given by

Bρ(ρ, ϕ, z) = ρ̂ · B(ρ, ϕ, z). (6.25)

We use the symbol brh for Bρ(ρ, ϕ, z) . The component of B(ρ, ϕ, z) at the point (ρ, ϕ, z) in the direction of increasing
ϕ (with constant ρ and constant z) is given by the equation

Bϕ(ρ, ϕ, z) = ϕ̂ · B(ρ, ϕ, z). (6.26)

We use the symbol bp for Bϕ(ρ, ϕ, z). Returning to the output of cylinder.mac batch file:

(%i71) -----------------------------------------------
(%i72) Divergence of a Vector bvec
(%i73) -----------------------------------------------
(%i74) bvec : bz zu + by yu + bx xu
(%o74) [bx, by, bz]
(%i75) two equations which relate cylindrical components
(%i76) of bvec to the cartesian components
(%i77) eq1 : brh = rhu . bvec
(%o77) brh = by sin(p) + bx cos(p)
(%i78) eq2 : bp = pu . bvec
(%o78) bp = by cos(p) - bx sin(p)
(%i79) invert these equations
(%i80) sol : (linsolve([eq1, eq2], [bx, by]), trigsimp(%%))
(%o80) [bx = brh cos(p) - bp sin(p), by = brh sin(p) + bp cos(p)]
(%i81) [bx, by] : map(’rhs, sol)
(%i82) tell Maxima to treat cylindrical components as
(%i83) explicit functions of (rh,p,z)
(%i84) depends([brh, bp, bz], [rh, p, z])
(%o84) [brh(rh, p, z), bp(rh, p, z), bz(rh, p, z)]
(%i85) calculate the divergence of bvec
(%i86) bdivergence : (diff(bz, z) + diff(by, y) + diff(bx, x), trigsimp(%%),

multthru(%%))
dbp
---

brh dp dbz dbrh
(%o86) --- + --- + --- + ----

rh rh dz drh
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Hence we have derived the result:

∇ · B(ρ, ϕ, z) =
1
ρ

∂

∂ ρ
(ρBρ) +

1
ρ

∂

∂ ϕ
Bϕ +

∂ Bz

∂ z
, (6.27)

in which we have used the identity
1
ρ

∂

∂ ρ
(ρBρ) =

Bρ

ρ
+

∂

∂ ρ
Bρ (6.28)

6.9.5 Curl ∇ × B(ρ, ϕ, z)

In cartesian coordinates the curl of a three dimensional vector field B(x, y, z) can be calculated with the equation

∇ × B(x, y, z) = x̂
(

∂Bz

∂y
− ∂By

∂z

)
+ ŷ

(
∂Bx

∂z
− ∂Bz

∂x

)
+ ẑ

(
∂By

∂x
− ∂Bx

∂y

)
(6.29)

Remember that we have already bound the symbols bx and by to linear combinations of brh and bp, and have told
Maxima (using depends) to treat brh and bp as explicit functions of (rh,p,z). Hence our assignment of the symbol
bcurl in cylinder.mac will result in Maxima using the calculus chain rule. We can then extract the cylindrical
components of B by taking the dot product of the cylindrical unit vectors with B, just as we did to get the cylindrical
components of ∇f .

Returning to the output of cylinder.mac:

(%i87) --------------------------------------------------------
(%i88) Cylindrical Components of Curl(bvec)
(%i89) --------------------------------------------------------
(%i90) cartesian definition of curl(vec)
(%i91) bcurl : (diff(by, x) - diff(bx, y)) zu + (diff(bx, z) - diff(bz, x)) yu

+ (diff(bz, y) - diff(by, z)) xu
(%i92) find cylindrical components of curl(bvec)
(%i93) bcurl_rh : (rhu . bcurl, trigsimp(%%), multthru(%%))

dbz
---
dp dbp

(%o93) --- - ---
rh dz

(%i94) bcurl_p : (pu . bcurl, trigsimp(%%), multthru(%%))
dbrh dbz

(%o94) ---- - ---
dz drh

(%i95) bcurl_z : (zu . bcurl, trigsimp(%%), multthru(%%))
dbrh
----
dp bp dbp

(%o95) - ---- + -- + ---
rh rh drh

(%i96) -------------------------------------------------------

Hence we have derived

∇ × B(ρ, ϕ, z) = ρ̂

(
1
ρ

∂ Bz

∂ ϕ
− ∂ Bϕ

∂ z

)
+ ϕ̂

(
∂ Bρ

∂ z
− ∂ Bz

∂ ρ

)
+ ẑ

(
1
ρ

∂

∂ ρ
(ρBϕ)− 1

ρ

∂ Bρ

∂ ϕ

)
(6.30)

in which we have used
Bϕ

ρ
+

∂ Bφ

∂ ρ
=

1
ρ

∂

∂ ρ
(ρBϕ). (6.31)
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6.10 Maxima Derivation of Vector Calculus Formulas in Spherical Polar Coordinates

The batch file sphere.mac, available on the author’s webpage with this chapter, uses Maxima to apply the same
method we used in the previous section, but here we derive spherical polar coordinate expressions for the gradient,
divergence, curl and Laplacian. We will include less commentary in this section since the general approach is the same.

We consider a change of variable from cartesian coordinates (x, y, z) to spherical polar coordinates (r, θ, ϕ). Given
(r, θ, ϕ), we obtain (x, y, z) from the equations x = r sin θ cosϕ, y = r sin θ sinϕ, and z = r cos θ. Given (x, y, z),
we obtain (r, θ, ϕ) from the equations r =

√
x2 + y2 + z2, cos θ = z/

√
x2 + y2 + z2, and tanϕ = y/x.

In sphere.mac we use t to represent the angle θ and p to represent the angle ϕ (both expressed in radians). The ranges
of the independent variables are 0 < r < ∞, 0 < θ < π, and 0 ≤ ϕ < 2π.

We first define s3rule as a list of replacement “rules” in the form of equations which can be used later by the subst
function employed by s3sub. To get automatic simplification of r/abs(r) and sin(t)/abs(sin(t)we use the
assume function.

Here is the beginning of the sphere.mac batch file output when used with Maxima ver. 5.21.1:

(%i1) batch("sphere.mac")$
read and interpret file: #pc:/work5/sphere.mac
(%i2) ------------ sphere.mac ----------------------------
(%i3) spherical polar coordinates (r,theta,phi ) = (r,t,p)
(%i4) replacement rules x,y,z to r,t,p
(%i5) s3rule : [x = r sin(t) cos(p), y = r sin(t) sin(p), z = r cos(t)]
(%i6) s3sub(expr) := (subst(s3rule, expr), trigsimp(%%))
(%i7) assume(r > 0, sin(t) > 0)

2 2 2
(%i8) rxyz : sqrt(z + y + x )
(%i9) partial derivatives of r, theta, and phi wrt x, y, and z
(%i10) drdx : (diff(rxyz, x), s3sub(%%))
(%o10) cos(p) sin(t)
(%i11) drdy : (diff(rxyz, y), s3sub(%%))
(%o11) sin(p) sin(t)
(%i12) drdz : (diff(rxyz, z), s3sub(%%))
(%o12) cos(t)

z
(%i13) dtdx : (diff(acos(----), x), s3sub(%%))

rxyz
cos(p) cos(t)

(%o13) -------------
r
z

(%i14) dtdy : (diff(acos(----), y), s3sub(%%))
rxyz

sin(p) cos(t)
(%o14) -------------

r
z

(%i15) dtdz : (diff(acos(----), z), s3sub(%%))
rxyz

sin(t)
(%o15) - ------

r
y
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(%i16) dpdx : (diff(atan(-), x), s3sub(%%))
x

sin(p)
(%o16) - --------

r sin(t)
y

(%i17) dpdy : (diff(atan(-), y), s3sub(%%))
x

cos(p)
(%o17) --------

r sin(t)
(%i18) tell Maxima r=r(x,y,z), t = t(x,y,z),
(%i19) and p = p(x,y)
(%i20) (gradef(r, x, drdx), gradef(r, y, drdy), gradef(r, z, drdz))
(%i21) (gradef(t, x, dtdx), gradef(t, y, dtdy), gradef(t, z, dtdz))
(%i22) (gradef(p, x, dpdx), gradef(p, y, dpdy))
(%i23) depends([r, t], [x, y, z])
(%i24) depends(p, [x, y])

The batch file next calculates the Laplacian of a scalar function f .

(%i25) ------------------------------------------------
(%i26) Laplacian of a scalar function f
(%i27) ------------------------------------------------
(%i28) tell Maxima to treat scalar function f as an
(%i29) explicit function of (r,t,p)
(%i30) depends(f, [r, t, p])
(%o30) [f(r, t, p)]
(%i31) calculate the Laplacian of the scalar function f(r,t,p)
(%i32) using the cartesian definition
(%i33) (diff(f, z, 2) + diff(f, y, 2) + diff(f, x, 2), trigsimp(%%),

scanmap(’multthru, %%))
2 2

d f d f
df --- df ---
-- cos(t) 2 2 -- 2 2
dt dp dr dt d f

(%o33) --------- + ---------- + ---- + --- + ---
2 2 2 r 2 2

r sin(t) r sin (t) r dr
(%i34) grind(%)
’diff(f,t,1)*cos(t)/(rˆ2*sin(t))+’diff(f,p,2)/(rˆ2*sin(t)ˆ2)+2*’diff(f,r,1)/r

+’diff(f,t,2)/rˆ2+’diff(f,r,2)$

Hence the form of the Laplacian of a scalar field in spherical polar coordinates:

∇2 f(r, θ, ϕ) =
1
r2

∂

∂ r

(
r2 ∂f

∂r

)
+

1
r2 sin θ

∂

∂ θ

(
sin θ

∂f

∂θ

)
+

1
r2 sin2 θ

∂ 2 f

∂ ϕ 2
(6.32)

in which we have used the identities
∂ 2f

∂ r2
+

2
r

∂f

∂ r
=

1
r2

∂

∂ r

(
r2 ∂f

∂ r

)
(6.33)

and
∂ 2f

∂ θ 2
+

cos θ

sin θ

∂f

∂ θ
=

1
sin θ

∂

∂ θ

(
sin θ

∂f

∂ θ

)
(6.34)

We need to avoid r = 0 and sin θ = 0. The latter condition means avoiding θ = 0 and θ = π.
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Gradient of a Scalar Field

Figure 20: r and θ unit vectors

The batch file sphere.mac introduces the cartesian and spherical polar unit vectors corresponding to the coordinates
(r, θ, ϕ). The unit vector ϕ̂ is the same as in cylindrical coordinates:

ϕ̂ = −x̂ sinϕ + ŷ cosϕ (6.35)

We can express r̂ and θ̂ in terms of the cylindrical ρ̂ and ẑ (from the figure above):

r̂ = ẑ cos θ + ρ̂ sin θ (6.36)

and
θ̂ = −ẑ sin θ + ρ̂ cos θ. (6.37)

Hence we have
r̂ = x̂ sin θ cosϕ + ŷ sin θ sinϕ + ẑ cos θ (6.38)

and
θ̂ = x̂ cos θ cosϕ + ŷ cos θ sinϕ− ẑ sin θ (6.39)

Maxima has already been told to treat f as an explicit function of (r,t,p) which we are using for (r, θ, ϕ). The vector
components of ∇f are isolated by using the dot product of the unit vectors with ∇f . For example,

(∇f)r = r̂ · ∇f (6.40)

(%i35) --------------------------------------------
(%i36) Unit Vectors
(%i37) --------------------------------------------
(%i38) cartesian unit vectors
(%i39) (xu : [1, 0, 0], yu : [0, 1, 0], zu : [0, 0, 1])
(%i40) spherical polar coordinate unit vectors
(%i41) ru : cos(t) zu + sin(t) sin(p) yu + sin(t) cos(p) xu
(%o41) [cos(p) sin(t), sin(p) sin(t), cos(t)]
(%i42) tu : - sin(t) zu + cos(t) sin(p) yu + cos(t) cos(p) xu
(%o42) [cos(p) cos(t), sin(p) cos(t), - sin(t)]
(%i43) pu : cos(p) yu - sin(p) xu
(%o43) [- sin(p), cos(p), 0]
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(%i44) --------------------------------------------
(%i45) Gradient of a Scalar Function f
(%i46) --------------------------------------------
(%i47) cartesian def. of gradient of scalar f
(%i48) fgradient : diff(f, z) zu + diff(f, y) yu + diff(f, x) xu
(%i49) r, theta, and phi components of grad(f)
(%i50) fgradient_r : (ru . fgradient, trigsimp(%%))

df
(%o50) --

dr
(%i51) fgradient_t : (tu . fgradient, trigsimp(%%))

df
--
dt

(%o51) --
r

(%i52) fgradient_p : (pu . fgradient, trigsimp(%%))
df
--
dp

(%o52) --------
r sin(t)

Thus we have the gradient of a scalar field in spherical polar coordinates:

∇ f(r, θ, ϕ) = r̂
∂f

∂r
+ θ̂

1
r

∂f

∂θ
+ ϕ̂

1
r sin θ

∂f

∂ϕ
(6.41)

Divergence of a Vector Field

The path here is the same as in the cylindrical case. For example, we define the spherical polar components of the vector
B via

Br = r̂ · B, Bθ = θ̂ · B, Bϕ = ϕ̂ · B. (6.42)

(%i53) -----------------------------------------------
(%i54) Divergence of a Vector bvec
(%i55) -----------------------------------------------
(%i56) bvec : bz zu + by yu + bx xu
(%o56) [bx, by, bz]
(%i57) three equations which relate spherical polar components
(%i58) of bvec to the cartesian components
(%i59) eq1 : br = ru . bvec
(%o59) br = by sin(p) sin(t) + bx cos(p) sin(t) + bz cos(t)
(%i60) eq2 : bt = tu . bvec
(%o60) bt = - bz sin(t) + by sin(p) cos(t) + bx cos(p) cos(t)
(%i61) eq3 : bp = pu . bvec
(%o61) bp = by cos(p) - bx sin(p)
(%i62) invert these equations
(%i63) sol : (linsolve([eq1, eq2, eq3], [bx, by, bz]), trigsimp(%%))
(%o63) [bx = br cos(p) sin(t) + bt cos(p) cos(t) - bp sin(p),
by = br sin(p) sin(t) + bt sin(p) cos(t) + bp cos(p),
bz = br cos(t) - bt sin(t)]
(%i64) [bx, by, bz] : map(’rhs, sol)
(%i65) tell Maxima to treat spherical polar components as
(%i66) explicit functions of (r,t,p)
(%i67) depends([br, bt, bp], [r, t, p])
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(%i68) divergence of bvec
(%i69) bdivergence : (diff(bz, z) + diff(by, y) + diff(bx, x), trigsimp(%%),

scanmap(’multthru, %%))
dbp dbt
--- ---

bt cos(t) dp dt 2 br dbr
(%o69) --------- + -------- + --- + ---- + ---

r sin(t) r sin(t) r r dr

Hence we have the spherical polar coordinate version of the divergence of a vector field:

∇ · B(r, θ, ϕ) =
1
r2

∂

∂ r

(
r2 Br

)
+

1
r sin θ

∂

∂ θ
(sin θ Bθ) +

1
r sin θ

∂ Bϕ

∂ ϕ
(6.43)

using the identities
2
r

Br +
∂ Br

∂ r
=

1
r2

∂

∂ r

(
r2 Br

)
(6.44)

and
cos θ

sin θ
Bθ +

∂ Bθ

∂ θ
=

1
sin θ

∂

∂ θ
(sin θ Bθ) (6.45)

Curl of a Vector Field

Again the path is essentially the same as in the cylindrical case:

(%i70) --------------------------------------------------------
(%i71) Spherical Polar Components of Curl(bvec)
(%i72) --------------------------------------------------------
(%i73) cartesian curl(bvec) definition
(%i74) bcurl : (diff(by, x) - diff(bx, y)) zu + (diff(bx, z) - diff(bz, x)) yu

+ (diff(bz, y) - diff(by, z)) xu
(%i75) spherical polar components of curl(bvec)
(%i76) bcurl_r : (ru . bcurl, trigsimp(%%), scanmap(’multthru, %%))

dbt dbp
--- ---

bp cos(t) dp dt
(%o76) --------- - -------- + ---

r sin(t) r sin(t) r
(%i77) bcurl_t : (tu . bcurl, trigsimp(%%), scanmap(’multthru, %%))

dbr
---
dp bp dbp

(%o77) -------- - -- - ---
r sin(t) r dr

(%i78) bcurl_p : (pu . bcurl, trigsimp(%%), scanmap(’multthru, %%))
dbr
---

bt dt dbt
(%o78) -- - --- + ---

r r dr
(%i79) -------------------------------------------------------

which produces the spherical polar coordinate version of the curl of a vector field:

(∇ × B)r =
1

r sin θ

[
∂

∂θ
(sin θ Bϕ)− ∂ Bθ

∂ ϕ

]
(6.46)

(∇ × B)θ =
1
r

[
1

sin θ

∂ Br

∂ϕ
− ∂

∂ r
(r Bϕ)

]
(6.47)

(∇ × B)ϕ =
1
r

[
∂

∂r
(r Bθ)− ∂ Br

∂ θ

]
(6.48)

in which we have used Eq.(6.45) with Bθ replaced by Bϕ and also Eq.(6.31) with ρ replaced by r.
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7.1 Symbolic Integration with integrate
Although the process of finding an integral can be viewed as the inverse of the process of finding a derivative,
in practice finding an integral is more difficult. It turns out that the integral of fairly simple looking functions
cannot be expressed in terms of well known functions, and this has been one motivation for the introduction of
definitions for a variety of ”special functions”, as well as efficient methods for numerical integration (quadra-
ture) discussed in Ch. 8.

In the following, we always assume we are dealing with a real function of a real variable and that the function
is single-valued and continuous over the intervals of interest.

The Maxima manual entry for integrate includes (we have made some changes and additions):

Function: integrate(expr, var)
Function: integrate(expr, var, a, b)
Attempts to symbolically compute the integral of expr with respect to var. integrate(expr, var) is an in-
definite integral, while integrate(expr, var, a, b) is a definite integral, with limits of integration a and b.
The integral is returned if integrate succeeds. Otherwise the return value is the noun form of the integral
(the quoted operator ’integrate) or an expression containing one or more noun forms. The noun form of
integrate is displayed with an integral sign if display2d is set to true (which is the default).

In some circumstances it is useful to construct a noun form by hand, by quoting integrate with a single
quote, e.g., ’integrate(expr, var). For example, the integral may depend on some parameters which are not
yet computed. The noun may be applied to its arguments by ev(iexp, nouns) where iexp is the noun form
of interest.

The Maxima function integrate is defined by the lisp function $integrate in the file /src/simp.lisp. The
indefinite integral invocation, integrate(expr,var), results in a call to the lisp function sinint, defined in
src/sin.lisp, unless the flag risch is present, in which case the lisp function rischint, defined in src/risch.lisp,
is called. The definite integral invocation, integrate(expr,var,a,b), causes a call to the lisp function $defint,
defined in src/defint.lisp. The lisp function $defint is available as the Maxima function defint and can be
used to bypass integrate for a definite integral.

To integrate a Maxima function f(x), insert f(x) in the expr slot.

integrate does not respect implicit dependencies established by the depends function.

integrate may need to know some property of the parameters in the integrand. integrate will first consult
the assume database, and, if the variable of interest is not there, integrate will ask the user. Depending on
the question, suitable responses are yes; or no;, or pos;, zero;, or neg;. Thus, the user can use the assume
function to avoid all or some questions.
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7.2 Integration Examples and also defint, ldefint, beta, gamma, erf, and logabs
Example 1

Our first example is the indefinite integral
∫

sin3xdx:

(%i1) integrate (sin(x)ˆ3, x);
3

cos (x)
(%o1) ------- - cos(x)

3
(%i2) ( diff (%,x), trigsimp(%%) );

3
(%o2) sin (x)

Notice that the indefinite integral returned by integrate does not include the arbitrary constant of integration
which can always be added.

If the returned integral is correct (up to an arbitrary constant), then the first derivative of the returned indefinite
integral should be the original integrand, although we may have to simplify the result manually (as we had to
do above).

Example 2

Our second example is another indefinite integral,
∫

x (b2 − x2)−1/2 dx:

(%i3) integrate (x/ sqrt (bˆ2 - xˆ2), x);
2 2

(%o3) - sqrt(b - x )
(%i4) diff(%,x);

x
(%o4) -------------

2 2
sqrt(b - x )

Example 3

The definite integral can be related to the ”area under a curve” and is the more accessible concept, while the
integral is simply a function whose first derivative is the original integrand.

Here is a definite integral,
∫ π

0
cos2xex dx:

(%i5) i3 : integrate (cos(x)ˆ2 * exp(x), x, 0, %pi);

%pi
3 %e 3

(%o5) ------- - -
5 5

Instead of using integrate for a definite integral, you can try ldefint (think Limit definite integral), which may
provide an alternative form of the answer (if successful).
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From the Maxima manual:

Function: ldefint(expr, x, a, b)
Attempts to compute the definite integral of expr by using limit to evaluate the indefinite integral of expr
with respect to x at the upper limit b and at the lower limit a. If it fails to compute the definite integral,
ldefint returns an expression containing limits as noun forms.

ldefint is not called from integrate, so executing ldefint(expr, x, a, b) may yield a different result than in-
tegrate(expr, x, a, b). ldefint always uses the same method to evaluate the definite integral, while integrate
may employ various heuristics and may recognize some special cases.

Here is an example of use of ldefint, as well as the direct use of defint (which bypasses integrate ):

(%i6) ldefint (cos(x)ˆ2 * exp(x), x, 0, %pi);
%pi

3 %e 3
(%o6) ------- - -

5 5
(%i7) defint (cos(x)ˆ2 * exp(x), x, 0, %pi);

%pi
3 %e 3

(%o7) ------- - -
5 5

Example 4

Here is an example of a definite integral over an infinite range,
∫∞
−∞ x2 e−x2

dx:

(%i8) integrate (xˆ2 * exp(-xˆ2), x, minf, inf);
sqrt(%pi)

(%o8) ---------
2

To check this integral, we first ask for the indefinite integral and then check it by differentiation.

(%i9) i1 : integrate(xˆ2*exp(-xˆ2),x );
2

- x
sqrt(%pi) erf(x) x %e

(%o9) ---------------- - --------
4 2

(%i10) diff(i1,x);
2

2 - x
(%o10) x %e

Thus the indefinite integral is correct. The second term, heavily damped by the factor e−x2 at ±∞, does not
contribute to the definite integral. The first term is proportional to the (Gauss) error function, erf(x), in which
x is real. For (in general) complex w = u + i v,

Erf(w) =
2√
π

∫ w

0

e−z2

dz (7.1)

in which we can integrate over any path connecting 0 and w in the complex z = x + i y plane, since the
integrand is an entire function of z (no singularities in the finite z plane.
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Let’s make a plot of erf(x):

(%i11) ( load(draw),load(qdraw) )$
(%i12) qdraw(yr(-2,2),ex1(erf(x),x,-5,5,lw(5),lc(red),lk("erf(x)") ) )$

with the result:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -2  0  2  4

erf(x)

Figure 1: erf(x)

Maxima’s limit function confirms what the plot indicates:

(%i13) [limit(erf(x),x, inf), limit(erf(x),x, minf)];
(%o13) [1, - 1]

Using these limits in %o9 produces the definite integral desired.

Example 5: Use of assume

We next calculate the definite integral
∫∞
0

xa (x + 1)−5/2 dx.

(%i1) (assume(a>1),facts());
(%o1) [a > 1]
(%i2) integrate (xˆa/(x+1)ˆ(5/2), x, 0, inf );

2 a + 2
Is ------- an integer?

5

no;
Is 2 a - 3 positive, negative, or zero?

neg;
3

(%o2) beta(- - a, a + 1)
2

The combination of assume(a > 1) and 2a− 3 < 0 means that we are assuming 1 < a < 3/2.
These assumptions about a imply that 4/5 < (2a + 2)/5 < 1. To be consistent, we must hence answer no to
the first question.
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Let’s tell Maxima to forget about the assume assignment and see what the difference is.

(%i3) ( forget(a>1), facts() );
(%o3) []
(%i4) is( a>1 );
(%o4) unknown
(%i5) integrate (xˆa/(x+1)ˆ(5/2), x, 0, inf );
Is a + 1 positive, negative, or zero?

pos;
Is a an integer?

no;
7

Is ------- an integer?
2 a + 4

no;
Is 2 a - 3 positive, negative, or zero?

neg;
3

(%o5) beta(- - a, a + 1)
2

(%i6) [is( a>1 ), facts() ];
(%o6) [unknown, []]

Thus we see that omitting the initial assume(a>1) statement causes integrate to ask four questions instead of two. We
also see that answering questions posed by the integrate dialogue script does not result in population of the facts list.

The Maxima beta function has the manual entry:

Function: beta (a, b)
The beta function is defined as gamma(a) gamma(b)/gamma(a+b) (A&S 6.2.1).

In the usual mathematics notation, the beta function can be defined in terms of the gamma function as

B(r, s) =
Γ(r)Γ(s)
Γ(r + s)

(7.2)

for all r, s in the complex plane.

The Maxima gamma function has the manual entry

Function: gamma (z)
The basic definition of the gamma function (A&S 6.1.1) is

inf
/
[ z - 1 - t

gamma(z) = I t %e dt
]
/
0

The gamma function can be defined for complex z and Re(z) > 0 by the integral along the real t axis

Γ(z) =
∫ ∞

0
tz−1 e−t d t (7.3)

and for Im(z) = 0 and Re(z) = n and n an integer greater than zero we have

Γ(n + 1) = n ! (7.4)
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How can we check the definite integral Maxima has offered? If we ask the integrate function for the indefinite integral,
we get the ”noun form”, a signal of failure:

(%i7) integrate(xˆa/(x+1)ˆ(5/2), x );
/ a
[ x

(%o7) I ---------- dx
] 5/2
/ (x + 1)

(%i8) grind(%)$
’integrate(xˆa/(x+1)ˆ(5/2),x)$

Just for fun, let’s include the risch flag and see what we get:

(%i9) integrate(xˆa/(x+1)ˆ(5/2), x ), risch;
/ a log(x)
[ %e

(%o9) I -------------------------- dx
] 2
/ sqrt(x + 1) (x + 2 x + 1)

We again are presented with a noun form, but the integrand has been written in a different form, in which the identity

xA = eAln(x)

has been used.

We can at least make a spot check for a value of the parameter a in the middle of the assumed range (1,3/2), namely for
a = 5/4.

(%i10) float(beta(1/4,9/4));
(%o10) 3.090124462168955
(%i11) quad_qagi(xˆ(5/4)/(x+1)ˆ(5/2),x, 0, inf);
(%o11) [3.090124462010259, 8.6105700347616221E-10, 435, 0]

We have used the quadrature routine, quad_qagi (see Ch. 8) for a numerial estimate of this integral. The first element
of the returned list is the numerical answer, which agrees with the analytic answer.

Example 6: Automatic Change of Variable and gradef

Here is an example which illustrates Maxima’s ability to make a change of variable to enable the return of an
indefinite integral. The task is to evaluate the indefinite integral

∫
sin(r2)dr(x)/dx

q(r)
dx (7.5)

by telling Maxima that the sin(r2) in the numerator is related to q(r) in the denominator by the derivative:

dq(u)

du
= sin(u2). (7.6)

We would manually rewrite the integrand (using the chain rule) as

sin(r2)dr(x)/dx

q
=

1

q
(dq(r)/dr) (dr(x)/dx) =

1

q

dq

dx
=

d

dx
ln(q) (7.7)

and hence obtain the indefinite integral ln(q(r(x))).
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Here we assign the derivative knowledge using gradef (as discussed in Ch. 6):

(%i1) gradef(q(u),sin(uˆ2) )$
(%i2) integrand : sin(r(x)ˆ2)* ’diff(r(x),x ) /q( r(x) ) ;

d 2
(-- (r(x))) sin(r (x))
dx

(%o2) ----------------------
q(r(x))

(%i3) integrate(integrand,x);
(%o3) log(q(r(x)))
(%i4) diff(%,x);

d 2
(-- (r(x))) sin(r (x))
dx

(%o4) ----------------------
q(r(x))

Note that integrate pays no attention to depend assignments, so the briefer type of notation which depend
allows with differentiation cannot be used with integrate:

(%i5) depends(r,x,q,r);
(%o5) [r(x), q(r)]
(%i6) integrand : sin(rˆ2)* ’diff(r,x) / q;

dr 2
-- sin(r )
dx

(%o6) ----------
q

(%i7) integrate(integrand,x);
/

2 [ dr
sin(r ) I -- dx

] dx
/

(%o7) ---------------
q

which is fatally flawed, since Maxima pulled both sin(r(x)2) and 1/q(r(x)) outside the integral.

Of course, the above depends assignment will still allow Maxima to rewrite the derivative of q with respect to
x using the chain rule:

(%i8) diff(q,x);
dq dr

(%o8) -- --
dr dx
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Example 7: Integration of Rational Algebraic Functions, rat, ratsimp, and partfrac

A rational algebraic function can be written as a quotient of two polynomials. Consider the following function
of x.

(%i1) e1 : xˆ2 + 3*x -2/(3*x)+110/(3*(x-3)) + 12;
2 2 110

(%o1) x + 3 x - --- + --------- + 12
3 x 3 (x - 3)

We can obviously find the lowest common denominator and write this as the ratio of two polynomials, using
either rat or ratsimp.

(%i2) e11 : ratsimp(e1);
4 2

x + 3 x + 2
(%o2) -------------

2
x - 3 x

Because the polynomial in the numerator is of higher degree than the polynomial in the denominator, this is
called an improper rational fraction. Any improper rational fraction can be reduced by division to a mixed
form, consisting of a sum of some polynomial and a sum of proper fractions. We can recover the ”partial
fraction” representation in terms of proper rational fractions (numerator degree less than denominator degree)
by using partfrac(expr, var).

(%i3) e12 : partfrac(e11,x);
2 2 110

(%o3) x + 3 x - --- + --------- + 12
3 x 3 (x - 3)

With this function of x expressed in partial fraction form, you are able to write down the indefinite integral
immediately (ie., by inspection, without using Maxima). But, of course, we want to practice using Maxima!

(%i4) integrate(e11,x);
3 2

2 log(x) 110 log(x - 3) 2 x + 9 x + 72 x
(%o4) - -------- + -------------- + ------------------

3 3 6
(%i5) integrate(e12,x);

3 2
2 log(x) 110 log(x - 3) x 3 x

(%o5) - -------- + -------------- + -- + ---- + 12 x
3 3 3 2

Maxima has to do less work if you have already provided the partial fraction form as the integrand; otherwise,
Maxima internally seeks a partial fraction form in order to do the integral.
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Example 8

The next example shows that integrate can sometimes split the integrand into at least one piece which can be
integrated, and leaves the remainder as a formal expression (using the noun form of integrate). This may be
possible if the denominator of the integrand is a polynomial which Maxima can factor.

(%i6) e2: 1/(xˆ4 - 4*xˆ3 + 2*xˆ2 - 7*x - 4);
1

(%o6) --------------------------
4 3 2
x - 4 x + 2 x - 7 x - 4

(%i7) integrate(e2,x);
/ 2
[ x + 4 x + 18
I ------------- dx
] 3

log(x - 4) / x + 2 x + 1
(%o7) ---------- - ------------------

73 73
(%i8) grind(%)$
log(x-4)/73-(’integrate((xˆ2+4*x+18)/(xˆ3+2*x+1),x))/73$
(%i9) factor(e2);

1
(%o9) ----------------------

3
(x - 4) (x + 2 x + 1)

(%i10) partfrac(e2,x);
2

1 x + 4 x + 18
(%o10) ---------- - -----------------

73 (x - 4) 3
73 (x + 2 x + 1)

We have first seen what Maxima can do with this integrand, using the grind function to clarify the resulting
expression, and then we have used factor and partfrac to see how the split-up arises. Despite a theorem
that the integral of every rational function can be expressed in terms of algebraic, logarithmic and inverse
trigonometric expressions, Maxima declines to return a symbolic expression for the second, formal, piece of
this integral (which is good because the exact symbolic answer is an extremely long expression).

Example 9: The logabs Parameter and log

There is a global parameter logabs whose default value is false and which affects what is returned with an
indefinite integral containing logs.

(%i11) logabs;
(%o11) false
(%i12) integrate(1/x,x);
(%o12) log(x)
(%i13) diff(%,x);

1
(%o13) -

x
(%i14) logabs:true$
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(%i15) integrate(1/x,x);
(%o15) log(abs(x))
(%i16) diff(%,x);

1
(%o16) -

x
(%i17) log(-1);
(%o17) log(- 1)
(%i18) float(%);
(%o18) 3.141592653589793 %i

When we override the default and set logabs to true, the argument of the log function is wrapped with abs.
According to the manual

When doing indefinite integration where logs are generated, e.g. integrate(1/x,x), the answer is
given in terms of log(abs(...)) if logabs is true, but in terms of log(...) if logabs is false. For definite
integration, the logabs:true setting is used, because here ”evaluation” of the indefinite integral at
the endpoints is often needed.

7.3 Piecewise Defined Functions and integrate
We can use Maxima’s if, elseif, and else construct to define piecewise defined functions. We first define and
plot a square wave of unit height which extends from 1 ≤ x ≤ 3.

(%i1) u(x) := if x >= 1 and x <= 3 then 1 else 0$
(%i2) map(’u,[0.5,1,2,3,3.5]);
(%o2) [0, 1, 1, 1, 0]
(%i3) (load(draw),load(qdraw))$

qdraw(...), qdensity(...), syntax: type qdraw();
(%i4) qdraw( yr(-1,2),ex1(u(x),x,0,4,lw(5),lc(blue)) )$

This produces

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

Figure 2: if x > 1 and x < 3 then 1 else 0
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We next define a function which is (x− 1) for 1 ≤ x < 2 and is (6− 2x) for 2 ≤ x ≤ 3 and is 0 otherwise.

(%i5) g(x):= if x >= 1 and x < 2 then (x-1)
elseif x >= 2 and x <= 3 then (6 - 2*x) else 0$

(%i6) map(’g,[1/2,1,3/2,2,5/2,3,7/2]);
1

(%o6) [0, 0, -, 2, 1, 0, 0]
2

(%i7) qdraw( yr(-1,3),ex1(g(x),x,0,4,lw(5),lc(blue)) )$

which produces

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

Figure 3: Example of a Piecewise Defined Function

This is not quite the figure we want, since it doesn’t really show the kind of discontinuity we want to illustrate.
With our definition of g(x), draw2d draws a blue vertical line from (2,1) to (2,2). We can change the way
g(x) is plotted to get the plot we want, as in

(%i8) block([small :1.0e-6],
qdraw( yr(-1,3),ex1(g(x),x,0,2-small,lw(5),lc(blue)),

ex1(g(x),x,2+small,4,lw(5),lc(blue)) ) )$

which produces

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

Figure 4: Example with More Care with Plot Limits
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The Maxima function integrate cannot handle correctly a function defined with the if, elseif, and else con-
structs.

(%i9) integrate(g(x),x,0,4);
4
/
[

(%o9) I (if (x > 1) and (x < 2) then x - 1 elseif (x > 2) and (x < 3)
]
/
0

then 6 - 2 x else 0) dx

This means that for now we will have to break up the integration interval into sub-intervals by hand and add up
the individual integral results.

(%i10) integrate(x-1,x,1,2) + integrate(6-2*x,x,2,3);
3

(%o10) -
2

7.4 Area Between Curves Examples
Example 1

We will start with a very simple example, finding the area between f1(x) =
√

x and f2(x) = x3/2. A simple
plot shows that the curves cross at x = 0 and x = 1.

(%i1) (load(draw),load(qdraw) )$
(%i2) f1(x) := sqrt(x)$
(%i3) f2(x) := xˆ(3/2)$
(%i4) qdraw( xr(-.5,1.5), yr(-.5,1.5),

ex1(f1(x),x,0,1.5,lw(5),lc(blue) ),
ex1(f2(x),x,0,1.5,lw(5),lc(red) ) )$

This produces the plot:

-0.5

 0

 0.5

 1

 1.5

-0.5  0  0.5  1  1.5

Figure 5:
√

x (blue) and x3/2 (red)
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Next we redraw this simple plot, but add some shading in color to show the area. The simplest way to do
this is to draw some vertical lines between the functions in the region of interest 0 ≤ x ≤ 1. We can use the
qdraw package function line. We first construct a list of x axis positions for the vertical lines, using values
0.01,0.02, ...0.99. We then construct a list vv of the vertical lines and merge that list with a list qdlist
containing the rest of the plot instructions. We then use apply to pass this list as a set of arguments to qdraw.

(%i5) qdlist : [xr(-.5,1.5), yr(-.5,1.5),
ex1(f1(x),x,0,1.5,lw(5),lc(blue) ) ,
ex1(f2(x),x,0,1.5,lw(5),lc(red) ) ]$

(%i6) xv:float(makelist(i,i,1,99)/100)$
(%i7) (vv:[],for x in xv do

vv:cons(line(x,f2(x),x,f1(x),lw(1),lc(khaki) ),vv),
vv:reverse(vv) )$

(%i8) qdlist : append(vv,qdlist)$
(%i9) apply(’qdraw, qdlist)$

which produces the result

-0.5

 0

 0.5

 1

 1.5

-0.5  0  0.5  1  1.5

Figure 6:
√

x (blue) and x3/2 (red)

If we did not know the intersection location of the two curves, we could use solve or find_root for example.

(%i10) solve( f1(x) = f2(x),x );
(%o10) [x = 0, x = 1]

Once we know the interval to use for adding up the area and we know that in this interval f1(x) > f2(x), we
simply sum the infinitesimal areas given by (f1(x)− f2(x))dx (base dx columns) over the interval 0 ≤ x ≤ 1.

(%i11) integrate(f1(x) - f2(x),x,0,1);
4

(%o11) ----
15

so the area equals 4/15. ∫ 1

0

(
√

x− x3/2)dx = 4/15 (7.8)
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Example 2

As a second example we consider two polynomial functions:
f1(x) = (3/10)x5 − 3x4 + 11x3 − 18x2 + 12x + 1
and f2(x) = −4x3 + 28x2 − 56x + 32. We first make a simple plot for orientation.

(%i1) f1(x) := (3/10)*xˆ5 -3*xˆ4 + 11*xˆ3 -18*xˆ2 + 12*x + 1$
(%i2) f2(x) := -4*xˆ3 + 28*xˆ2 -56*x + 32$
(%i3) (load(draw),load(qdraw) )$

qdraw(...), qdensity(...), syntax: type qdraw();

(%i4) qdraw(yr(-20,20),ex1(f1(x),x,-1,5,lc(blue) ),
ex1(f2(x),x,-1,5,lc(red)))$

which produces the plot

-20

-15

-10

-5

 0

 5

 10

 15

 20

-1  0  1  2  3  4  5

Figure 7: f1(x) (blue) and f2(x) (red)

Using the cursor on the plot, and working from left to right, f1 becomes larger than f2 at about (0.76,3.6),
becomes less than f2 at about (2.3,2.62), and becomes greater than f2 at about (3.86,2.98). The solve
function is not able to produce an analytic solution, but returns a polynomial whose roots are the solutions we
want.

(%i5) solve(f1(x) = f2(x),x);
5 4 3 2

(%o5) [0 = 3 x - 30 x + 150 x - 460 x + 680 x - 310]
(%i6) grind(%)$
[0 = 3*xˆ5-30*xˆ4+150*xˆ3-460*xˆ2+680*x-310]$

By selecting and copying the grind(..) output, we can use that result to paste in the definition of a function
p(x) which we can then use with find_root.

(%i7) p(x) := 3*xˆ5-30*xˆ4+150*xˆ3-460*xˆ2+680*x-310$
(%i8) x1 : find_root(p(x),x,.7,1);
(%o8) 0.77205830452781
(%i9) x2 : find_root(p(x),x,2.2,2.4);
(%o9) 2.291819210962957
(%i10) x3 : find_root(p(x),x,3.7,3.9);
(%o10) 3.865127100061791
(%i11) map(’p, [x1,x2,x3] );
(%o11) [0.0, 0.0, 9.0949470177292824E-13]
(%i12) [y1,y2,y3] : map(’f1, [x1,x2,x3] );
(%o12) [3.613992056691179, 2.575784006305792, 2.882949345140702]
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We have checked the solutions by seeing how close to zero p(x) is when x is one of the three roots [x1,x2,x3].
We now split up the integration into the two separate regions where one or the other function is larger.

(%i13) ratprint:false$
(%i14) i1 : integrate(f1(x) - f2(x),x,x1,x2);

41875933
(%o14) --------

7947418
(%i15) i2 : integrate(f2(x)-f1(x),x,x2,x3);

12061231
(%o15) --------

1741444
(%i16) area : i1 + i2;

30432786985
(%o16) -----------

2495489252
(%i17) area : float(area);
(%o17) 12.19511843643877

Hence the total area enclosed is about 12.195. Maxima tries to calculate exactly, replacing floating point
numbers with ratios of integers, and the default is to warn the user about these replacements. Hence we have
used ratprint : false$ to turn off this warning.

7.5 Arc Length of an Ellipse
Consider an ellipse whose equation is

x2

a2
+

y2

b2
= 1. (7.9)

in which we assume a is the semi-major axis of the ellipse so a > b. In the first quadrant (0 ≤ x ≤ a and
0 ≤ y ≤ b), we can solve for y as a function of x :

y(x) = b
√

1− (x/a)2. (7.10)

If S is the arc length of the ellipse, then, by symmetry, one fourth of the arclength can be calculated using the
first quadrant integral

S

4
=

∫ a

0

√
1 +

(
dy

dx

)2

dx (7.11)

We will start working with the argument of the square root, making a change of variable x → z, with x = a z,
so dx = adz, and a will come outside the integral from the transformation of dx. The integration limits using
the z variable are 0 ≤ z ≤ 1.

We will then replace the semi-minor axis b by an expression depending on the ellipse eccentricity e, which has
0 < e ≤ 1, and whose square is given by

e2 = 1−
(

b

a

)2

≤ 1 (7.12)

(since b < a), so
b = a

√
1− e2 (7.13)

(%i1) assume(a>0,b>0,a>b,e>0,e<1 )$
(%i2) y:b*sqrt(1 - (x/a)ˆ2)$
(%i3) dydx : diff(y,x)$
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(%i4) e1 : 1 + dydxˆ2;
2 2

b x
(%o4) ----------- + 1

2
4 x

a (1 - --)
2

a
(%i5) e2 : ( subst( [x = a*z,b = a*sqrt(1-eˆ2)],e1 ),ratsimp(%%) );

2 2
e z - 1

(%o5) ---------
2
z - 1

(%i6) e3 : (-num(e2))/(-denom(e2));
2 2

1 - e z
(%o6) ---------

2
1 - z

(%i7) e4 : dz*sqrt(num(e3))/sqrt(denom(e3));
2 2

dz sqrt(1 - e z )
(%o7) ------------------

2
sqrt(1 - z )

The two substitutions give us expression e2, and we use a desperate device to multiply the top and bottom by
(−1) to get e3. We then ignore the factor a which comes outside the integral and consider what is now inside
the integral sign (with the required square root).

We now make another change of variables, with z → u, z = sin(u), so dz = cos(u)du. The lower limit
of integration z = 0 = sin(u) transforms into u = 0, and the upper limit z = 1 = sin(u) transforms into
u = π/2.

(%i8) e5 : subst( [z = sin(u), dz = cos(u)*du ],e4 );
2 2

du cos(u) sqrt(1 - e sin (u))
(%o8) ------------------------------

2
sqrt(1 - sin (u))

We now use trigsimp but help Maxima out with an assume statement about cos(u) and sin(u).

(%i9) assume(cos(u)>0, sin(u) >0)$
(%i10) e6 : trigsimp(e5);

2 2
(%o10) du sqrt(1 - e sin (u))

We then have
S

4
= a

∫ π/2

0

√
1− e2 sin2udu (7.14)

Although integrate cannot return an expression for this integral in terms of elementary functions, in this form
one is able to recognise the standard trigonometric form of the complete elliptic integral of the second kind, (a
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function tabulated numerous places and also available via Maxima).

Let

E(k) = E(φ = π/2,k) =

∫ π/2

0

√
1− k2 sin2udu (7.15)

be the definition of the complete elliptic integral of the second kind.

The ”incomplete” elliptic integral of the second kind (with two arguments) is

E(φ,k) =

∫ φ

0

√
1− k2 sin2udu. (7.16)

Hence we have for the arc length of our ellipse

S = 4aE(e) = 4 aE(π/2, e) = 4a

∫ π/2

0

√
1− e2 sin2udu (7.17)

We can evaluate numerical values using elliptic ec, where
E(k) = elliptic ec(k2), so S = 4 a elliptic ec(e2).

As a numerical example, take a = 3, b = 2, so e2 = 5/9, and

(%i11) float(12*elliptic_ec(5/9));
(%o11) 15.86543958929059

We can check this numerical value using quad_qags:

(%i12) first( quad_qags(12*sqrt(1 - (5/9)*sin(u)ˆ2),u,0,%pi/2) );
(%o12) 15.86543958929059

7.6 Double Integrals and the Area of an Ellipse
Maxima has no core function which will compute a symbolic double definite integral, (although it would be
easy to construct one). Instead of constructing such a homemade function, to evaluate the double integral

∫ u2

u1

du

∫ v2(u)

v1(u)

dv f(u,v) ≡
∫ u2

u1

(∫ v2(u)

v1(u)

f(u,v)dv

)
du (7.18)

we use the Maxima code

integrate( integrate( f(u,v),v,v1(u),v2(u) ), u, u1,u2 )

in which f(u,v) can either be an expression depending on the variables u and v, or a Maxima function, and
likewise v1(u) and v2(u) can either be expressions depending on u or Maxima functions. Both u and v are
”dummy variables”, since the value of the resulting double integral does not depend on our choice of symbols
for the integration variables; we could just as well use x and y.

19



Example 1: Area of a Unit Square

The area of a unit square (the sides have length 1) is:
∫ 1

0

dx

∫ 1

0

dy ≡
∫ 1

0

(∫ 1

0

dy

)
dx (7.19)

which is done in Maxima as:

(%i1) integrate( integrate(1,y,0,1), x,0,1 );
(%o1) 1

Example 2: Area of an Ellipse

We seek the area of the ellipse such that points (x,y) on the boundary must satisfy:

x2

a2
+

y2

b2
= 1. (7.20)

The area will be four times the area of the first quadrant. The ”first quadrant” refers to the region 0 ≤ x ≤ a
and 0 ≤ y ≤ b. For a given value of y > 0, the region inside the arc of the ellipse in the first quadrant is
determined by 0 ≤ x ≤ xmax, where xmax = (a/b)

√
b2 − y2. For a given value of x > 0, the region inside

the arc of the ellipse in the first quadrant is determined by 0 ≤ y ≤ ymax, where ymax = (b/a)
√

a2 − x2.

One way to find the area of the first quadrant of this ellipse is to sum the values of dA = dxdy by ”rows”,
fixing y and summing over x from 0 to xmax (which depends on the y chosen). That first sum over the x
coordinate accumulates the area of that row, located at y and having width dy. To get the total area (of the first
quadrant) we then sum over rows, by letting y vary from 0 to b.
This method corresponds to the formula

A

4
=

∫ b

0

(∫ (a/b)
√

b2−y2

0

dx

)
dy. (7.21)

Here we calculate the first quadrant area using this method of summing over the area of each row.

(%i1) facts();
(%o1) []
(%i2) assume(a > 0, b > 0, x > 0, x < a, y > 0,y < b )$
(%i3) facts();
(%o3) [a > 0, b > 0, x > 0, a > x, y > 0, b > y]
(%i4) [xmax : (a/b)*sqrt(bˆ2 - yˆ2),ymax : (b/a)*sqrt(aˆ2-xˆ2)]$
(%i5) integrate( integrate( 1,x,0,xmax), y,0,b );

%pi a b
(%o5) -------

4

which implies that the area interior to the complete ellipse is π ab.

Note that we have tried to be ”overly helpful” to Maxima’s integrate function by constructing an ”assume list”
with everything we can think of about the variables and parameters in this problem. The main advantage of
doing this is to reduce the number of questions which integrate decides it has to ask the user.
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You might think that integrate would not ask for the sign of (y − b), or the sign of (x− a), since it should
infer that sign from the integration limits. However, the integrate algorithm is ”super cautious” in trying to
never present you with a wrong answer. The general philosophy is that the user should be willing to work with
integrate to assure a correct answer, and if that involves answering questions, then so be it.

The second way to find the area of the first quadrant of this ellipse is to sum the values of dA = dxdy by
”columns”, fixing x and summing over y from 0 to ymax (which depends on the x chosen). That first sum over
the y coordinate accumulates the area of that column, located at x and having width dx. To get the total area
(of the first quadrant) we then sum over columns, by letting x vary from 0 to a.

This method corresponds to the formula

A

4
=

∫ a

0

(∫ (b/a)
√

a2−x2

0

dy

)
dx (7.22)

and is implemented by

(%i6) integrate( integrate( 1,y,0,ymax), x,0,a );
%pi a b

(%o6) -------
4

Example 3: Moment of Inertia for Rotation about the x-axis

We next calculate the moment of inertia for rotation of an elliptical lamina (having semi-axes a,b) about the x
axis. We will call this quantity Ix. Each small element of area dA = dxdy has a mass dm given by σ dA,
where σ is the mass per unit area, which we assume is a constant independent of where we are on the lamina,
and which we can express in terms of the total mass m of the elliptical lamina, and the total area A = π ab as

σ =
total mass

total area
=

m

π ab
(7.23)

Each element of mass dm contributes an amount y2 dm to the moment of inertia Ix, where y is the distance
of the mass element from the x axis. The complete value of Ix is then found by summing this quantity over
the whole elliptical laminate, or because of the symmetry, by summing this quantity over the first quadrant and
multiplying by 4.

Ix =

∫ ∫

ellipse

y2 dm =

∫ ∫

ellipse

y2 σ dxdy = 4σ

∫ ∫

first quadrant

y2 dxdy (7.24)

Here we use the method of summing over rows:

(%i7) sigma : m/(%pi*a*b)$
(%i8) 4*sigma*integrate( integrate(yˆ2,x,0,xmax),y,0,b );

2
b m

(%o8) ----
4

Hence we have derived Ix = mb2/4 for the moment of inertia of an elliptical laminate having semi-axes a,b
for rotation about the x axis.
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Finally, let’s use forget to remove our list of assumptions, to show you the types of questions which can
arise. We try calculating the area of the first quadrant, using the method of summing over rows, without any
assumptions provided:

(%i9) forget(a > 0, b > 0, x > 0, x < a, y > 0,y < b )$
(%i10) facts();
(%o10) []
(%i11) integrate( integrate(1,x,0,xmax),y,0,b);
Is (y - b) (y + b) positive, negative, or zero?
n;

2 2
Is b - y positive or zero?
p;
Is b positive, negative, or zero?
p;

%pi a b
(%o11) -------

4

and if we just tell Maxima that b is positive:

(%i12) assume(b>0)$
(%i13) integrate( integrate(1,x,0,xmax),y,0,b);
Is (y - b) (y + b) positive, negative, or zero?
n;

2 2
Is b - y positive or zero?
p;

%pi a b
(%o13) -------

4

This may give you some feeling for the value of providing some help to integrate.

7.7 Triple Integrals: Volume and Moment of Inertia of a Solid Ellipsoid
Consider an ellipsoid with semi-axes (a,b, c) such that −a ≤ x ≤ a, −b ≤ y ≤ b, and −c ≤ z ≤ c. We also
assume here that a > b > c. Points (x,y, z) which live on the surface of this ellipsoid satisfy the equation of
the surface

x2

a2
+

y2

b2
+

z2

c2
= 1. (7.25)

Volume

The volume of this ellipsoid will be 8 times the volume of the first octant, defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b,
and 0 ≤ z ≤ c. To determine the volume of the first octant we pick fixed values of (x,y) somewhere in the
first octant, and sum the elementary volume dV(x,y, z) = dxdydz over all accessible values of z in this first
octant, 0 ≤ z ≤ c

√
1− (x/a)2 − (y/b)2. The result will still be proportional to dxdy, and we sum the z-

direction cylinders over the entire range of y (accessible in the first octant), again holding x fixed as before, so
for given x, we have 0 ≤ y ≤ b

√
1− (x/a)2. We now have a result proportional to dx (a sheet of thickness

dx whose normal is in the direction of the x axis) which we sum over all values of x accessible in the first
octant (with no restrictions): 0 ≤ x ≤ a. Thus we need to evaluate the triple integral

V

8
=

∫ a

0

dx

∫ ymax(x)

0

dy

∫ zmax(x,y)

0

dz ≡
∫ a

0

[∫ ymax(x)

0

(∫ zmax(x,y)

0

dz

)
dy

]
dx (7.26)
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Here we call on integrate to do these integrals.

(%i1) assume(a>0,b>0,c>0,a>b,a>c,b>c)$
(%i2) assume(x>0,x<a,y>0,y<b,z>0,z<c)$
(%i3) zmax:c*sqrt(1-xˆ2/aˆ2-yˆ2/bˆ2)$
(%i4) ymax:b*sqrt(1-xˆ2/aˆ2)$
(%i5) integrate( integrate( integrate(1,z,0,zmax),y,0,ymax),x,0,a );

2 2 2 2 2 2
Is a y + b x - a b positive, negative, or zero?

n;
%pi a b c

(%o5) ---------
6

(%i6) vol : 8*%;
4 %pi a b c

(%o6) -----------
3

To answer the sign question posed by Maxima, we can look at the special case y = 0 and note that since
x2 ≤ a2, the expression will almost always be negative (ie., except for points of zero measure). Hence the
expression is negative for all points interior to the surface of the ellipsoid. We thus have the result that the
volume of an ellipsoid having semi-axes (a,b, c) is given by

V =
4π

3
ab c (7.27)

We can now remove the assumption a > b > c, since what we call the x axis is up to us and we could have
chosen any of the principal axis directions of the ellipsoid the x axis.

Of course we will get the correct answer if we integrate over the total volume:

(%i7) [zmin:-zmax,ymin:-ymax]$
(%i8) integrate( integrate( integrate(1,z,zmin,zmax),y,ymin,ymax),x,-a,a );

2 2 2 2 2 2
Is a y + b x - a b positive, negative, or zero?

n;
4 %pi a b c

(%o8) -----------
3

Moment of Inertia

If each small volume element dV = dxdydz has a mass given by dm = ρdV, where ρ is the mass density,
and if ρ is a constant, then it is easy to calculate the moment of inertia I3 for rotation of the ellipsoid about the
z axis:

I3 =

∫ ∫ ∫
(x2 + y2)dm = ρ

∫ ∫ ∫
(x2 + y2)dxdydz (7.28)

where the integration is over the volume of the ellipsoid. The constant mass density ρ is the mass of the
ellipsoid divided by its volume.
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Here we define that constant density in terms of our previously found volume vol and the mass m, and proceed
to calculate the moment of inertia:

(%i9) rho:m/vol;
3 m

(%o9) -----------
4 %pi a b c

(%i10) i3:rho*integrate(integrate(integrate(xˆ2+yˆ2,z,zmin,zmax),
y,ymin,ymax),x,-a,a );

2 2 2 2 2 2
Is a y + b x - a b positive, negative, or zero?

n;
5 3 7

(8 %pi a b + 8 %pi a b) m
(%o10) ----------------------------

5
40 %pi a b

(%i11) ratsimp(i3);
2 2

(b + a ) m
(%o11) -----------

5

Hence the moment of inertia for the rotation about the z axis of a solid ellipsoid having mass m, and semi-axes
(a,b, c) is:

I3 = m (a2 + b2)/5. (7.29)

7.8 Derivative of a Definite Integral with Respect to a Parameter
Consider a definite integral in which the dummy integration variable is x and the integrand f(x, y) is a function
of both x and some parameter y. We also assume that the limits of integration (a,b) are also possibly functions
of the parameter y. You can find the proof of the following result (which assumes some mild restrictions on
the funtions f(x,y), a(y) and b(y)) in calculus texts:

d

dy

∫ b(y)

a(y)

f(x,y)dx =

∫ b

a

∂ f(x,y)

∂ y
dy + f(b(y),y)

db

dy
− f(a(y),y)

da

dy
(7.30)

Here we ask Maxima for this result for arbitrary functions:

(%i1) expr : ’integrate(f(x,y),x,a(y),b(y) );
b(y)
/
[

(%o1) I f(x, y) dx
]
/
a(y)

(%i2) diff(expr,y);
b(y)
/

d d [ d
(%o2) f(b(y), y) (-- (b(y))) - f(a(y), y) (-- (a(y))) + I (-- (f(x, y))) dx

dy dy ] dy
/
a(y)
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and we see that Maxima assumes we have enough smoothness in the functions involved to write down the
formal answer in the correct form.

Example 1

We next display a simple example and begin with the simplest case, which is that the limits of integration do
not depend on the parameter y.

(%i3) expr : ’integrate(xˆ2 + 2*x*y, x,a,b);
b

/
[ 2

(%o3) I (2 x y + x ) dx
]
/
a

(%i4) diff(expr,y);
b

/
[

(%o4) 2 I x dx
]
/
a

(%i5) (ev(%,nouns), ratsimp(%%) );
2 2

(%o5) b - a
(%i6) ev(expr,nouns);

2 3 2 3
3 b y + b 3 a y + a

(%o6) ----------- - -----------
3 3

(%i7) diff(%,y);
2 2

(%o7) b - a

In the last two steps, we have verified the result by first doing the original integral and then taking the derivative.

Example 2

As a second example, we use an arbitrary upper limit b(y), and then evaluate the resulting derivative expression
for b(y) = y2.

(%i1) expr : ’integrate(xˆ2 + 2*x*y, x,a,b(y) );
b(y)
/
[ 2

(%o1) I (2 x y + x ) dx
]
/
a
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(%i2) diff(expr,y);
b(y)

/
2 d [

(%o2) (b (y) + 2 y b(y)) (-- (b(y))) + 2 I x dx
dy ]

/
a

(%i3) ( ev(%,nouns,b(y)=yˆ2 ), expand(%%) );
5 4 2

(%o3) 2 y + 5 y - a
(%i4) ev(expr,nouns);

3 2 2 3
b (y) + 3 y b (y) 3 a y + a

(%o4) ----------------- - -----------
3 3

(%i5) diff(%,y);
2 d d 2

3 b (y) (-- (b(y))) + 6 y b(y) (-- (b(y))) + 3 b (y)
dy dy 2

(%o5) ---------------------------------------------------- - a
3

(%i6) ( ev(%,nouns,b(y)=yˆ2), (expand(%%) );
5 4 2

(%o6) 2 y + 5 y - a

We have again done the differentiation two ways as a check on consistency.

Example 3

An easy example is to derive
d

d t

∫ t2

t

(2x + t)dx = 4 t3 + 3 t2 − 4 t (7.31)

(%i7) expr : ’integrate(2*x + t,x,t,tˆ2);
2

t
/
[

(%o7) I (2 x + t) dx
]
/
t

(%i8) (diff(expr,t),expand(%%) );
3 2

(%o8) 4 t + 3 t - 4 t
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Example 4

Here is an example which shows a common use of the differentiation of an integral with respect to a parameter.
The integral

f1(a,w) =

∫ ∞

0

xe−ax cos(wx)dx (7.32)

can be done by Maxima with no questions asked, if we tell Maxima that a > 0 and w > 0.

(%i1) assume( a > 0, w > 0 )$
(%i2) integrate(x*exp(-a*x)*cos(w*x),x,0,inf);

2 2
w - a

(%o2) - -----------------
4 2 2 4

w + 2 a w + a

But if we could not find this result directly as above, we could find the result by setting f1(a,w) = −∂f2(a,w)/(∂a),
where

f2(a,w) =

∫ ∞

0

e−ax cos(wx)dx (7.33)

since the differentiation will result in the integrand being multiplied by the factor (−x) and produce the negative
of the integral of interest.

(%i3) i1 : ’integrate(exp(-a*x)*cos(w*x),x,0,inf)$
(%i4) i2 : ev(i1,nouns);

a
(%o4) -------

2 2
w + a

(%i5) di2 : (diff(i2,a), ratsimp(%%) );
2 2
w - a

(%o5) -----------------
4 2 2 4
w + 2 a w + a

(%i6) result : (-1)*(diff(i1,a) = di2 );
inf

/ 2 2
[ - a x w - a

(%o6) I x %e cos(w x) dx = - -----------------
] 4 2 2 4
/ w + 2 a w + a
0

which reproduces the original result returned by integrate.
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7.9 Integration by Parts
Suppose f(x) and g(x) are two continuously differentiable functions in the interval of interest. Then the
integration by parts rule states that given an interval with endpoints (a,b), (and of course assuming the
derivatives exist) one has

∫ b

a

f(x)g′(x)dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x)dx (7.34)

where the prime indicates differentiation. This result follows from the product rule of differentiation. This rule
is often stated in the context of indefinite integrals as

∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx (7.35)

or in an even shorter form, with u = f(x), du = f ′(x)dx, v = g(x), and dv = g′(x)dx, as
∫

udv = uv −
∫

vdu (7.36)

In practice, we are confronted with an integral whose integrand can be viewed as the product of two factors,
which we will call f(x) and h(x): ∫

f(x)h(x)dx (7.37)

and we wish to use integration by parts to get an integral involving the derivative of the first factor, f(x), which
will hopefully result in a simpler integral. We then identify h(x) = g′(x) and solve this equation for g(x) (by
integrating; this is also a choice based on the ease of integrating the second factor h(x) in the given integral).
Having g(x) in hand we can then write out the result using the indefinite integral integration by parts rule
above. We can formalize this process for an indefinite integral with the Maxima code:

(%i1) iparts(f,h,var):= block([g ],
g : integrate(h,var),
f*g - ’integrate(g*diff(f,var),var ) )$

Let’s practice with the integral
∫

x2 sin(x)dx, in which f(x) = x2 and h(x) = sin(x), so we need to be able
to integrate sin(x) and want to transfer a derivative on to x2, which will reduce the first factor to 2x. Notice
that it is usually easier to work with ”Maxima expressions” rather than with ”Maxima functions” in a problem
like this.

(%i2) iparts(xˆ2,sin(x),x);
/
[ 2

(%o2) 2 I x cos(x) dx - x cos(x)
]
/

(%i3) (ev(%,nouns),expand(%%) );
2

(%o3) 2 x sin(x) - x cos(x) + 2 cos(x)
(%i4) collectterms(%,cos(x) );

2
(%o4) 2 x sin(x) + (2 - x ) cos(x)

If we were not using Maxima, but doing everything by hand, we would use two integrations by parts (in
succession) to remove the factor x2 entirely, reducing the original problem to simply knowing the integrals of
sin(x) and cos(x).
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Of course, with an integral as simple as this example, there is no need to help Maxima out by integrating by
parts.

(%i5) integrate(xˆ2*sin(x),x);
2

(%o5) 2 x sin(x) + (2 - x ) cos(x)

We can write a similar Maxima function to transform definite integrals via integration by parts.

(%i6) idefparts(f,h,var,v1,v2):= block([g ],
g : integrate(h,var),
’subst(v2,var, f*g) - ’subst(v1,var, f*g ) -

’integrate(g*diff(f,var),var,v1,v2 ) )$
(%i7) idefparts(xˆ2,sin(x),x,0,1);

1
/
[ 2

(%o7) 2 I x cos(x) dx + substitute(1, x, - x cos(x))
]
/
0

2
- substitute(0, x, - x cos(x))

(%i8) (ev(%,nouns),expand(%%) );
(%o8) 2 sin(1) + cos(1) - 2
(%i9) integrate(xˆ2*sin(x),x,0,1);
(%o9) 2 sin(1) + cos(1) - 2

7.10 Change of Variable and changevar
Many integrals can be evaluated most easily by making a change of variable of integration. A simple example
is: ∫

2x (x2 + 1)3 dx =

∫
(x2 + 1)3 d (x2 + 1) =

∫
u3 du = u4/4 = (x2 + 1)4/4 (7.38)

There is a function in Maxima, called changevar which will help you change variables in a one-dimensional
integral (either indefinite or definite). However, this function is buggy at present and it is safer to do the change
of variables ”by hand”.

Function: changevar(integral-expression, g(x,u), u, x)
Makes the change of variable in a given noun form integrate expression such that the old variable
of integration is x, the new variable of integration is u, and x and u are related by the equation
g(x,u) = 0.
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Example 1

Here we use this Maxima function on the simple indefinite integral
∫

2x (x2 + 1)3 dx we have just done ”by
hand”:

(%i1) expr : ’integrate(2*x*(xˆ2+1)ˆ3,x);
/
[ 2 3

(%o1) 2 I x (x + 1) dx
]
/

(%i2) changevar(expr,xˆ2+1-u,u,x);
/
[ 3

(%o2) I u du
]
/

(%i3) ev(%, nouns);
4

u
(%o3) --

4
(%i4) ratsubst(xˆ2+1,u,%);

8 6 4 2
x + 4 x + 6 x + 4 x + 1

(%o4) ---------------------------
4

(%i5) subst(xˆ2+1,u,%o3);
2 4

(x + 1)
(%o5) ---------

4
(%i6) subst(u=(xˆ2+1),%o3);

2 4
(x + 1)

(%o6) ---------
4

The original indefinite integral is a function of x, which we obtain by replacing u by its equivalent as a function
of x. We have shown three ways to make this replacement to get a function of x, using subst and ratsubst.

Example 2

As a second example, we use a change of variables to find
∫ [

(x + 2)/
√

x + 1
]

dx.

(%i7) expr : ’integrate( (x+2)/sqrt(x+1),x);
/
[ x + 2

(%o7) I ----------- dx
] sqrt(x + 1)
/
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(%i8) changevar(expr,u - sqrt(x+1),u,x);
Is u positive, negative, or zero?

pos;
/
[ 2

(%o8) I (2 u + 2) du
]
/

(%i9) ev(%, nouns);
3

2 u
(%o9) ---- + 2 u

3
(%i10) subst(u = sqrt(x+1),%);

3/2
2 (x + 1)

(%o10) ------------ + 2 sqrt(x + 1)
3

Of course Maxima can perform the original integral in these two examples without any help, as in:

(%i11) integrate((x+2)/sqrt(x+1),x);
3/2

(x + 1)
(%o11) 2 (---------- + sqrt(x + 1))

3

However, there are occasionally cases in which you can help Maxima find an integral ( for which Maxima can
only return the noun form) by first making your own change of variables and then letting Maxima try again.

Example 3

Here we use changevar with a definite integral, using the same integrand as in the previous example. For
a definite integral, the variable of integration is a ”dummy variable”, and the result is not a function of that
dummy variable, so there is no issue about replacing the new integration variable u by the original variable x
in the result.

(%i12) expr : ’integrate( (x+2)/sqrt(x+1),x,0,1);
1
/
[ x + 2

(%o12) I ----------- dx
] sqrt(x + 1)
/
0
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(%i13) changevar(expr,u - sqrt(x+1),u,x);
Is u positive, negative, or zero?

pos;
sqrt(2)

/
[ 2

(%o13) I (2 u + 2) du
]
/
1

(%i14) ev(%, nouns);
10 sqrt(2) 8

(%o14) ---------- - -
3 3

Example 4

We next discuss an example which shows that one needs to pay attention to the possible introduction of obvious
sign errors when using changevar. The example is the evaluation of the definite integral

∫ 1

0
ey2

dy, in which
y is a real variable. Since the integrand is a positive (real) number over the interval 0 < y ≤ 1, the definite
integral must be a positive (real) number. The answer returned directly by Maxima’s integrate function is:

(%i1) fpprintprec:8$
(%i2) i1:integrate (exp (yˆ2),y,0,1);

sqrt(%pi) %i erf(%i)
(%o2) - --------------------

2

and float yields

(%i3) float(i1);
(%o3) - 0.886227 %i erf(%i)

so we see if we can get a numerical value from erf(%i) by multiplying %i by a floating point number:

(%i4) erf(1.0*%i);
(%o4) 1.6504258 %i

so to get a numerical value for the integral we use the same trick

(%i5) float(subst(1.0*%i,%i,i1));
(%o5) 1.4626517

Maxima’s symbol erf(z) represents the error function Erf(z). We have discussed the Maxima function erf(x)
for real x in Example 4 in Sec.(7.2). Here we have a definite integral result returned in terms of erf(%i),
which is the error function with a pure imaginary agument and we have just seen that erf(%i) is purely
imaginary with an approximate value 1.65*%i.

We can confirm the numerical value of the integral i1 using the quadrature routine quad_qags:

(%i6) quad_qags(exp(yˆ2),y,0,1);
(%o6) [1.4626517, 1.62386965E-14, 21, 0]
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and we see agreement.

Let’s ask Maxima to change variables in this definite integral from y to u = y2 in the following way:

(%i7) expr : ’integrate(exp(yˆ2),y,0,1);
1
/ 2
[ y

(%o7) I %e dy
]
/
0

(%i8) changevar(expr,yˆ2-u,u,y);
1
/ u
[ %e
I ------- du
] sqrt(u)
/
0

(%o8) - -------------
2

(%i9) ev(%, nouns);
sqrt(%pi) %i erf(%i)

(%o9) --------------------
2

(%i10) float(subst(1.0*%i,%i,%));
(%o10) - 1.4626517

which is the negative of the correct result. Evidently, Maxima uses solve(y2 = u, y) to find y(u) and even
though there are two solutions y = ±√u, Maxima picks the wrong solution without asking the user a clarifying
question. We need to force Maxima to use the correct relation between y and u, as in:

(%i11) changevar(expr,y-sqrt(u),u,y);
Is y positive, negative, or zero?

pos;
1

/ u
[ %e
I ------- du
] sqrt(u)
/
0

(%o11) -------------
2

(%i12) ev(%, nouns);
sqrt(%pi) %i erf(%i)

(%o12) - --------------------
2

(%i13) float(subst(1.0*%i,%i,%));
(%o13) 1.4626517

which is now the correct result with the correct sign.
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Example 5

We now discuss an example of a change of variable in which changevar produces the wrong overall sign, even
though we try to be very careful. We consider the indefinite integral

∫ (
x/
√

x2 − 4
)

dx, which integrate
returns as:

(%i1) integrate(x/sqrt(xˆ2-4),x);
2

(%o1) sqrt(x - 4)

Now consider the change of variable x → t with x = 2/cos(t).

We will show first the changevar route (with its error) and then how to do the change of variables ”by hand”,
but with Maxima’a assistance. Here we begin with assumptions about the variables involved.

(%i2) assume(x > 2, t > 0, t < 1.5, cos(t) > 0, sin(t) > 0 );
(%o2) [x > 2, t > 0, t < 1.5, cos(t) > 0, sin(t) > 0]
(%i3) nix : ’integrate(x/sqrt(xˆ2-4),x);

/
[ x

(%o3) I ------------ dx
] 2
/ sqrt(x - 4)

(%i4) nixt : changevar(nix,x-2/cos(t), t, x) ;
/
[ sin(t)

(%o4) - 2 %i I ----------------------------------------- dt
] 2
/ sqrt(cos(t) - 1) cos (t) sqrt(cos(t) + 1)

(%i5) nixt : rootscontract(nixt);
/
[ sin(t)

(%o5) - 2 %i I ------------------------- dt
] 2 2
/ cos (t) sqrt(cos (t) - 1)

(%i6) nixt : scanmap(’trigsimp,nixt);
/
[ 1

(%o6) - 2 I ------- dt
] 2
/ cos (t)

(%i7) ev(nixt,nouns);
(%o7) - 2 tan(t)

Since we have assumed t > 0, we have tan(t) > 0, so changevar is telling us the indefinite integral is a neg-
ative number for the range of t assumed.

Since we are asking for an indefinite integral, and we want the result in terms of the original variable x, we
would need to do some more work on this answer, maintaing the assumptions we have made. We will do that
work after we have repeated this change of variable, doing it ”by hand”.
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We work on the product f(x)dx:

(%i8) ix : subst(x=2/cos(t),x/sqrt(xˆ2 - 4) )* diff(2/cos(t));
4 sin(t) del(t)

(%o8) -------------------------
4 3

sqrt(------- - 4) cos (t)
2

cos (t)
(%i9) ix : trigsimp(ix);

2 del(t)
(%o9) - -----------

2
sin (t) - 1

(%i10) ix : ratsubst(1,cos(t)ˆ2+sin(t)ˆ2,ix);
2 del(t)

(%o10) --------
2

cos (t)
(%i11) integrate(coeff(ix,del(t) ) ,t);
(%o11) 2 tan(t)

which is the result changevar should have produced. Now let’s show how we can get back to the indefinite
integral produced the direct use of integrate.

(%i12) subst(tan(t)= sqrt(sec(t)ˆ2-1),2*tan(t) );
2

(%o12) 2 sqrt(sec (t) - 1)
(%i13) subst(sec(t)=1/cos(t),%);

1
(%o13) 2 sqrt(------- - 1)

2
cos (t)

(%i14) subst(cos(t)=2/x,%);
2
x

(%o14) 2 sqrt(-- - 1)
4

(%i15) ratsimp(%);
2

(%o15) sqrt(x - 4)

This concludes our discussion of a change of variable of integration and our discussion of symbolic integration.
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8.1 Introduction
This chapter is divided into four sections.

We first discuss the most needed and used tools for routine numerical integration. (We presented many exam-
ples of symbolic integration methods in Ch. 7). We then discuss more exotic tools you may be able to use once
in a while. In the third short section we present a finite interval integration “decision tree”. In the fourth short
section we present an “infinite interval integration decision tree”. In Chapter 9, we will discuss bigfloats and
some examples of using Maxima for high precision quadrature. Chapter 10 covers the calculation of Fourier
series coefficients and both Fourier transform and Laplace transform type integrals. Chapter 11 presents tools
for the use of fast Fourier transforms with examples of use.

8.2 Numerical Integration Basic Tools: quad qags, romberg, quad qagi
8.2.1 Syntax for Quadpack Functions

All the Quadpack functions (“Q” is for “quadrature”), except two, are called using the syntax:

quad_qaxx ( expr, var, a, b, (other-required-args), optional-args)

The exceptions are the Cauchy principle value integration routine quad_qawc which does the integral∫ b

a
f(x)/(x− c)dx, using the syntax quad_qawc(expr,var,c,a,b,optional-args),

and the cosine or sine Fourier transform integration routine quad_qawf which does integrals∫∞
a

f(x) cos(ω x)dx or
∫∞
a

f(x) sin(ω x)dx using the syntax
quad_qawf(expr,var,a,omega,trig,optional-args).

8.2.2 Ouput List of Quadpack Functions and Error Code Values

All Quadpack functions return a list of four elements:

[integral.value, est.abs.error, num.integrand.evaluations, error.code].

The error.code (the fourth element of the returned list) can have the values:

0 - no problems were encountered

1 - too many sub-intervals were done

2 - excessive roundoff error is detected

3 - extremely bad integrand behavior occurs

4 - failed to converge

5 - integral is probably divergent or slowly convergent

6 - the input is invalid
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8.2.3 Integration Rule Parameters and Optional Arguments

All the Quadpack functions (except one) include epsrel, epsabs, and limit as possible optional types of allowed
arguments to override the default values of these parameters: epsrel = 1e-8, epsabs = 0.0, limit = 200.
To override the epsrel default value, for example, you would add the optional argument epsrel = 1e-6 or
epsrel=1d-6 (both have the same effect).

These Quadpack functions apply an integration rule adaptively until an estimate of the integral of expr over
the interval (a, b) is achieved within the desired absolute and relative error limits, epsabs and epsrel. With
the default values epsrel = 1e-8, epsabs = 0.0, only epsrel plays a role in determining the convergence of the
integration rules used, and this corresponds to getting the estimated relative error of the returned answer smaller
than epsrel.

If you override the defaults with the two optional arguments (in any order) epsrel = 0.0, epsabs = 1e-8, for
example, the value of epsrel will be ignored and convergence will have been achieved if the estimated absolute
error is less than epsabs.

The integration region is divided into subintervals, and on each iteration the subinterval with the largest es-
timated error is bisected. This “adaptive method” reduces the overall error rapidly, as the subintervals become
concentrated around local difficulties in the integrand.

The Quadpack parameter limit, whose default value is 200, is the maximum number of subintervals to be
used in seeking a convergent answer. To increase that limit, you would insert limit=300, for example.

8.2.4 quad qags for a Finite Interval

The “s” on the end of qags is a signal that quad_qags has extra abilities in dealing with functions which
have integrable singularities, but even if your function has no singular behavior, quad_qags is still the best
choice due to the sophistication of the quadrature algorithm used. Use the syntax

quad_qags ( expr, var , a, b, [ epsrel, epsabs, limit ] )

where the keywords inside the brackets indicate possible optional arguments (entered in any order), such as
epsrel = 1e-6.

Thus the approximate numerical value of
∫ 1

0
ex2

dx would be the first element of the list returned by
quad_qags (exp (xˆ2), x, 0, 1).

If you call quad_qags with an unbound parameter in the integrand, a noun form will be returned which will
tell you all the defaults being used.

(%i1) quad_qags(a*x,x,0,1);
(%o1) quad_qags(a x, x, 0, 1, epsrel = 1.0E-8, epsabs = 0.0, limit = 200)

There is a more efficient Quadpack function available, quad_qaws, for integrals which have end point al-
gebraic and/or logarithmic singularites associated with of the form

∫ b

a
f(x)w(x)dx, if the “weight function”

w(x) has the form (note: f(x) is assumed to be well behaved)

w(x) = (x− a)α (b− x)β ln(x− a) ln(b− x) (8.1)

where α > −1 and β > −1 for convergence. See Sec 8.3.3 for more information on quad_qaws and its use.



5

Example 1

Here is an example of the use of quad_qags to compute the numerical value of the integral
∫ 1

0

√
x ln(1/x)dx.

The integrand g = x1/2 ln(1/x) = −x1/2 ln(x) has the limiting value 0 as x → 0 from the positive side. Thus
the integrand is not singular at x = 0, but it is rapidly changing near x = 0 so an efficient algorithm is needed.
(Our Example 2 will work with an integrand which is singular at x = 0.)

Let’s check the limit at x = 0 and plot the function.

(%i2) g:sqrt(x)*log(1/x)$
(%i3) limit(g,x,0,plus);
(%o3) 0
(%i4) (load(draw),load(qdraw))$
(%i5) qdraw( ex(g,x,0,1) )$

Here is that plot.
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Figure 1: x1/2 ln(1/x)

Now we try out quad_qags on this integral and compare with the exact answer returned by integrate.

(%i6) fpprintprec:8$
(%i7) tval:bfloat(integrate(g,x,0,1)),fpprec:20;
(%o7) 4.4444444b-1
(%i8) qlist:quad_qags(g,x,0,1 );
(%o8) [0.444444, 4.93432455E-16, 315, 0]
(%i9) abs(first(%) - tval ),fpprec:20;
(%o9) 8.0182679b-17

The first element of the returned list qlist is the approximate numerical value of the integral. We have used
integrate together with bfloat and fpprec to generate the “true value” good to about 20 digits (see Chapter 9),
and we see that the absolute error of the answer returned by quad_qags is about 10−16. The second element
of qlist is the estimated absolute error of the returned answer. The third element shows that 315 integrand
evaluations were needed to attain the requested (default) relative error epsrel = 1e-8. The fourth element is the
error code value 0 which indicates no problems were found.

The algorithm used to find an approximation for this integral does not know the “exact” (or true) answer, but
does have (at each stage) an estimate of the answer and an estimate of the likely error of this estimated answer
(gotten by comparing the new answer with the old answer, for example), and so can compute an estimated
relative error (est abs err/est answer) which the code checks against the requested relative error goal supplied
by the parameter epsrel.
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We are assuming that the defaults are being used, and hence epsabs has the value 0.0, so that the convergence
criterion used by the code is

est rel err ≤ epsrel (8.2)

or
est abs err

est answer
≤ epsrel (8.3)

or
est abs err ≤ epsrel× est answer (8.4)

We can check that the values returned by quad_qags are at least consistent with the advertised convergence
criterion.

(%i10) est_answer : first(qlist);
(%o10) 0.444444
(%i11) est_abs_err : second(qlist);
(%o11) 4.93432455E-16
(%i12) est_rel_err : est_abs_err/est_answer;
(%o12) 1.11022302E-15

We see that the est_rel_err is much less than epsrel.

Example 2

Here we use quad_qags with an integrand which is singular at x = 0, but the singularity is an “integrable
singularity”. We want to calculate

∫ 1

0
ln(sin(x))dx. If you answer enough questions correctly, integrate

returns an “exact” answer involving the limit of expressions involving the dilogarithm function with a complex
argument, and the “answer” is rather long.

We first show that the integrand is singular at x = 0, first using Maxima’s limit function and then using taylor.
We then use the approximate integrand for small x to show that the indefinite integral is a function of x which
has a finite limit at x = 0.

(%i1) limit(log(sin(x)),x,0,plus);
(%o1) minf
(%i2) ix : taylor(log(sin(x)),x,0,2);

2
x

(%o2)/T/ log(x) + . . . - -- + . . .
6

(%i3) int_ix:integrate(ix,x);
3

x
(%o3) x log(x) - -- - x

18
(%i4) limit(int_ix,x,0,plus);
(%o4) 0
(%i5) assume(eps>0,eps<1)$
(%i6) integrate(ix,x,0,eps);

3
18 eps log(eps) - eps - 18 eps

(%o6) -------------------------------
18
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Output %o1 indicates that the integrand → −∞ as x → 0+. To see if this is an “integrable singularity”, we
examine the integrand for x positive but close to 0, using a Taylor series expansion. We let eps represent ε, a
small positive number to be used as the upper limit of a small integration interval.

The approximate integrand, ix, shows a logarithmic singularity at x = 0. The indefinite integral of the approxi-
mate integrand, int ix, is finite as x → 0+. And finally, the integral of the approximate integrand over (0, ε) is
finite. Hence we are dealing with an integrable singularity, and we use quad_qags to evaluate the numerical
value of the exact integrand over [0,1].

(%i7) quad_qags(log(sin(x)),x,0,1);
(%o7) [- 1.0567202, 1.1731951E-15, 231, 0]

Use of float(integrate) with this expression returns a very complicated result involving proposed limits which
Maxima has not carried out.

8.2.5 romberg for a Finite Interval

If you have loaded in romberg, the syntax romberg(expr,var, a, b) returns an estimate of an integral using
what is known as “Romberg’s Method”.

The quadpack function quad_qags is more accurate and includes error diagnostics. However we include a
short discussion of romberg since we will try out the big-float version bromberg in Ch. 9.

The default behavior of romberg is governed by a relative difference test applied to successive iterations and is
determined by the default value of rombergtol (which default value is 1e-4) If you want to change that value,
you issue the separate assignment statement: rombergtol : 1e-15 for example.

(%i1) fpprintprec:8$
(%i2) load(romberg);
(%o2) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/numeric/romberg.lisp
(%i3) [rombergtol,rombergabs,rombergit,rombergmin];
(%o3) [1.0E-4, 0.0, 11, 0]

We can compare romberg with quad_qags. Of course the default relative error is different, but by setting
rombergtol to the value 1e-15 we can then compare their output. We will use the simple integral

∫ 1

0
ex dx:

(%i4) tval : bfloat(integrate(exp(x),x,0,1)),fpprec:20;
(%o4) 1.7182818b0
(%i5) rombergtol:1e-15$
(%i6) romberg(exp(x),x,0,1);
(%o6) 1.7182818
(%i7) abs(% - tval),fpprec:20;
(%o7) 3.6660941b-16
(%i8) %/tval,fpprec:20;
(%o8) 2.1335813b-16
(%i9) quad_qags(exp(x),x,0,1 );
(%o9) [1.7182818, 1.90767605E-14, 21, 0]
(%i10) abs(%[1] - tval),fpprec:20;
(%o10) 7.7479797b-17
(%i11) %/tval,fpprec:20;
(%o11) 4.5091437b-17

So we see that quad_qags yields an answer with a somewhat smaller relative error than romberg.
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8.2.6 quad qags and romberg for Numerical Double Integrals

In Sec.7.6 of Ch.7 we presented the notation (for an exact symbolic double integral):

To evaluate the exact symbolic double integral
∫ u2

u1

du

∫ v2(u)

v1(u)

dv f(u, v) ≡
∫ u2

u1

(∫ v2(u)

v1(u)

f(u, v) dv

)
du (8.5)

we use integrate with the syntax:

integrate( integrate( f(u,v), v, v1(u), v2(u) ), u, u1, u2 )

in which f(u,v) can either be an expression depending on the variables u and v, or a Maxima function, and
likewise v1(u) and v2(u) can either be expressions depending on u or Maxima functions.

Both u and v are “dummy variables”, since the value of the resulting double integral does not depend on our
choice of symbols for the integration variables; we could just as well use x and y.

To use romberg to find the same double integral (numerically), we use the syntax:

romberg( romberg ( f(u,v), v, v1(u), v2(u) ), u, u1, u2 )

and to use quad qags we use

quad_qags ( quad_qags ( f(u,v), v, v1(u), v2(u) )[1], u, u1, u2 )

Example 1

For our first example, we compare quad qags and romberg on the double integral:
∫ 3

1

(∫ x/2

0

xy

x + y
dy

)
dx (8.6)

comparing both results with the integrate result, first using the absolute error, then the relative error.

(%i1) fpprintprec:8$
(%i2) g : x*y/(x+y)$
(%i3) tval : bfloat (integrate (integrate (g,y,0,x/2),x,1,3) ),fpprec:20;
Is x positive, negative, or zero?

p;
(%o3) 8.1930239b-1
(%i4) load(romberg)$
(%i5) [rombergtol,rombergabs,rombergit,rombergmin];
(%o5) [1.0E-4, 0.0, 11, 0]
(%i6) rombergtol:1e-15$
(%i7) romberg( romberg(g,y,0,x/2),x,1,3);
(%o7) 0.819302
(%i8) abs(% - tval),fpprec:20;
(%o8) 1.7298445b-16
(%i9) %/tval,fpprec:20;
(%o9) 2.1113627b-16
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(%i10) quad_qags ( quad_qags (g,y,0,x/2)[1],x,1,3);
(%o10) [0.819302, 9.09608385E-15, 21, 0]
(%i11) abs (%[1] - tval),fpprec:20;
(%o11) 6.1962154b-17
(%i12) %/tval,fpprec:20;
(%o12) 7.5627942b-17

We see that quad qags is slightly more accurate.

Example 2

For our second example, we consider the double integral
∫ 1

0

(∫ 2+x

1

ex−y2

dy

)
dx (8.7)

(Note we still have rombergtol set to 1e-15).

(%i13) g : exp(x-yˆ2)$
(%i14) tval : bfloat(integrate( integrate(g,y,1,2+x),x,0,1)),fpprec:20;
(%o14) 2.3846836b-1
(%i15) romberg( romberg(g,y,1,2+x),x,0,1);
‘romberg’ failed to converge

2
x - y

(%o15) romberg(romberg(%e , y, 1.0, x + 2.0), x, 0.0, 1.0)
(%i16) quad_qags( quad_qags(g,y,1,2+x)[1],x,0,1);
(%o16) [0.238468, 2.64753066E-15, 21, 0]
(%i17) abs (%[1] - tval),fpprec:20;
(%o17) 4.229659b-18
(%i18) %/tval,fpprec:20;
(%o18) 1.7736772b-17

We see that romberg failed to converge to an answer. If you decrease the value of rombergtol, you can
eventually get an answer from romberg for this double integral.

Maxima coordinator Robert Dodier has (on the Mailing List) commented on the general preference for using
quad qags instead of romberg:

... the quadpack functions are stronger than romberg: they succeed on problems for which romberg
fails, they product diagnostic codes when they do fail, they produce the same accuracy with fewer
function calls when they succeed, and there are specialized methods for various special cases (in-
finite domain, etc).

I can’t think of a problem for which I’d recommend romberg over quadpack.

Dodier has also warned about the lack of accuracy diagnostics with the inner integral done by quad qags:

A nested numerical integral like this has a couple of drawbacks, whatever the method. (1) The
estimated error in the inner integral isn’t taken into account in the error estimate for the outer.
(2) Methods specifically devised for multi-dimensional integrals are typically more efficient than
repeated 1-d integrals.
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8.2.7 quad qagi for an Infinite or Semi-infinite Interval

See Sec.(8.5) for a decision tree for quadrature over an infinite or semi-infinite region.

The syntax is

quad_qagi ( expr, var, a, b, [epsrel, epsabs, limit] ), where
(a,b) are the limits of integration.

Thus you will have (omitting the optional args):
quad_qagi (expr, var, minf, b ) with b finite,
quad_qagi ( expr, var, a, inf ), with a finite, or
quad_qagi (expr, var, minf, inf ).

If at least one of (a,b) are not equal to (minf,inf), a noun form will be returned.

The Maxima function quad_qagi returns the same type of information (approx-integral, est-abs-error, nfe,
error-code) in a list that quad_qags returns, and the possible error codes returned have the same meaning.

Here we test the syntax and behavior with a simple integrand, first over [0,∞]:

(%i1) fpprintprec:8$
(%i2) tval : bfloat( integrate (exp(-xˆ2),x,0,inf) ),fpprec:20;
(%o2) 8.8622692b-1
(%i3) quad_qagi(exp(-xˆ2),x,0,inf);
(%o3) [0.886227, 7.10131839E-9, 135, 0]
(%i4) abs(first(%) - tval),fpprec:20;
(%o4) 7.2688979b-17

and next the same simple integrand over [−∞,0]:

(%i5) quad_qagi(exp(-xˆ2),x,minf,0);
(%o5) [0.886227, 7.10131839E-9, 135, 0]
(%i6) abs(first(%) - tval),fpprec:20;
(%o6) 7.2688979b-17

and, finally over [−∞,∞]:

(%i7) tval : bfloat(2*tval),fpprec:20;
(%o7) 1.7724538b0
(%i8) quad_qagi(exp(-xˆ2),x,minf,inf);
(%o8) [1.7724539, 1.42026368E-8, 270, 0]
(%i9) abs(first(%) - tval),fpprec:20;
(%o9) 1.4537795b-16

Example 1

Here is another simple example:

(%i10) g : exp(-x)*xˆ(5/100)$
(%i11) tval : bfloat( integrate(g,x,0,inf) ),fpprec:20;
(%o11) 9.7350426b-1
(%i12) quad_qagi(g,x,0,inf);
(%o12) [0.973504, 1.2270015E-9, 315, 0]
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(%i13) abs(first(%) - tval),fpprec:20;
(%o13) 7.9340695b-15
(%i14) %/tval,fpprec:20;
(%o14) 8.15001b-15

We see that the use of the default mode (accepting the default epsrel:1d-8 and epsabs:0 ) has resulted in an
absolute error which is close to the floating point limit and a relative error of the same order of magnitude
(because the value of the integral is of order 1).

Example 2

We evaluate the integral
∫∞
0

e−x ln(x)dx = −γ, where γ is the Euler-Mascheroni constant, 0.5772156649015329.
Maxima has this constant available as %gamma, although you need to use either float or bfloat to get the nu-
merical value. The Maxima function integrate cannot make any progress with this integral.

(%i15) g : exp(-x)*log(x)$
(%i16) tval : bfloat( integrate(g,x,0,inf) ),fpprec:20;
The number 0 isn’t in the domain of gamma_incomplete
-- an error. To debug this try debugmode(true);

(%i17) tval : bfloat(-%gamma),fpprec:20;
(%o17) - 5.7721566b-1
(%i18) quad_qagi(g,x,0,inf);
(%o18) [- 0.577216, 5.11052578E-9, 345, 0]
(%i19) abs(first(%) - tval),fpprec:20;
(%o19) 2.6595919b-15
(%i20) %/tval,fpprec:20;
(%o20) - 4.6076226b-15

Example 3

A symmetrical version of a Fourier transform pair is defined by the equations

g(x) =
1√
2π

∫ ∞

−∞
G(k) ei k x dk (8.8)

G(k) =
1√
2π

∫ ∞

−∞
g(x) e−i k x dx (8.9)

An example of such a Fourier transform pair which respects this symmetrical definition is: if g(x) = a e−bx2 ,
then G(k) = (a/

√
2b) e−k2/(4b).

(%i21) assume(a>0,b>0,k>0)$
(%i22) g :a*exp(-b*xˆ2)$
(%i23) gft:integrate(exp(-%i*k*x)*g,x,minf,inf)/sqrt(2*%pi);

2
k

- ---
4 b

a %e
(%o23) ---------------

sqrt(2) sqrt(b)
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To check this relation with quag_qagi, let’s define f to be g for the case a, b and k are all set equal to 1.

(%i24) f : subst([a=1,b=1,k=1],g);
2

- x
(%o24) %e
(%i25) fft : subst([a=1,b=1,k=1],gft);

- 1/4
%e

(%o25) -------
sqrt(2)

(%i26) float(fft);
(%o26) 0.550695

If we try to submit an explicitly complex integrand to quad_qagiwe get a noun form back, indicating failure.
(A similar result occurs with quad_qags).

(%i27) quad_qagi(f*exp(-%i*x),x,minf,inf);
2

- x - %i x
(%o27) quad_qagi(%e , x, minf, inf, epsrel = 1.0E-8, epsabs = 0.0,

limit = 200)

8.3 Numerical Integration: Sharper Tools
There are specialised Quadpack routines for particular kinds of one dimensional integrals. See Sec.(8.4) for a
“decision tree” for a finite region numerical integral using the Quadpack functions.

8.3.1 quad qag for a General Oscillatory Integrand

The function quad_qag is sometimes of use primarily due to its ability to deal with functions with some
general oscillatory behavior.

The “key” feature to watch out for is the required fifth slot argument which the manual calls “key”. This slot
can have any integral value between 1 and 6 inclusive, with the higher values corresponding to “higer order
Gauss-Kronrod” integration rules for more complicated oscillatory behavior.

Use the syntax:

quad_qag( expr, var, a, b, key, [epsrel, epsabs, limit] )

Thus the approximate numerical value of
∫ 1

0
ex2

dx would be the first element of the list returned by
quad_qag ( exp ( xˆ2 ), x, 0, 1, 3) using the “key” value 3.
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Example 1

Since the main feature of quad_qag is the ability to select a high order quadrature method for a generally
oscillating integrand, we begin by comparing quad_qag with quad_qags for such a case. We consider the
integral

∫ 1

0
cos(50x) sin(3x) e−x dx.

(%i1) fpprintprec:8$
(%i2) f : cos(50*x)*sin(3*x)*exp(-x)$
(%i3) tval : bfloat( integrate (f,x,0,1) ),fpprec:20;
(%o3) - 1.9145466b-3
(%i4) (load(draw),load(qdraw))$
(%i5) qdraw( ex(f,x,0,1) )$

Here is that plot: and here we make the comparison.
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Figure 2: cos(50x) sin(3x) e−x

(%i6) quad_qag(f,x,0,1,6);
(%o6) [- 0.00191455, 2.86107558E-15, 61, 0]
(%i7) abs(first(%) - tval),fpprec:20;
(%o7) 9.8573614b-17
(%i8) %/tval,fpprec:20;
(%o8) - 5.148666b-14
(%i9) quad_qags(f,x,0,1 );
(%o9) [- 0.00191455, 2.8536E-15, 315, 0]
(%i10) abs(first(%) - tval),fpprec:20;
(%o10) 1.1804997b-16
(%i11) %/tval,fpprec:20;
(%o11) - 6.1659493b-14

We see that both methods returned results with about the same relative error, but that quad_qag needed only
about one fifth the number of integrand evaluations as compared with quad_qags. This extra efficiency of
quad_qag for this type of integrand may be of interest in certain kinds of intensive numerical work. Naturally,
the number of integrand evaluations needed does not necessarily translate simply into time saved, so timing
trials would be appropriate when considering this option.

Example 2

We compare quad_qag and quad_qags with the numerical evaluation of the integral
∫ 1

0
ex dx, which

has neither special oscillatory behavior (which quad_qag might help with) nor singular behavior (which
quad_qags might help with).
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(%i12) tval : bfloat( integrate (exp(x),x,0,1) ),fpprec:20;
(%o12) 1.7182818b0
(%i13) quad_qag(exp(x),x,0,1,6);
(%o13) [1.7182818, 1.90767605E-14, 61, 0]
(%i14) abs(first(%) - tval),fpprec:20;
(%o14) 1.445648b-16
(%i15) %/tval,fpprec:20;
(%o15) 8.413335b-17
(%i16) quad_qags(exp(x),x,0,1 );
(%o16) [1.7182818, 1.90767605E-14, 21, 0]
(%i17) abs(first(%) - tval),fpprec:20;
(%o17) 7.7479797b-17
(%i18) %/tval,fpprec:20;
(%o18) 4.5091437b-17

We see that using quad_qags for this function results in slightly smaller relative error while using only two
thirds the number of integrand evaluations compared with quad_qag.

Example 3

We compare quad_qag and quad_qags with the numerical evaluation of the integral
∫ 1

0

√
x ln(x)dx,

which has quasi-singular behavior at x = 0. See Sec.(8.2.4) for a plot of this integrand.

(%i19) f : sqrt(x)*log(1/x)$
(%i20) tval : bfloat( integrate (f,x,0,1) ),fpprec:20;
(%o20) 4.4444444b-1
(%i21) quad_qag(f,x,0,1,3);
(%o21) [0.444444, 3.17009685E-9, 961, 0]
(%i22) abs(first(%) - tval),fpprec:20;
(%o22) 4.7663293b-12
(%i23) %/tval,fpprec:20;
(%o23) 1.072424b-11
(%i24) quad_qags(f,x,0,1 );
(%o24) [0.444444, 4.93432455E-16, 315, 0]
(%i25) abs(first(%) - tval),fpprec:20;
(%o25) 8.0182679b-17
(%i26) %/tval,fpprec:20;
(%o26) 1.8041102b-16

We see that using quad_qags for this function (which has a quasi-singular behavior near x = 0 ) returns
a much smaller relative error while using only one third the number of integrand evaluations compared with
quad_qag.

8.3.2 quad qawo for Fourier Series Coefficients

This function is the most efficient way to find numerical values of Fourier series coefficients, which require
finding integrals

∫ b

a
f(x) cos(ω x)dx or

∫ b

a
f(x) sin(ω x)dx.

This function has the syntax

quad_qawo(expr, var , a, b, omega, trig,[epsrel, epsabs, limit, maxp1])
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For the integral
∫ 2

−2
(x + x4) cos(3x)dx (default options), use quad_qawo(x + xˆ4, x, -2, 2, 3, cos).

For the integral
∫ 2

−2
(x + x4) sin(5x)dx (default options), use quad_qawo(x + xˆ4, x, -2, 2, 5, sin).

Here we compare quad_qawo with quad_qags for the integral
∫ 2

−2
(x + x4) cos(3x)dx.

(%i1) fpprintprec:8$
(%i2) g : (x+xˆ4)*cos(3*x)$
(%i3) tval : bfloat( integrate(g,x,-2,2) ),fpprec:20;
(%o3) 3.6477501b0
(%i4) quad_qawo(x+xˆ4,x,-2,2,3,cos);
(%o4) [3.6477502, 0.0, 25, 0]
(%i5) abs(first(%) - tval),fpprec:20;
(%o5) 4.0522056b-18
(%i6) %/tval,fpprec:20;
(%o6) 1.110878b-18
(%i7) quad_qags(g,x,-2,2);
(%o7) [3.6477502, 8.89609255E-14, 63, 0]
(%i8) abs(first(%) - tval),fpprec:20;
(%o8) 1.7723046b-15
(%i9) %/tval,fpprec:20;
(%o9) 4.8586239b-16

We see that quad_qawo finds the numerical value with “zero” relative error as compared with a “non-zero”
relative error using quad_qags, and with many less integrand evaluations.

8.3.3 quad qaws for End Point Algebraic and Logarithmic Singularities

The syntax is:

quad_qaws (f(x), x, a, b, alpha, beta, wfun,[epsrel, epsabs, limit])

This Maxima function is designed for the efficient evaluation of integrals of the form
∫ b

a
f(x)w(x)dx in which

the appropriate “singular end point weight function” is chosen from among different versions via the three pa-
rameters wfun, α (represented by alpha), and β (represented by beta).

The most general case in which one has both algebraic and logarithmic singularities of the integrand at both
end points corresponds to α 6= 0 and β 6= 0 and

w(x) = (x− a)α (b− x)β ln(x− a) ln(b− x) (8.10)

The parameters α and β govern the “degree” of algebraic singularity at the end points. One needs both α > −1
and β > −1 for convergence of the integrals.

In particular, one can choose α = 0 and/or β = 0 to handle an algebraic singularity at only one end of the
interval or no algebraic singularities at all.

The parameter wfun determines the existence and location of possible end point logarithmic singularities of
the integrand.

wfun w(x)
1 (x− a)α (b− x)β

2 (x− a)α (b− x)β ln(x− a)
3 (x− a)α (b− x)β ln(b− x)
4 (x− a)α (b− x)β ln(x − a) ln(b − x)
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Example 1: Pure Logarithmic Singularities

For the case that α = 0 and β = 0, there are no end point algebraic singularities, only logarithmic singularities.
A simple example is

∫ 1

0
ln(x)dx, which corresponds to wfun = 2:

(%i1) fpprintprec:8$
(%i2) tval : bfloat( integrate(log(x),x,0,1) ),fpprec:20;
(%o2) - 1.0b0
(%i3) quad_qaws(1,x,0,1,0,0,2);
(%o3) [- 1.0, 9.68809031E-15, 40, 0]
(%i4) abs(first(%) - tval),fpprec:20;
(%o4) 0.0b0
(%i5) quad_qags(log(x),x,0,1);
(%o5) [- 1.0, 1.11022302E-15, 231, 0]
(%i6) abs(first(%) - tval),fpprec:20;
(%o6) 0.0b0

which illustrates the efficiency of quad_qaws compared to quad_qags for this type of integrand.

Example 2: Pure Algebraic Singularity

The case wfun = 1 corresponds to purely algebraic end point singularities.

Here we compare quad_qaws with quad_qags for the evaluation of the integral
∫ 1

0
sin(x)√

x
dx. You will get

an exact symbolic answer in terms of erf(z) for this integral from integrate.

(%i15) expand(bfloat(integrate(sin(x)/sqrt(x),x,0,1))),fpprec:20;
(%o15) 1.717976b0 cos(0.25 %pi) - 8.404048b-1 sin(0.25 %pi)
(%i16) tval : bfloat(%),fpprec:20;
(%o16) 6.205366b-1
(%i17) quad_qaws(sin(x),x,0,1,-1/2,0,1);
(%o17) [0.620537, 4.31887834E-15, 40, 0]
(%i18) abs(first(%) - tval),fpprec:20;
(%o18) 8.8091426b-19
(%i19) %/tval,fpprec:20;
(%o19) 1.4196008b-18
(%i20) quad_qags(sin(x)/sqrt(x),x,0,1);
(%o20) [0.620537, 3.48387985E-13, 231, 0]
(%i21) abs(first(%) - tval),fpprec:20;
(%o21) 1.1014138b-16
(%i22) %/tval,fpprec:20;
(%o22) 1.7749378b-16

We see that quad_qaws uses about one sixth the number of function evaluations (as compared with quad_qags)
and returns a much more accurate answer.

Example 3: Both Algebraic and Logarithmic Singularity at an End Point

A simple example is
∫ 1

0
ln(x)√

x
dx. The integrand is singular at x = 0 but this is an “integrable singularity” since√

x ln(x) → 0 as x → 0+.

(%i1) fpprintprec:8$
(%i2) limit(log(x)/sqrt(x),x,0,plus);
(%o2) minf
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(%i3) integrate(log(x)/sqrt(x),x);
(%o3) 2 (sqrt(x) log(x) - 2 sqrt(x))
(%i4) limit(%,x,0,plus);
(%o4) 0
(%i5) tval : bfloat( integrate(log(x)/sqrt(x),x,0,1)),fpprec:20;
(%o5) - 4.0b0
(%i6) quad_qaws(1,x,0,1,-1/2,0,2);
(%o6) [- 4.0, 3.59396672E-13, 40, 0]
(%i7) abs(first(%) - tval),fpprec:20;
(%o7) 0.0b0
(%i8) quad_qags(log(x)/sqrt(x),x,0,1);
(%o8) [- 4.0, 1.94066985E-13, 315, 0]
(%i9) abs(first(%) - tval),fpprec:20;
(%o9) 2.6645352b-15
(%i10) %/tval,fpprec:20;
(%o10) - 6.6613381b-16

Again we see the relative efficiency and accuracy of quad_qaws for this type of integral.

8.3.4 quad qawc for a Cauchy Principal Value Integral

This function has the syntax:

quad_qawc (f(x), x, c, a, b,[epsrel, epsabs, limit]).

The actual integrand is g(x) = f(x)/(x− c), with dependent variable x, to be integrated over the interval [a,b]
and you need to pick out f(x) by hand here. In using quad_qawc, the argument c is placed between the name
of the variable of integration (here x) and the lower limit of integration.

An integral with a “pole” on the contour does not exist in the strict sense, but if g(x) has a simple pole on the
real axis at x = c, one defines the Cauchy principal value as the symmetrical limit (with a < c < b)

P

∫ b

a

g(x)dx = lim
ε→0+

[∫ c−ε

a

g(x)dx +

∫ b

c+ε

g(x)dx

]
(8.11)

provided this limit exists. In terms of f(x) this definition becomes

P

∫ b

a

f(x)

x− c
dx = lim

ε→0+

[∫ c−ε

a

f(x)

x− c
dx +

∫ b

c+ε

f(x)

x− c
dx

]
(8.12)

We can find the default values of the optional method parameters of quad_qawc by including an undefined
symbol in our call:

(%i11) quad_qawc(1/(xˆ2-1),x,1,0,b);
1

(%o11) quad_qawc(------, x, 1, 0, b, epsrel = 1.0E-8, epsabs = 0.0, limit = 200)
2
x - 1

We see that the default settings cause the algorithm to look at the relative error of succeeding approximations
to the numerical answer.
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As a simple example of the syntax we consider the principal value integral

P

∫ 2

0

1

x2 − 1
dx = P

∫ 2

0

1

(x− 1) (x + 1)
dx = −ln(3)/2 (8.13)

We use assume to prep integrate and then implement the basic definition provided by Eq. (8.11)

(%i1) fpprintprec:8$
(%i2) assume(eps>0, eps<1)$
(%i3) integrate(1/(xˆ2-1),x,0,1-eps) +

integrate(1/(xˆ2-1),x,1+eps,2);
log(eps + 2) log(2 - eps) log(3)

(%o3) ------------ - ------------ - ------
2 2 2

(%i4) limit(%,eps,0,plus);
log(3)

(%o4) - ------
2

(%i5) tval : bfloat(%),fpprec:20;
(%o5) - 5.4930614b-1

We now compare the result returned by integrate with the numerical value returned by quad_qawc, noting
that f(x) = 1/(1 + x).

(%i6) quad_qawc(1/(1+x),x,1,0,2);
(%o6) [- 0.549306, 1.51336373E-11, 105, 0]
(%i7) abs(first(%) - tval),fpprec:20;
(%o7) 6.5665382b-17
(%i8) %/tval,fpprec:20;
(%o8) - 1.1954241b-16

We see that the relative error of the returned answer is much less than the (default) requested minimum relative
error.

If we run quad_qawc requesting that convergence be based on absolute error instead of relative error,

(%i9) quad_qawc(1/(1+x),x,1,0,2,epsabs=1.0e-10,epsrel=0.0);
(%o9) [- 0.549306, 1.51336373E-11, 105, 0]
(%i10) abs(first(%) - tval),fpprec:20;
(%o10) 6.5665382b-17
(%i11) %/tval,fpprec:20;
(%o11) - 1.1954241b-16

we see no significant difference in the returned accuracy, and again we see that the absolute error of the returned
answer is much less than the requested minimum absolute error.
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8.3.5 quad qawf for a Semi-Infinite Range Cosine or Sine Fourier Transform

The function quad_qawf calculates a Fourier cosine or Fourier sine transform (up to an overall normalization
factor) on the semi-infinite interval [a,∞]. If we let w stand for the angular frequency in radians, the integrand
is f(x)*cos(w*x) if the trig parameter is cos, and the integrand is f(x)*sin(w*x) if the trig parameter is sin.

The calling syntax is

quad_qawf (f(x), x, a, w, trig, [epsabs, limit, maxp1, limlst])

Thus quad_qawf (f(x), x, 0, w, ’cos) will find a numerical approximation to the integral
∫ ∞

0

f(x) cos(wx)dx (8.14)

If we call quad_qawf with undefined parameter(s), we get a look at the default values of the optional method
parameters:

(%i12) quad_qawf(exp(-a*x),x,0,w,’cos);
- a x

(%o12) quad_qawf(%e , x, 0, w, cos, epsabs = 1.0E-10, limit = 200,
maxp1 = 100, limlst = 10)

The manual has the optional parameter information:

The keyword arguments are optional and may be specified in any order.
They all take the form keyword = val. The keyword arguments are:
1. epsabs, the desired absolute error of approximation. Default is 1d-10.
2. limit, the size of the internal work array.

(limit - limlst)/2 is the maximum number of
subintervals to use. The default value of limit is 200.

3. maxp1, the maximum number of Chebyshev moments.
Must be greater than 0. Default is 100.

4. limlst, upper bound on the number of cycles.
Must be greater than or equal to 3. Default is 10.

The manual does not define the meaning of “cycles”. There is no “epsrel” parameter used for this function.

Here is the manual example, organised in our way. In this example w = 1 and a = 0.

(%i1) fpprintprec:8$
(%i2) integrate (exp(-xˆ2)*cos(x), x, 0, inf);

- 1/4
%e sqrt(%pi)

(%o2) -----------------
2

(%i3) tval : bfloat(%),fpprec:20;
(%o3) 6.9019422b-1
(%i4) quad_qawf (exp(-xˆ2), x, 0, 1, ’cos );
(%o4) [0.690194, 2.84846299E-11, 215, 0]
(%i5) abs(first(%) - tval),fpprec:20;
(%o5) 3.909904b-17
(%i6) %/tval,fpprec:20;
(%o6) 5.664933b-17

We see that the absolute error of the returned answer is much less than the (default) requested minimum absolute
error.
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8.4 Finite Region of Integration Decision Tree
If you are in a hurry, use quad_qags. ∗

If your definite integral is over a finite region of integration [a, b], then

1. If the integrand has the form w(x)*f(x), where f(x) is a smooth function over the region of integration,
then

• If w(x) has the form of either cos( c*x ) or sin( c*x ), where c is a constant, use quad_qawo.

• Else if the factor w(x) has the form (note the limits of integration are [ a, b ]

(x - a)ˆae * (b - x)ˆbe * (log(x - a))ˆna * (log(b - x))ˆnb

where na, nb have the values 0 or 1, and both ae and be are greater than−1, then use quad_qaws.
(This is a case where we need a routine which is designed to handle end point singularities.)

• Else if the factor w(x) is 1/(x - c) for some constant c with a < c < b, then use quad_qawc, the
Cauchy principle value routine.

2. Otherwise, if you do not care too much about possible inefficient use of computer time, and do not want
to further analyze the problem, use quad_qags.

3. Otherwise, if the integrand is smooth, use quad_qag.

4. Otherwise, if there are discontinuities or singularities of the integrand or of the derivative of the inte-
grand, and you know where they are, split the integration range at these points and separately integrate
over each subinterval.

5. Otherwise, if the integrand has end point singularities, use quad_qags.

6. Otherwise, if the integrand has an oscillatory behavior of nonspecific type, and no singularities, use
quad_qag with the fifth key slot containing the value 6.

7. Otherwise, use quad_qags.

∗These “decision trees” are adapted from the web page
http://people.scs.fsu.edu/∼burkardt/f77 src/quadpack/quadpack.html.
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8.5 Semi-infinite or Infinite Region of Integration Decision Tree
Here is the tree for the semi-infinite or infinite domain case:

A. If the integration domain is semi-infinite or from minus to plus infinity,
consider first making a suitable change of variables to obtain a

finite domain and using the finite interval decision tree described
above.

B. Otherwise, if the integrand decays rapidly to zero, truncate the
integration interval and use the finite interval decision tree.

C. Otherwise, if the integrand oscillates over the entire infinite range,

1. If integral is a Fourier transform, use quad_qawf.

2. else if the integral is not a Fourier transform, then sum the
successive positive and negative contributions by integrating
between the zeroes of the integrand, using the finite
interval criteria.

D. Otherwise, if you are not constrained by computer time, and do not
wish to analyze the problem further, use quad_qagi.

E. Otherwise, if the integrand has a non-smooth behavior in the range of
integration, and you know where it occurs, split off these regions
and use the appropriate finite range routines to integrate over them.
Then begin this semi-infinite or infinite case tree again to handle
the remainder of the region.

F. Otherwise, truncation of the interval, or application of a suitable
transformation for reducing the problem to a finite range may be
possible.

G. Otherwise use quad_qagi.
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Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima.
All comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(brmbrg) to load in the
Maxima file brmbrg.lisp.
To load in your own file, such as qbromberg.mac (used in this chapter),
using the brief version load(qbromberg), you either need to place
qbromberg.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work3/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see Ch. 1, Introduction to Maxima
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work3/qbromberg.mac"),

We always use the brief load version in our examples, which are generated
using the Xmaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

We use qdraw.mac for plots (see Ch.5), which uses draw2d defined
in share/draw/draw.lisp.

Maxima, a Computer Algebra System.
Some numerical results depend on the Lisp version used.
This chapter uses Version 5.18.1 (2009) using Lisp GNU
Common Lisp (GCL) GCL 2.6.8 (aka GCL).
http://maxima.sourceforge.net/
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9.1 Introduction
This chapter is divided into two sections.

In the first section we discuss the use of bfloat, including examples which also involve fpprec, bfloatp,
bfallroots, fpprintprec, print, and printf. The second section of Chapter 9 presents examples of
the use of Maxima for arbitrary precision quadrature (numerical integration). (In Chapter 8, we gave numerous
examples of numerical integration using the Quadpack functions such as quad_qags as well as romberg.
Those examples all accepted the default floating point precision of Maxima).

Chapter 10 covers both Fourier transform and Laplace transform type integrals. Chapter 11 presents tools for
the use of fast Fourier transforms with examples of use.

Software files developed for Ch. 9 and available on the author’s web page include:
1. fdf.mac, 2. qbromberg.mac. ,
3. quad_de.mac, 4. quad_ts.mac, 5. quad_gs.mac.

9.2 The Use of Bigfloat Numbers in Maxima
9.2.1 Bigfloat Numbers Using bfloat, fpprec, and fpprintprec

bfloat(expr) converts all numbers and functions of numbers in expr to bigfloat numbers. You can enter explicit
bigfloat numbers using the notation 2.38b0, or 2.38b7, or 2.38b-4, for example. bfloatp(val) returns true if
val is a bigfloat number, otherwise false is returned.

The number of significant digits in the resulting bigfloat is specified by the parameter fpprec, whose default
value is 16. The setting of fpprec does not affect computations on ordinary floating point numbers.

The underlying Lisp code has two variables: 1. $fpprec, which defines the Maxima variable fpprec (which
determines the number of DECIMAL digits requested for arithmetic), and 2. fpprec which is related to the
number of bits used for the fractional part of the bigfloat, and which can be accessed from Maxima using
?fpprec. We can also use the :lisp foobar construct to look at a lisp variable foobar from “inside” the Lisp
interpreter. You do not end with a semi-colon; you just press ENTER to get the response, and the input line
number of the Maxima prompt does not advance.

(%i1) fpprec;
(%o1) 16
(%i2) ?fpprec;
(%o2) 56
(%i3) :lisp $fpprec
16
(%i3) :lisp fpprec
56

We discuss some effects of the fact that computer arithmetic is carried out with binary bit representation of
decimal numbers in Sec. 9.2.5.



5

Controlling Printed Digits with fpprintprec

When using bigfloat numbers, the screen can quickly fill up with numbers with many digits, and fpprintprec
allows you to control how many digits are displayed. For bigfloat numbers, when fpprintprec has a value be-
tween 2 and fpprec (inclusive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec
can be 0, or greater than fpprec, in which case the number of digits printed is equal to fpprec. fpprintprec
cannot be 1. The setting of fpprintprec does not affect the precision of the bigfloat arithmetic carried out, only
the setting of fpprec matters.

The parameter fpprec can be used as a local variable in a function defined using block, and set to a local
value which does not affect the global setting. Such a locally defined value of fpprec governs the bigfloat
calculations in that function and in any functions called by that function, and in any third layer functions
called by the secondary layer functions, etc. fpprintprec can be set to a value inside a function defined with
block,without changing the global value, provided you include the name fpprintprec in the local variables
bracket [ ]:

(%i1) [fpprec,fpprintprec];
(%o1) [16, 0]
(%i2) piby2 : block([fpprintprec,fpprec:30,val],

val:bfloat(%pi/2),
fpprintprec:8,
disp(val),
print(" ",val),
val);

1.5707963b0

1.5707963b0
(%o2) 1.57079632679489661923132169164b0
(%i3) [fpprec,fpprintprec];
(%o3) [16, 0]

For simple bfloat uses in interactive mode, one can use the syntax bfloat-job, fpprec:fp ; which implicitly
uses the ev(...) construct with temporary settings of global flags as in

(%i1) bfloat(%pi),fpprec:20;
(%o1) 3.1415926535897932385b0
(%i2) slength(string(%));
(%o2) 23
(%i3) fpprec;
(%o3) 16
(%i4) bfloat(%pi),fpprec:40;
(%o4) 3.141592653589793238462643383279502884197b0
(%i5) slength(string(%));
(%o5) 43
(%i6) fpprec;
(%o6) 16
(%i7) tval : bfloat(integrate(exp(x),x,-1,1)),fpprec:30;
(%o7) 2.35040238728760291376476370119b0
(%i8) slength(string(%));
(%o8) 33
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Next we illustrate passing both a bigfloat number as well as local values of fpprec and fpprintprec to a second
function. Function f1 is designed to call function f2:

(%i1) f2(w) := block([v2 ],
disp(" in f2 "),
display([w,fpprec,fpprintprec]),
v2 : sin(w),
display(v2),
print(" "),
v2 )$

(%i2) f1(x,fp,fprt) :=
block([fpprintprec,fpprec:fp,v1],
fpprintprec:fprt,
disp(" in f1 "),
display([x,fpprec,fpprintprec]),
v1 : f2(bfloat(x))ˆ2,
print(" in f1, v1 = ",v1),
v1 )$

And here we call f1 with values x = 0.5, fp = 30, fprt = 8:

(%i3) f1(0.5,30,8);
in f1

[x, fpprec, fpprintprec] = [0.5, 30, 8]
in f2

[w, fpprec, fpprintprec] = [5.0b-1, 30, 8]
v2 = 4.7942553b-1

in f1, v1 = 2.2984884b-1
(%o3) 2.29848847065930141299531696279b-1
(%i4) [fpprec,fpprintprec];
(%o4) [16, 0]

We see that the called function (f2) maintains the values of fpprec and fpprintprec which exist in the
calling function (f1).

Bigfloat numbers are “contagious” in the sense that, for example, multiplying (or adding) an integer or ordinary
float number with a bigfloat results in a bigfloat number. In the above example sin(w) is a bigfloat since w is
one.

(%i5) 1 + 2.0b0;
(%o5) 3.0b0
(%i6) 1.0 + 2.0b0;
(%o6) 3.0b0
(%i7) sin(0.5b0);
(%o7) 4.79425538604203b-1

The Maxima symbol %pi is not automatically converted by contagion (in the present version of Maxima), and
an extra use of bfloat does the conversion.

(%i8) a:2.38b-1$
(%i9) exp(%pi*a);

2.38b-1 %pi
(%o9) %e
(%i10) bfloat(%);
(%o10) 2.112134508503361b0
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A recent comment by Maxima developer Volker van Nek on the Maxima mailing list illustrates how the setting
of fpprec can affect what is printed to the screen when doing bigfloat arithmetic.

(%i11) 1b0 + 1b-25,fpprec:26;
(%o11) 1.0000000000000000000000001b0
(%i12) slength(string(%));
(%o12) 29

Note that 1b-25 is the bigfloat version of 10−25. In the case above the value of fpprec is large enough to see the
effect of the bigfloat addition. The number of digits identified by the conversion of the number to a string and
then finding the length of the string is 29− 3 = 26 since the three string characters [.,b,0] do not contribute
to the precision of the number. If we leave the fpprec at 26 and add to 1 the bigfloat equivalent of 10−26,
Maxima prints out a bigfloat version of 1, but if we subtract from that answer 1b0 we do not get zero:

(%i13) 1b0 + 1b-25,fpprec:26;
(%o13) 1.0000000000000000000000001b0
(%i14) slength(string(%));
(%o14) 29
(%i15) 1b0 +10b0ˆ(-26),fpprec:26;
(%o15) 1.0b0
(%i16) % - 1b0,fpprec:26;
(%o16) 9.6935228033557930648993206b-27
(%i17) slength(string(%));
(%o17) 31

Of the thirty one characters present in this string, the five characters [.,b,−,2,7] do not contribute to the pre-
cision, , leaving 26 digits of precision. Note that the setting of fpprintprec was 0 in the above, which provides
for printing of the same number of significant digits as the value of fpprec.

Here are three ways to enter the bigfloat equivalent of 1/10 = 10−1 = 0.1:

(%i18) [1b-1,bfloat(10ˆ(-1)),10b0ˆ(-1)];
(%o18) [1.0b-1, 1.0b-1, 1.0b-1]

We next show that once bigfloat numbers are in play inside a block function in which a local value of fpprec
is set, the subsequent arithmetic is the same whether or not you wrap each operation with bfloat.

(%i19) test1(h,j,fp):=
block([fpprec:fp,u,a,x,w],
u:bfloat(h*j),
a:bfloat(exp(-u)),
x:bfloat(exp(u-a)),
w:bfloat(exp(-a)+x),
[x,w])$

(%i20) test2(h,j,fp):=
block([fpprec:fp,u,a,x,w],
u:bfloat(h*j),
a:exp(-u),
x:exp(u-a),
w:exp(-a)+x,
[x,w])$

(%i21) [xt,wt]:test1(1/16,9,60)$
(%i22) [x1,w1]:test1(1/16,9,40)$
(%i23) [x2,w2]:test2(1/16,9,40)$
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(%i24) [x1,w1]-[xt,wt],fpprec:60;
(%o24) [- 2.29699398191727953386796229322249912456243487302509210328785b-42,

- 9.07907621847706474924315736438559811433348894389391230442376b-42]
(%i25) [x2,w2]-[xt,wt],fpprec:60;
(%o25) [- 2.29699398191727953386796229322249912456243487302509210328785b-42,

- 9.07907621847706474924315736438559811433348894389391230442376b-42]
(%i26) bfloat([x1,w1]-[xt,wt]),fpprec:60;
(%o26) [- 2.29699398191727953386796229322249912456243487302509210328785b-42,

- 9.07907621847706474924315736438559811433348894389391230442376b-42]
(%i27) map(’bfloatp,%o5);
(%o27) [true, true]
(%i28) map(’bfloatp,%o4);
(%o28) [true, true]

In the above, we used the “completely bfloat wrapped” version test1(..) to define answers with 60 digit pre-
cision, and then used test1(..) and test2(..) to compute comparison answers at 40 digit precision. We see that
there is no difference in precision between the answers returned by the two test versions (each using 40 digit
precision).

We also see, from the output %08, that arith_job, fpprec:60; using interactive mode produces the
same answer (with bigfloats already in play) whether or not the “arithmetic_job” is wrapped in bfloat.
The numbers returned by both test versions are bigfloats, as indicated by the last two outputs.

9.2.2 Using print and printf with Bigfloats

In Sec. 9.2.1 we described the relations between the settings of fpprec and fpprintprec. Once you have
generated a bigfloat with some precision, it is convenient to be able to control how many digits are displayed.
We start with the use of print. If you start with the global default value of 16 for fpprec and the default
value of 0 for fpprintprec, you can use a simple one line command for a low number of digits, as shown in the
following. We first define a bigfloat bf1 to have fpprec = 45 digits of precision:

(%i1) [fpprec,fpprintprec];
(%o1) [16, 0]
(%i2) bf1:bfloat(integrate(exp(x),x,-1,1)),fpprec:45;
(%o2) 2.35040238728760291376476370119120163031143596b0
(%i3) slength(string(%));
(%o3) 48

We then use print with fpprintprec to get increasing numbers of digits on the screen:

(%i4) print(bf1),fpprintprec:12$
2.35040238728b0
(%i5) [fpprec,fpprintprec];
(%o5) [16, 0]
(%i6) print(bf1),fpprintprec:15$
2.3504023872876b0
(%i7) [fpprec,fpprintprec];
(%o7) [16, 0]
(%i8) print(bf1),fpprintprec:16$
2.35040238728760291376476370119120163031143596b0
(%i9) [fpprec,fpprintprec];
(%o9) [16, 0]
(%i10) slength(string(%o8));
(%o10) 48



9

As you see above, when fpprintprec reaches the global value of fpprec = 16 all 45 digits are printed. To
control the number of printed digits, you need to locally set the value of fpprec as shown here:

(%i11) print(bf1),fpprec:20,fpprintprec:18$
2.35040238728760291b0

To use this construct in a do loop, wrap it in ev(...):

(%i12) for j:14 thru 18 do ev(print(bf1),fpprec:j+2,fpprintprec:j)$
2.3504023872876b0
2.3504023872876b0
2.350402387287602b0
2.3504023872876029b0
2.35040238728760291b0

A more formal approach is to define a small function which we call bfprint:

(%i13) bfprint(bf,fpp):=
block([fpprec, fpprintprec ],

fpprec : fpp+2,
fpprintprec:fpp,
print(" number of digits = ",fpp),
print(" ",bf) )$

with the behavior:

(%i14) bfprint(bf1,24)$
number of digits = 24
2.35040238728760291376476b0

Using printf with bigfloats

We first show some interactive use of printf with bigfloats.

(%i1) bf:bfloat(exp(-20)),fpprec:30;
(%o1) 2.06115362243855782796594038016b-9
(%i2) slength(string(%));
(%o2) 34
(%i3) printf(true,"˜d˜a",3,string(bf))$
32.06115362243855782796594038016b-9

The format string is enclosed in double quotes, with ˜ d used for an integer, ˜ f used for a floating point number,
˜ a used for a Maxima string, ˜ e used for exponential display of a floating point number, and ˜ h used for a
bigfloat number. You can include the newline instruction with ˜ % anywhere and as many times as you wish.
In the example above, we used the string formatting to display the bigfloat number bf, which required that bf be
converting to a Maxima string using string. Because we did not include any spaces between the integer format
instruction ˜ d and the string format character ˜ a, we get 32.0... instead of 3 2.0....

(%i4) printf(true," ˜d˜a",3,string(bf))$
32.06115362243855782796594038016b-9

(%i5) printf(true," ˜d ˜a",3,string(bf))$
3 2.06115362243855782796594038016b-9
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(%i6) (printf(true," ˜d ˜a",3,string(bf)),
printf(true," ˜d ˜a",3,string(bf)))$

3 2.06115362243855782796594038016b-9 3 2.06115362243855782796594038016b-9
(%i7) (printf(true," ˜d ˜a˜%",3,string(bf)),

printf(true," ˜d ˜a",3,string(bf)))$
3 2.06115362243855782796594038016b-9
3 2.06115362243855782796594038016b-9

To get the output on successive lines we had to include the newline instruction ˜ %. To control the number of
significant figures displayed, we use fpprintprec:

(%i8) fpprintprec:8$
(%i9) printf(true," ˜d ˜a",3,string(bf))$

3 2.0611536b-9

Next let’s show what we get if we use the other options:

(%i10) printf(true," ˜d ˜f",3,bf)$
3 0.0000000020611536224385579

(%i11) printf(true," ˜d ˜e",3,bf)$
3 2.0611536224385579E-9

(%i12) printf(true," ˜d ˜h",3,bf)$
3 0.0000000020611536

A Table of Bigfloats using block and printf

Here is an example of using printf with bigfloats inside a block to make a table.

(%i1) print_test(fp) :=
block([fpprec,fpprintprec,val],
fpprec : fp,
fpprintprec : 8,
display(fpprec),
print(" k value "),
print(" "),
for k thru 4 do
( val : bfloat(exp(kˆ2)),

printf(true," ˜d ˜a ˜%",k,string(val) ) ))$
(%i2) print_test(30)$

fpprec = 30

k value

1 2.7182818b0
2 5.459815b1
3 8.1030839b3
4 8.8861105b6

Note the crucial use of the newline instruction ˜ % to get the table output. Some general use examples of printf
can be found in the Maxima manual and in the file

C:\Program Files\Maxima-5.17.1\share\maxima\5.17.1\share\
contrib\stringproc\rtestprintf.mac
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We can use printf for the titles and empty lines with the alternative version. We first define an alternative
function print_test2:

(%i3) print_test2(fp) :=
block([fpprec,fpprintprec,val],
fpprec : fp,
fpprintprec : 8,
display(fpprec),
printf(true,"˜% ˜a ˜a ˜%˜%",k,value),
for k thru 4 do
( val : bfloat(exp(kˆ2)),

printf(true," ˜d ˜a ˜%",k,string(val) ) ))$

Here we try out the alternative function with fp = 30:

(%i4) print_test2(30)$
fpprec = 30

k value

1 2.7182818b0
2 5.459815b1
3 8.1030839b3
4 8.8861105b6

9.2.3 Adding Bigfloats Having Differing Precision

If A and B are bigfloats with different precisions, the precision of the sum (A + B) is the precision of the
least precise number. As an example, we calculate an approximation to π using both 30 and 50 digit precision,
and add the numbers using 40 digit precision, and then using 60 digit precision. In both cases, the result has 30
digit precision.

(%i1) fpprintprec:8$
(%i2) pi50 : bfloat(%pi),fpprec:50;
(%o2) 3.1415926b0
(%i3) pi30 : bfloat(%pi),fpprec:30;
(%o3) 3.1415926b0
(%i4) abs(pi30 - pi50),fpprec:60;
(%o4) 1.6956855b-31
(%i5) twopi : bfloat(2*%pi),fpprec:60;
(%o5) 6.2831853b0
(%i6) pisum40 : pi30 + pi50,fpprec:40;
(%o6) 6.2831853b0
(%i7) abs(pisum40 - twopi),fpprec:60;
(%o7) 1.6956855b-31
(%i8) pisum60 : pi30 + pi50,fpprec:60;
(%o8) 6.2831853b0
(%i9) abs(pisum60 - twopi),fpprec:60;
(%o9) 1.6956855b-31
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9.2.4 Polynomial Roots Using bfallroots

The Maxima function bfallroots has the same syntax as allroots, and computes numerical approxi-
mations of the real and complex roots of a polynomial or polynomial equation of one variable. In all respects,
bfallroots is identical to allroots except that bfallroots computes the roots using bigfloats. The
source code of bfallroots with some comments is in the file cpoly.lisp in the src directory.

Our example is a cubic equation
x3 + 3x2 − 13x− 38 = 0 (9.1)

(%i1) (ratprint:false, fpprintprec:8)$
(%i2) e : xˆ3+3*xˆ2-13*x-38$

Let r be the list of symbolic roots returned by solve. Then first(r) will be the first symbolic root. For
brevity, we only show this first symbolic root.

(%i3) r : map(’rhs, solve(e))$
(%i4) first(r);

- 3/2
sqrt(3) %i 1 3 sqrt(2101) %i 23 1/3

(%o4) (- ---------- - -) (-------------------- + --)
2 2 2 2

sqrt(3) %i 1
16 (---------- - -)

2 2
+ -------------------------------- - 1

- 3/2
3 sqrt(2101) %i 23 1/3

3 (-------------------- + --)
2 2

Now let rf16 be the default floating point numerical value of the symbolic roots returned by solve, in which
we use rectform(float(r)).

(%i5) rf16 : rectform(float(r));
(%o5) [- 4.4408921E-16 %i - 2.8051181, - 3.7793103, 3.5844283]

We see that due to floating point arithmetic errors, the first root in the returned list has a very small imaginary
part. We will find that there are only real roots by using allroots:

(%i6) rar16 : map(’rhs,allroots(e));
(%o6) [3.5844283, - 2.8051181, - 3.7793103]

Now let’s compare with bfallroots using the default fpprec = 16.

(%i7) rbf16 : map(’rhs,bfallroots(e));
(%o7) [3.5844283b0, - 2.805118b0, - 3.7793102b0]
(%i8) rbf16 - rar16;
(%o8) [0.0b0, 1.3322676b-15, - 1.2767564b-15]

We see small differences which are of the order of the default 16 digit precision being used.
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Next, we use bfallroots with fpprec = 30 and compare the results.

(%i9) rbf30 : map(’rhs,bfallroots(e)),fpprec:30;
(%o9) [3.5844283b0, - 2.805118b0, - 3.7793102b0]
(%i10) rbf30 - rbf16,fpprec:30;
(%o10) [9.2452682b-18, - 7.0517343b-17, 5.7609241b-18]

Instead of using bigfloats via bfallroots, we can use bigfloats by using bfloat directly on the exact
symbolic roots r returned by solve.

(%i11) rrbf30 : rectform(bfloat(r)),fpprec:30;
(%o11) [- 7.888609b-31 %i - 2.805118b0, 1.1832913b-30 %i - 3.7793102b0,

9.8607613b-32 %i + 3.5844283b0]
(%i12) rrbf30 : realpart(rrbf30);
(%o12) [- 2.805118b0, - 3.7793102b0, 3.5844283b0]
(%i13) first(rrbf30) - second(rbf30),fpprec:30;
(%o13) 1.5777218b-30
(%i14) second(rrbf30) - third(rbf30),fpprec:30;
(%o14) - 3.1554436b-30
(%i15) third(rrbf30) - first(rbf30),fpprec:30;
(%o15) 0.0b0

We see that the differences are of the order of the 30 digit precision being used.

The conventional wisdom on the Maxima mailing list is that more accurate results are found if the expression
e is multiplied by %i, as in bfallroots(%i*e). We will test that advice here by using %i*e with 30 digit
precision, and also with 40 digit precision ( in order to have a “true value” to use for comparisons).

(%i16) rbf30i : map(’rhs,bfallroots(%i*e)),fpprec:30;
(%o16) [3.5844283b0 - 1.3363823b-51 %i, 1.0114221b-50 %i - 2.805118b0,

- 8.7778395b-51 %i - 3.7793102b0]
(%i17) rbf30i : realpart(rbf30i);
(%o17) [3.5844283b0, - 2.805118b0, - 3.7793102b0]
(%i18) rbf30i - rbf30,fpprec:30;
(%o18) [0.0b0, 7.888609b-31, - 1.5777218b-30]
(%i19) rbf40i : map(’rhs,bfallroots(%i*e)),fpprec:40;
(%o19) [3.5844283b0 - 2.687686b-55 %i, 2.0315714b-54 %i - 2.805118b0,

- 1.7628028b-54 %i - 3.7793102b0]
(%i20) rbf40i : realpart(rbf40i);
(%o20) [3.5844283b0, - 2.805118b0, - 3.7793102b0]
(%i21) rbf30 - rbf40i,fpprec:40;
(%o21) [- 2.2105568b-32, - 1.7332203b-30, 2.5441868b-30]
(%i22) rbf30i - rbf40i,fpprec:40;
(%o22) [- 2.2105568b-32, - 9.4435949b-31, 9.6646505b-31]

We see that two out of three of the 30 digit precision roots found using the %i*e method are slightly more
accurate.
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9.2.5 Bigfloat Number Gaps and Binary Arithmetic

fpprec as set by the user is the number of DECIMAL digits being requested. In fact, the actual arithmetic is
carried out with binary arithmetic. Due to the inevitably finite number of binary bits used to represent a floating
point number there will be a range of floating point numbers which are not recognised as different.

For a simple example, let’s take the case fpprec = 4. Consider the gap around the number x:bfloat(2/3)
whose magnitude is less than 1. We will find that ?fpprec has the value 16 and that Maxima behaves as if (for
this case) the fractional part of a bigfloat number is represented by the state of a system consisting of 18 binary
bits.

Let u = 2−18. If we let x1 = x + u we get a number which is treated as having a nonzero difference from
x. However, if we let w be a number which is one significant digit less than u, and define x2 = x + w, x2 is
treated as having zero difference from x. Thus the gap in bigfloats around our chosen x is ulp = 2 · 2−18 = 2−17,
and this gap should be the same size (as long as fpprec = 4) for any bigfloat with a magnitude less than 1.

If we consider a bigfloat number whose decimal magnitude is less than 1, its value is represented by a “fractional
binary number”. For the case that this fractional binary number is the state of 18 (binary) bits, the smallest base
2 number which can occur is the state in which all bits are off (0) except the least significant bit which is on
(1), and the decimal equivalent of this fractional binary number is precisely 2−18. Adding two bigfloats (each
of which has a decimal magnitude less than 1) when each is represented by the state of an 18 binary bit system
(interpreted as a fractional binary number), it is not possible to increase the value of any one bigfloat by less
than this smallest base 2 number.

(%i1) fpprec:4$
(%i2) ?fpprec;
(%o2) 16
(%i3) x :bfloat(2/3);
(%o3) 6.667b-1
(%i4) u : bfloat(2ˆ(-18));
(%o4) 3.815b-6
(%i5) x1 : x + u;
(%o5) 6.667b-1
(%i6) x1 - x;
(%o6) 1.526b-5
(%i7) x2 : x + 3.814b-6;
(%o7) 6.667b-1
(%i8) x2 - x;
(%o8) 0.0b0
(%i9) ulp : bfloat(2ˆ(-17));
(%o9) 7.629b-6

In computer science Unit in the Last Place, or Unit of Least Precision, ulp(x), associated with a floating
point number x is the gap between the two floating-point numbers closest to the value x. We assume here that
the magnitude of x is less than 1. These two closest numbers will be x + u and x− u where u is the smallest
positive floating point number which can be accurately represented by the systems of binary bits whose states
are used to represent the fractional parts of the floating point numbers.

The amount of error in the evaluation of a floating-point operation is often expressed in ULP. We see that for
fpprec = 4, 1 ULP is about 8 · 10−6. An average error of 1 ULP is often seen as a tolerable error.



15

We can repeat this example for the case fpprec = 16.

(%i10) fpprec:16$
(%i11) ?fpprec;
(%o11) 56
(%i12) x :bfloat(2/3);
(%o12) 6.666666666666667b-1
(%i13) u : bfloat(2ˆ(-58));
(%o13) 3.469446951953614b-18
(%i14) x1 : x + u;
(%o14) 6.666666666666667b-1
(%i15) x1 - x;
(%o15) 1.387778780781446b-17
(%i16) x2 : x + 3.469446951953613b-18;
(%o16) 6.666666666666667b-1
(%i17) x2 - x;
(%o17) 0.0b0
(%i18) ulp : bfloat(2ˆ(-57));
(%o18) 6.938893903907228b-18

9.2.6 Effect of Floating Point Precision on Function Evaluation

Increasing the value of fpprec allows a more accurate numerical value to be found for the value of a function
at some point. A simple function which allows one to find the absolute value of the change produced by in-
creasing the value of fpprec has been presented by Richard Fateman.∗ This function is uncert( f, arglist), in
which f is a Maxima function, depending on one or more variables, and arglist is the n-dimensional point at
which one wants the change in value of f produced by an increase of fpprec by 10. This function returns a two
element list consisting of the numerical value of the function at the requested point and also the absolute value
of the difference induced by increasing the value of the current fpprec setting by the amount 10.

We present here a version of Fateman’s function which has an additional argument to control the amount of the
increase of fpprec, and also has been simplified to accept only a function of one variable.

The function fdf is available in the Ch. 8 files fdf.mac, qbromberg.mac, quad_ts.mac, and quad_de.mac,
and is defined by the code

fdf (%ff, %xx, %dfp) :=
block([fv1,fv2,df],
fv1:bfloat(%ff(bfloat(%xx))),
block([fpprec:fpprec + %dfp ],
fv2: bfloat(%ff(bfloat(%xx))),
df: abs(fv2 - fv1) ),

[bfloat(fv2),bfloat(df)] )$

Here is an example of how this function can be used.

(%i1) (fpprintprec:8,load(fdf))$
(%i2) fpprec;
(%o2) 16
(%i3) g(x) := sin(x/2)$

∗see his draft paper “Numerical Quadrature in a Symbolic/Numerical Setting”, Oct. 16, 2008, available as the file quad.pdf in
the folder: http://www.cs.berkeley.edu/∼fateman/papers/
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(%i4) fdf(g,1,10);
(%o4) [4.7942553b-1, 1.834924b-18]
(%i5) fdf(g,1,10),fpprec:30;
(%o5) [4.7942553b-1, 2.6824592b-33]
(%i6) fpprec;
(%o6) 16

In the first example, fpprec is 16, and increasing the value to 26 produces a change in the function value of
about 2× 10−18. In the second example, fpprec is 30, and increasing the value to 40 produces a change in the
function value of about 3× 10−33.

In the later section describing the “tanh-sinh” quadrature method, we will use this function for a heuristic
estimate of the contribution of floating point errors to the approximate numerical value produced for an integral
by that method.

9.3 Arbitrary Precision Quadrature with Maxima
9.3.1 Using bromberg for Arbitrary Precision Quadrature

A bigfloat version of the romberg function is defined in the file brmbrg.lisp located in share/numeric.
You need to use load(brmbrg) or load(”brmbrg.lisp”) to use the function bromberg.

The use of bromberg is identical to the use of the romberg which we discussed in Chapter 8 (Numerical
Integration), except that rombergtol (used for a relative error precision return) is replaced by the bigfloat
brombergtol with a default value of 1.0b-4, and rombergabs (used for an absolute error return) is replaced
by the bigfloat brombergabs which has the default value 0.0b0, and rombergit (which causes an return after
halving the step size that many times) is replaced by the integer brombergit which has the default value 11,
and finally, rombergmin (the minimum number of halving iterations) is replaced by the integer brombergmin
which has the default value 0.

If the function being integrated has a magnitude of order one over the domain of integration, then an absolute
error precision of a given size is approximately equivalent to a relative error precision of the same size. We
will test bromberg using the function exp(x) over the domain [-1, 1], and use only the absolute error precision
parameter brombergabs, setting brombergtol to 0.0b0 so that the relative error test cannot be satisfied. Then
the approximate value of the integral is returned when the absolute value of the change in value from one halv-
ing iteration to the next is less than the bigfloat number brombergabs.

We explore the use and behavior of bromberg for the simple integral
∫ 1

−1
ex dx, binding a value accurate

to 42 digits to tval, defining parameter values, calling bromberg first with fpprec equal to 30 together with
brombergabs set to 1.0b-15 and find an actual error (compared with tval) of about 7× 10−24.

(%i1) (fpprintprec:8,load(brmbrg));
(%o1) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/numeric/brmbrg.lisp
(%i2) [brombergtol,brombergabs,brombergit,brombergmin,fpprec,fpprintprec];
(%o2) [1.0b-4, 0.0b0, 11, 0, 16, 8]
(%i3) tval: bfloat(integrate(exp(x),x,-1,1)),fpprec:42;
(%o3) 2.3504023b0
(%i4) fpprec;
(%o4) 16



17

(%i5) (brombergtol:0.0b0,brombergit:100)$
(%i6) b15:(brombergabs:1.0b-15,bromberg(exp(x),x,-1,1) ),fpprec:30;
(%o6) 2.3504023b0
(%i7) abs(b15 - tval),fpprec:42;
(%o7) 6.9167325b-24
(%i8) b20:(brombergabs:1.0b-20,bromberg(exp(x),x,-1,1) ),fpprec:30;
(%o8) 2.3504023b0
(%i9) abs(b20 - tval),fpprec:42;
(%o9) 1.5154761b-29

We see that, for the case of this test integral involving a well behaved integrand, the actual error of the re-
sult returned by bromberg is much smaller than the requested “difference error” supplied by the parameter
brombergabs.

For later use, we define qbromberg (in a file qbromberg.mac) with the code:

qbromberg(%f,a,b,rprec,fp, itmax ) :=
block([brombergtol,brombergabs,brombergit,

fpprec:fp ],
if rprec > fp then
( print(" rprec should be less than fp "),

return(done) ),
brombergabs : bfloat(10ˆ(-rprec)),
brombergtol : 0.0b0,
brombergit : itmax,
bromberg(%f(x),x,a,b) )$

This function, with the syntax

qbromberg ( f, a, b, rprec, fp, itmax )

uses the Maxima function bromberg to integrate the Maxima function f over the interval [a, b], setting
the local value of fpprec to fp, setting brombergtol to 0, setting brombergabs to 10−rprec, where
rprec is called the “requested precision”.

Here is a test of qbromberg for this simple integral.

(%i10) load(qbromberg)$
(%i11) qbr20 : qbromberg(exp,-1,1,20,40,100);
(%o11) 2.3504023b0
(%i12) abs(qbr20 - tval);
(%o12) 0.0b0
(%i13) abs(qbr20 - tval),fpprec:40;
(%o13) 1.0693013b-29

We have to be careful in the above step-by-step method to set fpprec to a large enough value to see the actual
size of the error in the returned answer.
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Instead of the work involved in the above step by step method, it is more convenient to define a function qbrlist
which is passed a desired fpprec as well as a list of requested precision goals for bromberg. The function
qbrlist then assumes a sufficiently accurate tval is globally defined, and proceeds through the list to calcu-
late the bromberg value for each requested precision, computes the error in the result, and prints a line con-
taining (rprec, fpprec, value, value-error). Here is the code for such a function, available in qbromberg.mac:

qbrlist(%f,a,b,rplist,fp,itmax) :=
block([fpprec:fp,fpprintprec,brombergtol,

brombergabs,brombergit,val,verr,pr],
if not listp(rplist) then (print("rplist # list"),return(done)),
brombergtol : 0.0b0,
brombergit : itmax,
fpprintprec:8,
print(" rprec fpprec val verr "),
print(" "),
for pr in rplist do
( brombergabs : bfloat(10ˆ(-pr)),
val: bromberg(%f(x),x,a,b),
verr: abs(val - tval),
print(" ",pr," ",fp," ",val," ",verr) ) )$

and here is an example of use of qbrlist in which the requested precision rprec (called pr in the code) is
set to three different values supplied by the list rplist for each setting of fpprec used. We first define an
accurate comparison value tval:

(%i1) (fpprintprec:8, load(brmbrg), load(qbromberg))$
(%i2) tval: bfloat(integrate(exp(x),x,-1,1)),fpprec:42;
(%o2) 2.3504023b0

Here is our test for three different values of fpprec:

(%i3) qbrlist(exp,-1,1,[10,15,17 ],20,100)$
rprec fpprec val verr
10 20 2.3504023b0 4.5259436b-14
15 20 2.3504023b0 1.3552527b-20
17 20 2.3504023b0 1.3552527b-20

(%i4) qbrlist(exp,-1,1,[10,20,27 ],30,100)$
rprec fpprec val verr
10 30 2.3504023b0 4.5259437b-14
20 30 2.3504023b0 1.4988357b-29
27 30 2.3504023b0 5.5220263b-30

(%i5) qbrlist(exp,-1,1,[10,20,30,35],40,100)$
rprec fpprec val verr
10 40 2.3504023b0 4.5259437b-14
20 40 2.3504023b0 1.0693013b-29
30 40 2.3504023b0 1.1938614b-39
35 40 2.3504023b0 1.1938614b-39

We see that with fpprec equal to 40, increasing rprec from 30 to 35 results in no improvement in the actual
error of the result.
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When bromberg Fails

If the integrand has end point algebraic and/or logarithmic singularities, bromberg may fail. Here is an example
in which the integrand has a logarithmic singularity at the lower end point:

∫ 1

0

√
t ln(t)dt. The integrate

function has no problem with this integral.

(%i6) g(x):= sqrt(x)*log(x)$
(%i7) integrate(g(t),t,0,1);

4
(%o7) - -

9
(%i8) (load(brmbrg),load(qbromberg))$
(%i9) qbromberg(g,0,1,30,40,100);
log(0) has been generated.
#0: qbromberg(%f=g,a=0,b=1,rprec=30,fp=40,itmax=100)
-- an error. To debug this try debugmode(true);

You can instead use the tanh-sinh quadrature method for this integral (see Sec. 9.3.3).

9.3.2 A Double Exponential Quadrature Method for a ≤ x < ∞
This method (H. Takahasi and M. Mori, 1974; see Sec 9.3.3) is effective for integrands which contain a factor
with some sort of exponential damping as the integration variable becomes large.

An integral of the form
∫∞
a

g(y)dy can be converted into the integral
∫∞
0

f(x)dx by making the change of
variable of integration y → x given by y = x + a. Then f(x) = g(x + a).

The double exponential method used here then converts the integral
∫∞
0

f(x)dx into the integral
∫∞
−∞F(u)du

using a variable transformation x → u:

x(u) = exp(u− exp(−u)) (9.2)

and hence

F(u) = f(x(u))w(u), where w(u) =
dx

du
= exp(−exp(−u)) + x(u). (9.3)

You can confirm that x(0) = exp(−1), w(0) = 2x(0) and that x(−∞) = 0, x(∞) = ∞.

Because of the rapid decay of the integrand when the magnitude of u is large, one can approximate the value of
the infinite domain u integral by using a trapezoidal numerical approximation with step size h using a modest
number (2N + 1) of function evaluations.

I(h,N) ' h
N∑

j=−N

F(uj) where uj = j h (9.4)

This method is implemented in the Ch. 8 file quad_de.mac. We first demonstrate the available functions on
the simple integral

∫∞
0

e−x dx = 1.

(%i1) fpprintprec:8$
(%i2) g(x):= exp(-x)$
(%i3) tval : bfloat(integrate(g(x),x,0,inf)),fpprec:45;
(%o3) 1.0b0
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(%i4) load(quad_de);
(%o4) c:/work3/quad_de.mac
(%i5) quad_de(g,0,30,40);
(%o5) [1.0b0, 4, 4.8194669b-33]
(%i6) abs(first(%) - tval),fpprec:45;
(%o6) 9.1835496b-41

The package function quad_de(f, a, rp, fp) integrates the Maxima function f over the domain [x ≥ a],
using fpprec : fp, and returns a three element list when vdiff (the absolute value of the difference obtained
for the integral in successive k levels) becomes less than or equal to 10−rp. The parameter rp is called the
“requested precision”, and the value of h is repeatedly halved until the vdiff magnitude either satisfies this
criterion or starts increasing. The first element is the appoximate value of the integral. The second element (4
above) is the “final k-level” used, where h = 2−k. The third and last element is the final value of vdiff. We see
in the above example that requesting precision rp = 30 and using floating point precision fpprec : 40 results
in an answer good to about 40 digits. This sort of accuracy is typical.

The package function idek(f, a, k, fp) integrates the Maxima function f over the domain [a,∞] using
a “k-level approximation” with h = 1/2k and fpprec : fp.

(%i7) idek(g,0,4,40);
(%o7) 1.0b0
(%i8) abs(% - tval),fpprec:45;
(%o8) 9.1835496b-41

The package function idek_e(f, a, k, fp) does the same calculation as idek(f, a, k, fp), but returns
both the approximate value of the integral and also a rough estimate of the amount of the error which is due
to the floating point arithmetic precision being used. (The error of the approximation has three contributions:
1. the quadrature algorithm being used, 2. the step size h being used, and 3. the precision of the floating point
arithmetic being used.)

(%i9) idek_e(g,0,4,40);
(%o9) [1.0b0, 8.3668155b-42]
(%i10) abs(first(%) - tval),fpprec:45;
(%o10) 9.1835496b-41

The package function ide(f, a, rp, fp) follows the same path as quad_de(f, a, rp, fp), but
shows the progression toward success as the k level increases ( and h decreases ):

(%i11) ide(g,0,30,40);
rprec = 30 fpprec = 40

k value vdiff
1 1.0b0
2 1.0b0 4.9349774b-8
3 9.9999999b-1 4.8428706b-16
4 1.0b0 4.8194669b-33
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The package function ide_test(f, a, rp, fp) follows the path of ide(f, a, rp, fp), but adds
to the table the value of the error of the approximate result for each k level attempted. The use of this function
depends on an accurate value of the integral being bound to the global variable tval.

(%i12) ide_test(g,0,30,40);
rprec = 30 fpprec = 40

k value vdiff verr
1 1.0b0 4.9349775b-8
2 1.0b0 4.9349774b-8 4.8428706b-16
3 9.9999999b-1 4.8428706b-16 4.8194668b-33
4 1.0b0 4.8194669b-33 9.1835496b-41

Test Integral 1

Here we test this double exponential method code with the known integral
∫ ∞

0

e−t

√
t

dt =
√

π (9.5)

(%i13) g(x):= exp(-x)/sqrt(x)$
(%i14) integrate(g(t),t,0,inf);
(%o14) sqrt(%pi)
(%i15) tval : bfloat(%),fpprec:45;
(%o15) 1.7724538b0
(%i16) quad_de(g,0,30,40);
(%o16) [1.7724538b0, 4, 1.0443243b-34]
(%i17) abs(first(%) - tval),fpprec:45;
(%o17) 1.8860005b-40
(%i18) idek_e(g,0,4,40);
(%o18) [1.7724538b0, 2.7054206b-41]

Again we see that the combination rp = 30, fp = 40 leads to an answer good to about 40 digits of precision.

Test Integral 2

Our second known integral is ∫ ∞

0

e−t2/2 dt =
√

π/2 (9.6)

(%i19) g(x) := exp(-xˆ2/2)$
(%i20) tval : bfloat(sqrt(%pi/2)),fpprec:45$
(%i21) quad_de(g,0,30,40);
(%o21) [1.2533141b0, 5, 1.099771b-31]
(%i22) abs(first(%) - tval),fpprec:45;
(%o22) 2.1838045b-40
(%i23) idek_e(g,0,5,40);
(%o23) [1.2533141b0, 1.3009564b-41]
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Test Integral 3

Our third test integral is ∫ ∞

0

e−t cos t dt = 1/2 (9.7)

(%i24) g(x) := exp(-x)*cos(x)$
(%i25) integrate(g(x),x,0,inf);

1
(%o25) -

2
(%i26) tval : bfloat(%),fpprec:45$
(%i27) quad_de(g,0,30,40);
(%o27) [5.0b-1, 5, 1.7998243b-33]
(%i28) abs(first(%) - tval),fpprec:45;
(%o28) 9.1835496b-41
(%i29) idek_e(g,0,5,40);
(%o29) [5.0b-1, 9.8517724b-42]

9.3.3 The tanh-sinh Quadrature Method for a ≤ x ≤ b

H. Takahasi and M. Mori (1974: see references at the end of this section) presented an efficient method for
the numerical integration of the integral of a function over a finite domain. This method is known under the
names “tanh-sinh method” and “double exponential method”. This method can handle integrands which have
algebraic and logarithmic end point singularities, and is well suited for use with arbitrary precision work.

Quoting (loosely) David Bailey’s (see references below) slide presentations on this subject:

The tanh-sinh quadrature method can accurately handle all “reasonable functions”, even those
with “blow-up singularities” or vertical slopes at the end points of the integration interval. In many
cases, reducing the step size h by half doubles the number of correct digits in the result returned
(”quadratic convergence”).

An integral of the form
∫ b

a
g(y)dy can be converted into the integral

∫ 1

−1
f(x)dx by making the change

of variable of integration y → x given by y = αx + β with α = (b− a)/2 and β = (a + b)/2. Then
f(x) = αg(αx + β).

The tanh-sinh method introduces a change of variables x → u which implies
∫ 1

−1

f(x)dx =

∫ ∞

−∞
F(u)du. (9.8)

The change of variables is expressed by

x(u) = tanh
(π

2
sinhu

)
(9.9)

and you can confirm that

u = 0 ⇒ x = 0, u → −∞⇒ x → −1,u →∞⇒ x → 1 (9.10)

We also have x(−u) = −x(u).
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The “weight” w(u) = dx(u)/du is

w(u) =
π
2
coshu

cosh2
(

π
2
sinhu

) (9.11)

with the property w(−u) = w(u), in terms of which F(u) = f(x(u)w(u). Moreover, F(u) has “double
exponential behavior” of the form

F(u) ≈ exp
(
−π

2
exp( |u | )

)
for u → ±∞. (9.12)

Because of the rapid decay of the integrand when the magnitude of u is large, one can approximate the value
of the infinite domain integral by using a trapezoidal numerical approximation with step size h using a modest
number (2N + 1) of function evaluations.

I(h,N) ' h
N∑

j=−N

F(uj) where uj = j h (9.13)

This method is implemented in the Ch.8 file quad_ts.mac and we will illustrate the available functions us-
ing the simple integral

∫ 1

−1
ex dx.

The package function quad_ts (f, a, b, rp, fp ) is the most useful workhorse for routine use, and
uses the tanh-sinh method to integrate the Maxima function f over the finite interval [a, b], stopping when
the absolute value of the difference (Ik − Ik−1) is less than 10−rp (rp is the “requested precision” for the
result), using fp digit precision arithmetic (fpprec set to fp, and bfloat being used to enforce this arithmetic
precision). This function returns the list
[ approx-value, k-level-used, abs(vdiff) ], where the last element should be smaller than
10−rp .

(%i1) fpprintprec:8$
(%i2) tval : bfloat( integrate( exp(x),x,-1,1 )),fpprec:45;
(%o2) 2.3504023b0
(%i3) load(quad_ts);

_kmax% = 8 _epsfac% = 2
(%o3) c:/work3/quad_ts.mac
(%i4) bfprint(tval,45)$

number of digits = 45
2.35040238728760291376476370119120163031143596b0

(%i5) quad_ts(exp,-1,1,30,40);
construct _yw%[kk,fpprec] array for kk = 8 and fpprec = 40 ...working...

(%o5) [2.3504023b0, 5, 0.0b0]
(%i6) abs(first(%) - tval),fpprec:45;
(%o6) 2.719612b-40

A value of the integral accurate to about 45 digits is bound to the symbol tval. The package function
bfprint(bf, fpp) allows controlled printing of fpp digits of the “true value” tval to the screen. We then
compare the approximate quadrature result with this “true value”. The package quad_ts.mac defines two
global parameters. _kmax% is the maximum “k-level” possible (the defined default is 8, which means the
minimum step size for the transformed “u-integral” is du = h = 1/28 = 1/256. The actual “k-level” needed
to return a result with the requested precision rp is the integer in the second element of the returned list. The
global parameter _epsfac% (default value 2) is used to decide how many (y, w) numbers to pre-compute
(see below).
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We see that a “k-level” approximation with k = 5 and h = 1/25 = 1/32 returned an answer with an actual
precision of about 40 digits (when rp = 30 and fp = 40).

The first time 40 digit precision arithmetic is called for, a set of (y, w) numbers are calculated and stored in an
array which we call _yw%[8, 40]. The y(u) values will later be converted to x(u) numbers using high
precision, and the original integrand function f(x(u)) is also calculated at high precision. The w(u) num-
bers are what we call “weights”, and are needed for the numbers F(u) = f(x(u))w(u) used in the trapezoidal
rule evaluation. The package precomputes pairs (y, w) for larger and larger values of u until the magnitude
of the weight w becomes less than eps, where eps = 10−np, where n is the global parameter _epsfac%
(default 2) and p is the requested floating point precision fp.

Once the set of 40-digit precision (y, w) numbers have been “pre-computed”, they can be used for the
evaluation of any similar precision integrals later, since these numbers are independent of the actual function
being integrated, but depend only on the nature of the tanh-sinh transformation being used.

The package function qtsk(f, a, b, k, fp) (note: arg k replaces rp ) integrates the Maxima function
f over the domain [a,b] using a “k-level approximation” with h = 1/2k and fpprec : fp.

(%i7) qtsk(exp,-1,1,5,40);
(%o7) 2.3504023b0
(%i8) abs(% - tval),fpprec:45;
(%o8) 2.719612b-40

A heuristic value of the error contribution due to the arithmetic precision being used (which is separate from
the error contribution due to the nature of the algorithm and the step size being used) can be found by using
the package function qtsk_e(f, a, b, k, fp);. The first element of the returned list is the value of
the integral, the second element of the returned list is a rough estimate of the contribution of the floating point
arithmetic precision being used to the error of the returned answer.

(%i9) qtsk_e(exp,-1,1,5,40);
(%o9) [2.3504023b0, 2.0614559b-94]
(%i10) abs(first(%) - tval),fpprec:45;
(%o10) 2.719612b-40

The very small estimate of the arithmetic precision contribution (two parts in 1094) to the error of the
answer is due to the high precision being used to convert from the pre-computed y to the needed abcissa x via
x : bfloat(1− y) and the subsequent evaluation f(x). The precision being used depends on the size of the
smallest y number, which will always be that appearing in the last element of the hashed array _yw%[8, 40].

(%i11) last(_yw%[8,40]);
(%o11) [4.7024891b-83, 8.9481574b-81]

(In Eq. (9.13) we have separated out the (u = 0, x = 0) term, and used the symmetry properties x(−u) = −x(u),
and w(−u) = w(u) to write the remainder as a sum over positive values of u (and hence positive values of x)
so only the large u values of y(u) need to be pre-computed).

We see that the smallest y number is about 5× 10−83 and if we subtract this from 1 we will get 1 unless we
use a very high precision. It turns out that as u approaches plus infinity, x (as used here) approaches b (which
is 1 in our example) from values less than b. Since a principal virtue of the tanh-sinh method is its ability to
handle integrands which “blow up” at the limits of integration, we need to make sure we stay away (even if
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only a little) from those end limits.

We can see the precision with which the arithmetic is being carried out in this crucial step by using the fpxy(fp)
function

(%i12) fpxy(40)$
the last y value = 4.7024891b-83
the fpprec being used for x and f(x) is 93

and this explains the small number returned (as the second element) by qtsk_e(exp, -1, 1, 5, 40);.

The package function qts(f, a, b, rp, fp) follows the same path as quad_ts(f, a, b, rp, fp),
but shows the progression toward success as the k level increases ( and h decreases ):

(%i13) qts(exp,-1,1,30,40)$
rprec = 30 fpprec = 40
k newval vdiff
1 2.350282b0
2 2.3504023b0 1.2031242b-4
3 2.3504023b0 8.136103b-11
4 2.3504023b0 1.9907055b-23
5 2.3504023b0 0.0b0

The package function qts_test(f, a, b, rp, fp) follows the path of qts(f, a, b, rp, fp),
but adds to the table the value of the error of the approximate result for each k level attempted. The use of this
function depends on an accurate value of the integral being bound to the global variable tval.

(%i14) qts_test(exp,-1,1,30,40)$
rprec = 30 fpprec = 40

k value vdiff verr
1 2.350282b0 1.2031234b-4
2 2.3504023b0 1.2031242b-4 8.136103b-11
3 2.3504023b0 8.136103b-11 1.9907055b-23
4 2.3504023b0 1.9907055b-23 2.7550648b-40
5 2.3504023b0 0.0b0 2.7550648b-40

Test Integral 1

Here we test this tanh-sinh method code with the known integral which confounded bromberg in Sec. 9.3.1 :
∫ 1

0

√
t ln(t)dt = −4/9 (9.14)

(%i15) g(x):= sqrt(x)*log(x)$
(%i16) tval : bfloat(integrate(g(t),t,0,1)),fpprec:45;
(%o16) - 4.4444444b-1
(%i17) quad_ts(g,0,1,30,40);
(%o17) [- 4.4444444b-1, 5, 3.4438311b-41]
(%i18) abs(first(%) - tval),fpprec:45;
(%o18) 4.4642216b-41
(%i19) qtsk_e(g,0,1,5,40);
(%o19) [- 4.4444444b-1, 7.6556481b-43]

Requesting thirty digit accuracy with forty digit arithmetic returns a value for this integral which has about
forty digit precision. Note that “vdiff” is approximately the same as the actual absolute error.
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Test Integral 2

Consider the integral ∫ 1

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96. (9.15)

(%i20) g(x):= atan(sqrt(2+xˆ2))/(sqrt(2+xˆ2)*(1+xˆ2))$
(%i21) integrate(g(t),t,0,1);

1
/ 2
[ atan(sqrt(t + 2))

(%o21) I --------------------- dt
] 2 2
/ (t + 1) sqrt(t + 2)
0

(%i22) quad_qags(g(t),t,0,1);
(%o22) [0.514042, 5.70701148E-15, 21, 0]
(%i23) float(5*%piˆ2/96);
(%o23) 0.514042
(%i24) tval: bfloat(5*%piˆ2/96),fpprec:45;
(%o24) 5.1404189b-1
(%i25) quad_ts(g,0,1,30,40);
(%o25) [5.1404189b-1, 5, 1.5634993b-36]
(%i26) abs(first(%) - tval),fpprec:45;
(%o26) 7.3300521b-41
(%i27) qtsk_e(g,0,1,5,40);
(%o27) [5.1404189b-1, 1.3887835b-43]

Test Integral 3

We consider the integral ∫ 1

0

√
t√

1− t2
dt = 2

√
π Γ(3/4)/Γ(1/4) (9.16)

(%i28) g(x):= sqrt(x)/sqrt(1 - xˆ2)$
(%i29) quad_qags(g(t),t,0,1);
(%o29) [1.1981402, 8.67914629E-11, 567, 0]
(%i30) integrate(g(t),t,0,1);

1 3
beta(-, -)

2 4
(%o30) ----------

2
(%i31) tval : bfloat(%),fpprec:45;
(%o31) 1.1981402b0
(%i32) quad_ts(g,0,1,30,40);
(%o32) [1.1981402b0, 5, 1.3775324b-40]
(%i33) abs(first(%) - tval),fpprec:45;
(%o33) 1.8628161b-40
(%i34) qtsk_e(g,0,1,5,40);
(%o34) [1.1981402b0, 1.5833892b-45]
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An alternative route to the “true value” is to convert beta to gamma’s using makegamma:

(%i35) makegamma(%o30);
3

2 sqrt(%pi) gamma(-)
4

(%o35) --------------------
1

gamma(-)
4

(%i36) float(%);
(%o36) 1.1981402
(%i37) bfloat(%o11),fpprec:45;
(%o37) 1.1981402b0

Test Integral 4

We next consider the integral ∫ 1

0

ln2 t dt = 2 (9.17)

(%i38) g(x) := log(x)ˆ2$
(%i39) integrate(g(t),t,0,1);
(%o39) 2
(%i40) quad_ts(g,0,1,30,40);
(%o40) [2.0b0, 5, 0.0b0]
(%i41) abs( first(%) - bfloat(2) ),fpprec:45;
(%o41) 1.8367099b-40
(%i42) qtsk_e(g,0,1,5,40);
(%o42) [2.0b0, 1.2570464b-42]

Test Integral 5

We finally consider the integral ∫ π/2

0

ln(cos t)dt = −π ln(2)/2 (9.18)

(%i43) g(x) := log( cos(x) )$
(%i44) quad_qags(g(t),t,0,%pi/2);
(%o44) [- 1.088793, 1.08801856E-14, 231, 0]
(%i45) integrate(g(t),t,0,%pi/2);

%pi
---
2

/
[

(%o45) I log(cos(t)) dt
]
/
0
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(%i46) float(-%pi*log(2)/2);
(%o46) - 1.088793
(%i47) tval : bfloat(-%pi*log(2)/2),fpprec:45;
(%o47) - 1.088793b0
(%i48) quad_ts(g,0,%pi/2,30,40);
(%o48) [1.2979374b-80 %i - 1.088793b0, 5, 9.1835496b-41]
(%i49) ans: realpart( first(%) );
(%o49) - 1.088793b0
(%i50) abs(ans - tval),fpprec:45;
(%o50) 1.9661653b-40
(%i51) qtsk_e(g,0,%pi/2,5,40);
(%o51) [1.2979374b-80 %i - 1.088793b0, 2.4128523b-42]

We see that the tanh-sinh result includes a tiny imaginary part due to bigfloat errors, and taking the real part
produces an answer good to about 40 digits (using rp = 30, fp = 40).

References for the tanh-sinh Quadrature Method

This method was initially described in the article Double Exponential Formulas for Numerical Integration, by Hidetosi
Takahasi and Masatake Mori, in the journal Publications of the Research Institute for Mathematical Sciences ( Publ.
RIMS), vol.9, Number 3, (1974), 721-741, Kyoto University, Japan. A recent summary by the second author is Discovery
of the Double Exponential Transformation and Its Developments, by Masatake Mori, Publ. RIMS, vol.41, Number 4,
(2005), 897-935. Both of the above articles can be downloaded from the Project Euclid RIMS webpage

http://projecteuclid.org/
DPubS?service=UI&version=1.0&verb=Display&page=past&handle=euclid.prims

A good summary of implementation ideas can be found in the report Tanh-Sinh High-Precision Quadrature, by David
H. Bailey, Jan. 2006, LBNL-60519, which can be downloaded from the webpage

http://crd.lbl.gov/˜dhbailey/dhbpapers/

Further Improvements for the tanh-sinh Quadrature Method

The code provided in the file quad_ts.mac has been lightly tested, and should be used with caution.

No proper investigation has been made of the efficiency of choosing to use a floating point precision (for all terms of the
sum) based on the small size of the smallest y value.

No attempt has been made to translate into Lisp and compile the code to make timing trials for comparison purposes.

These (and other) refinements are left to the initiative of the hypothetical alert reader of limitless dedication (HAROLD).

9.3.4 The Gauss-Legendre Quadrature Method for a ≤ x ≤ b

Loosely quoting from David Bailey’s slide presentations (see references at the end of the previous section)

The Gauss-Legendre quadrature method is an efficient method for continuous, well-behaved func-
tions. In many cases, doubling the number of points at which the integrand is evaluated doubles
the number of correct digits in the result. This method performs poorly for functions with alge-
braic and/or logarithmic end point singularities. The cost of computing the zeros of the Legendre
polynomials and the corresponding “weights” increases as n2 and thus becomes impractical for
use beyond a few hundred digits.
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Since one can always make a change of integration variable from the domain [a, b] to the integration domain
[-1, 1], this method approximates an integral over [-1, 1] as the sum

∫ 1

−1

f(x)dx ≈
N∑

j=1

wj f(xj) (9.19)

where the xj are the roots of the N-th degree Legendre polynomial PN(x) on [-1, 1], and the weights wj are

wj =
−2

(N + 1)P′
N(xj)PN+1(xj)

(9.20)

This method is implemented with our Ch.9 package file quad_gs.mac, and Richard Fateman’s lisp file:

http://www.cs.berkeley.edu/˜fateman/generic/quad-maxima.lisp

which should be downloaded to use this package.

Except for the “driver” Maxima function quad_gs(f,a,b,rp), all the Maxima functions in quad_gs.mac
are functions defined by Fateman in either the comment section of the above lisp file, or in the file
http://www.cs.berkeley.edu/˜fateman/papers/quadmax.mac.

An introduction to arbitrary precision code and some background to the problem of arbitrary precision quadra-
ture has been provided by Richard Fateman in his draft paper Numerical Quadrature in a Symbolic/Numerical
Setting, quad.pdf (see Sec. 9.2.6).

We will illustrate the available functions using the simple integral
∫ 1

−1
ex dx.

The package function gaussunit(f, N) integrates the Maxima function f over the domain [−1,1] using N point
Gauss-Legendre quadrature.

(%i1) load("quad-maxima.lisp");
(%o1) quad-maxima.lisp
(%i2) fpprintprec:8$
(%i3) tval : bfloat(integrate(exp(x),x,-1,1)),fpprec:45;
(%o3) 2.3504023b0
(%i4) load(quad_gs);
(%o4) c:/work3/quad_gs.mac
(%i5) arrays;
(%o5) [ab_and_wts]
(%i6) arrayinfo(ab_and_wts);
(%o6) [hashed, 2]
(%i7) gaussunit(exp,4);
(%o7) 2.350402b0
(%i8) abs(% - tval),fpprec:45;
(%o8) 2.9513122b-7
(%i9) fpprec;
(%o9) 16
(%i10) arrayinfo(ab_and_wts);
(%o10) [hashed, 2, [4, 16]]
(%i11) first( ab_and_wts[4, 16] );
(%o11) [8.6113631b-1, 3.3998104b-1]
(%i12) second( ab_and_wts[4, 16] );
(%o12) [3.4785484b-1, 6.5214515b-1]
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(%i13) lp4 : legenp(4,x);
4 2

35 x 15 x 3
(%o13) ----- - ----- + -

8 4 8
(%i14) float(solve(lp4));
(%o14) [x = - 0.861136, x = 0.861136, x = - 0.339981, x = 0.339981]

With the default value of fpprec = 16 and using only four integrand evaluation points, the error is about 2
parts in 107. The first element of the two index hashed array ab_and_wts[4,16] is a list of the positive
zeros of the fourth order Legendre polynomial P4(x) ( calculated with the arithmetic precision fpprec = 16).

That fourth order Legendre polynomial P4(x) can be displayed with this package using legenp(4, x).
Using solve we see that the roots for negative x are simply the the positive roots with a minus sign, so the
algorithm used makes use of this symmetry and keeps track of only the positive roots.

We can verify that the list of roots returned is correct to within the global floating point precision (we do this
two different ways):

(%i15) lfp4(x) := legenp(4,x)$
(%i16) map(’lfp4,%o11);
(%o16) [0.0b0, - 3.4694469b-18]
(%i17) map( lambda([z],legenp(4,z)),%o11 );
(%o17) [0.0b0, - 3.4694469b-18]

The second element of ab_and_wts[4,16] is a list of the weights which are associated with the positive
roots (the negative roots have the same weights), with order corresponding to the order of the returned positive
roots.

The package function gaussunit_e(f, N) does the same job as gaussunit(f, N), but returns a
rough estimate of the amount contributed to the error by the floating point precision used (as the second element
of a list:

(%i18) gaussunit_e(exp,4);
(%o18) [2.350402b0, 1.2761299b-17]

We see that the error attributable to the floating point precision used is insignificant compared to the error due
to the low number of integrand evaluation points for this example.

An arbitrary finite integration interval is allowed with the functions gaussab(f, a, b, N) and
gaussab_e(f, a, b, N) which use N point Gauss-Legendre quadrature over the interval [a,b], with the
latter function being the analog of gaussunit_e(f, N).

(%i19) gaussab(exp,-1,1,4);
(%o19) 2.350402b0
(%i20) abs(% - tval),fpprec:45;
(%o20) 2.9513122b-7
(%i21) gaussab_e(exp,-1,1,4);
(%o21) [2.350402b0, 1.2761299b-17]
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The package function quad_gs (f, a, b, rp ) integrates the Maxima function f over the finite inter-
val [a,b], successively doubling the number of integrand evaluation points, stopping when the absolute value
of the difference (In − In/2) is less than 10−rp (rp is the “requested precision” for the result), using the global
setting of fpprec to use the corresponding precision arithmetic. We emphasize that Fateman’s code uses a
global setting of fpprec to achieve higher precision quadrature, rather than the method used in the previous two
sections in which fpprec was set “locally” inside a block. This function returns the list
[ approx-value, number-function-evaluations, abs(vdiff) ], where the last element
should be smaller than 10−rp.

Here we test this function for fpprec = 16, 30, and 40.

(%i22) quad_gs(exp,-1,1,10);
fpprec = 16

(%o22) [2.3504023b0, 20, 6.6613381b-16]
(%i23) abs(first(%) -tval),fpprec:45;
(%o23) 6.2016267b-16
(%i24) fpprec:30$
(%i25) quad_gs(exp,-1,1,20);

fpprec = 30

(%o25) [2.3504023b0, 20, 1.2162089b-24]
(%i26) abs(first(%) -tval),fpprec:45;
(%o26) 2.2001783b-30
(%i27) fpprec:40$
(%i28) quad_gs(exp,-1,1,30);

fpprec = 40

(%o28) [2.3504023b0, 40, 1.8367099b-40]
(%i29) abs(first(%) -tval),fpprec:45;
(%o29) 2.7905177b-40
(%i30) gaussab_e(exp,-1,1,40);
(%o30) [2.3504023b0, 1.8492214b-41]

We have checked the contribution to the error due to the forty digit arithmetic precision used, with N = 40
point Gauss-Legendre quadrature (remember that N is the middle element of the list returned by
quad_gs (f, a, b, rp ) and is also the last argument of the function gaussab_e(f, a, b, N).

We see that requesting 30 digit precision for the answer while using the global fpprec set to 40 results in an
answer good to about 39 digits. Finally, let’s check on what abscissae and weight arrays have been calculated
so far:

(%i31) arrayinfo(ab_and_wts);
(%o31) [hashed, 2, [4, 16], [10, 16], [10, 30], [10, 40], [20, 16], [20, 30],

[20, 40], [40, 40]]

Using quad_gs (f, a, b, rp ) with fpprec = 16 led to the calculation of the abscissae and weight
array for the index pairs [10,16] and [20,16] before the requested precision was achieved (the func-
tion always starts with N = 10 point quadrature and then successively doubles that number until success is
achieved).

Using quad_gs (f, a, b, rp ) with fpprec = 30 led to the calculation of the abscissae and weight
array for the index pairs [10,30] and [20,30] before the requested precision was achieved.
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Using quad_gs (f, a, b, rp ) with fpprec = 40 led to the calculation of the abscissae and weight
array for the index pairs [10,40], [20,40], and [40,40] before the requested precision was achieved.

Finally, we have the function quad_gs_table(f, a, b, rp) which prints out a table showing the pro-
gression toward success:

(%i32) quad_gs_table(exp,-1,1,30)$
fpprec = 40

new val N vdiff
2.3504023b0 10
2.3504023b0 20 1.2162183b-24
2.3504023b0 40 1.8367099b-40
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10.1 Introduction
In chapter 10 we discuss the Fourier series expansion of a given function, the computation of Fourier transform
integrals, and the calculation of Laplace transforms (and inverse Laplace transforms).

10.2 Fourier Series Expansion of a Function
10.2.1 Fourier Series Expansion of a Function over (−π, π)

A Fourier series expansion designed to represent a given function f(x) defined over a finite interval (−π, π), is
a sum of terms

f(x) =
1

2
a0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)] (10.1)

and the constant coefficients (an, bn) are

an =
1

π

∫ π

−π

f(y) cos(ny)dy, bn =
1

π

∫ π

−π

f(y) sin(ny)dy. (10.2)

(For a derivation of these equations see Sec.10.2.8 and Eqs.(10.20) and (10.21).)

Whether or not you are working with a function which is periodic, the Fourier expansion will represent a peri-
odic function for all x, in this case having period 2 π.

The first term of the expansion
1

2
a0 =

1

2π

∫ π

−π

f(y)dy = 〈f(x)〉 (10.3)

is the (un-weighted) average of f(x) over the domain (−π,π). Hence a0 will always be twice the average value
of the function over the domain.

If f(x) is an even function (f(−x) = f(x)), then only the cos(nx) terms contribute. If f(x) is an odd function
(f(−x) = −f(x)), then only the sin(nx) terms contribute.

If you are trying to find a fourier expansion for a function or expression f(x) which is a homemade function
which involves ”if..then..else” constructs, it is necessary to do the preliminary work ”by hand”.

On the other hand, if the given function is a smooth function defined in terms of elementary functions and
polynomials, or includes abs of elements of the function, one can use the fourie package to do most of the
work in obtaining the desired Fourier series expansion. This package is calculus/fourie.mac, and there
is also a short demo file fourie.dem.

Although many secondary functions defined in this mac file are usable once you load the package, they are not
documented in the Maxima manual. The Maxima manual gives a brief definition of the primary tools available,
but gives no examples of use, nor is there an example file for such primary functions as fourier, foursimp, and
fourexpand.

If the Fourier series integrals needed for the coefficients are too difficult for integrate, you should use the
Quadpack function quad_qawo described in Chapter 8, Numerical Integration.

3



10.2.2 Fourier Series Expansion of f(x) = x over (−π, π)

We first use the coefficient formulas Eq.(10.2) to find the Fourier expansions of this simple linear function
f(x) = x by hand.

Because the average value of f(x) over the domain (−π, π) is zero, a0 = 0. Because f(x) is an odd function,
we have an = 0 for all n > 0.

(%i1) (declare(n,integer), assume(n > 0 ), facts() );
(%o1) [kind(n, integer), n > 0]
(%i2) define(b(n),integrate(x*sin(n*x),x,-%pi,%pi)/%pi );

n
2 (- 1)

(%o2) b(n) := - --------
n

(%i3) map(’b,makelist(i,i,1,7));
2 1 2 1 2

(%o3) [2, - 1, -, - -, -, - -, -]
3 2 5 3 7

(%i4) fs(nmax) := sum( b(m)*sin(m*x),m,1,nmax)$
(%i5) map(’fs,[1,2,3,4] );

2 sin(3 x)
(%o5) [2 sin(x), 2 sin(x) - sin(2 x), ---------- - sin(2 x) + 2 sin(x),

3
sin(4 x) 2 sin(3 x)

- -------- + ---------- - sin(2 x) + 2 sin(x)]
2 3

The list contains, in order, the lowest approximation 2 sin(x) which retains only the n = 1 term in the expan-
sion, the two term approximation 2 sin(x)− sin(2x), which includes the n = 1, 2 terms, etc. We now load
the draw package and the qdraw package (the latter available with Ch. 5 material on the author’s webpage) to
make two simple plots. We first make a plot showing the function f(x) = x in blue, the one term approximation
(fs(1) = 2 sin(x)) in red, and the two term approximation (fs(2) = 2 sin(x) - sin(2 x)) in green.

(%i6) (load(draw), load(qdraw) )$
qdraw(...), qdensity(...), syntax: type qdraw();

(%i7) qdraw( xr(-5.6,5.6),yr(-4,4),
ex([x,fs(1),fs(2)],x,-%pi,%pi),key(bottom) )$

In this plot (see next page), we have taken control of the x and y range, using the approximate fudge factor 1.4
to relate the horizontal canvas extent to the vertical canvas extent (see our discussion in Ch. 5 if this is all new
to you) to get the geometry approximately correct. In the next plot we include one, two, three and four term
approximations.

(%i8) qdraw( xr(-5.6,5.6),yr(-4,4),
ex([x,fs(1),fs(2),fs(3),fs(4)],x,-%pi,%pi),key(bottom) )$

with the four term approximation in purple being a closer approximation to f(x) = x (see the figure on the next
page).
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Figure 1: One and Two Term Approximations
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Figure 2: 1, 2, 3, and 4 Term Approximations

10.2.3 The calculus/fourie.mac Package: fourier, foursimp, fourexpand

Now let’s show how to get the expansions of this simple linear function using the package calculus/fourie.mac.
A curious feature of fourie.mac is the role that the symbol n plays in the calculation of the fourier coefficients.
If you look at the code of calculus/fourie.mac (about a four page text file), you will see that the function
fourier calls either fourcos, foursin, or fourcoeff, and each of these latter functions declare n to be a local
variable, and then have the statement (inside the block) assume( n > 0 ), which ”leaks out” of the block to
become a global assumption. These functions then call a package function adefint(..) to integrate the function
to be expanded times either cos(nπ x/p) or sin(nπ x/p), (where p will be π for our expansion domain here).
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Finally, after dealing with possible instances of abs(..) in the function to be expanded, adefint calls either
ldefint or integrate with an argument involving these same n dependent trig functions.

Here is a small test of that leakage for both an assume statement and a declare statement.

(%i1) facts();
(%o1) []
(%i2) f(m) := block([n],declare(n,integer),assume( n > 0 ),

if m < 2 then n :2 else n:3,(2*n*m) )$
(%i3) f(1);
(%o3) 4
(%i4) facts();
(%o4) [kind(n, integer), n > 0]
(%i5) is(n>0);
(%o5) true

Another curious feature of the fourie.mac package is that n is not declared to be an integer, and unless
the user of the package does this first, the integration routine may ask questions about signs which may seem
irrelevant to the result. We avoid that trap here and use declare(n, integer) before calling fourier.

(%i1) facts();
(%o1) []
(%i2) (load(fourie), facts() );
(%o2) []
(%i3) (declare(n,integer), facts() );
(%o3) [kind(n, integer)]
(%i4) clist : fourier(x,x,%pi);
(%t4) a = 0

0

(%t5) a = 0
n

n
2 (- 1)

(%t6) b = - --------
n n

(%o6) [%t4, %t5, %t6]
(%i7) facts();
(%o7) [kind(n, integer), n > 0]
(%i8) fs(nmax) := fourexpand(clist,x,%pi, nmax )$
(%i9) map( ’fs, [1,2,3,4] );

2 sin(3 x)
(%o9) [2 sin(x), 2 sin(x) - sin(2 x), ---------- - sin(2 x) + 2 sin(x),

3
sin(4 x) 2 sin(3 x)

- -------- + ---------- - sin(2 x) + 2 sin(x)]
2 3

(%i10) b(n);
(%o10) b(n)

Some comments: you can use foursimp to get extra simplification of the fourier coefficients (if needed) before
defining what I call clist (for coefficient list) which is the list fourexpand needs to generate the expansions
you want. Note fourier produces a separate output for a0 and an, with the second meant for n = 1, 2, . . .,
and there is never an output for b0. We have defined the small function fs(nmax) to make it easier to call
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fourexpand with any value of nmax and to allow the function to be mapped onto a list of integers to show
us the first few approximations. Note that once you call fourier, the assumption n > 0 becomes a global fact.
Also note that the fourie.mac package does not define a Maxima function b(n), although you could use:

(%i11) define(b(n),rhs(%t6) );
n

2 (- 1)
(%o11) b(n) := - --------

n
(%i12) map( ’b, makelist(i,i,1,7) );

2 1 2 1 2
(%o12) [2, - 1, -, - -, -, - -, -]

3 2 5 3 7

If you look at the Maxima code in fourie.mac, you see that because we have an ”odd” function f(x) = x,
fourier calls the package function foursin, which calls package function adefint, which calls the core Maxima
function ldefint for this case.

Those expansion expressions can then be used for plots as above.

10.2.4 Fourier Series Expansion of a Function Over (−p, p)

The Fourier series expansion of a function defined over the interval−p ≤ x ≤ p (and whose Fourier expansion
will represent a function which has a period 2p) can be found from the expansion over the interval (−π, π)
which we have been using above by a simple change of variables in the integrals which appear in Eqs.(10.2)
and (10.1).

However, we will simply use the results derived in Sec.10.2.8, and written down in Eqns (10.18) and (10.19).

f(x) =
1

2
a0 +

∞∑
n=1

[
an cos

(
π nx

p

)
+ bn sin

(
π nx

p

)]
(10.4)

with the corresponding coefficients (for an, n = 0,1, ..., for bn, n = 1, ...):

an =
1

p

∫ p

−p

f(y) cos

(
π ny

p

)
dy, bn =

1

p

∫ p

−p

f(y) sin

(
π ny

p

)
dy. (10.5)

We need to warn the user of the package fourie.mac that they use the symbol a0 to mean our a0/2.

Our a0 is defined by

a0 =
1

p

∫ p

−p

f(x)dx (10.6)

The fourie.mac package’s definition of their a0 is

[a0]fourie.mac =
1

2p

∫ p

−p

f(x)dx (10.7)

which defines the average value of the function over the domain and which becomes the first term of the fourier
series expansion they provide.
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10.2.5 Fourier Series Expansion of the Function |x|
We define the function to have period 4 with f(x) = |x| for−2 ≤ x ≤ 2. This function is an even function of x
so the sin coefficients bn are all zero. The average value of |x| over the domain (−2,2) is greater than zero so
we willl have a non-zero coefficient a0 which we will calculate separately. We do this calculation by hand here.

Note that the Maxima function integrate cannot cope with abs(x):

(%i13) integrate(abs(x)*cos(n*%pi*x/2),x,-2,2)/2;
2
/
[ %pi n x
I abs(x) cos(-------) dx
] 2
/
- 2

(%o13) ---------------------------
2

so we will split up the region of integration into two sub-intervals: −2 ≤ x ≤ 0, in which |x| = −x, and the
interval 0 ≤ x ≤ 2 in which |x| = x. We will use the formula Eq. (10.5) for the coefficients an (note that
an = 0 if n is even) and the expansion formula Eq. (10.4).

(%i1) (declare(n,integer),assume(n > 0), facts() );
(%o1) [kind(n, integer), n > 0]
(%i2) a0 :integrate(-x,x,-2,0)/2 + integrate(x,x,0,2)/2;
(%o2) 2
(%i3) an : integrate((-x)*cos(n*%pi*x/2),x,-2,0)/2 +

integrate(x*cos(n*%pi*x/2),x,0,2)/2;
n

4 (- 1) 4
(%o3) -------- - -------

2 2 2 2
%pi n %pi n

(%i4) an : (ratsimp(an), factor(%%) );
n

4 ((- 1) - 1)
(%o4) --------------

2 2
%pi n

(%i5) define(a(n),an);
n

4 ((- 1) - 1)
(%o5) a(n) := --------------

2 2
%pi n

(%i6) map( ’a, [1,2,3,4,5] );
8 8 8

(%o6) [- ----, 0, - ------, 0, - -------]
2 2 2

%pi 9 %pi 25 %pi
(%i7) fs(nmax) := a0/2 + sum(a(m)*cos(m*%pi*x/2),m,1,nmax)$
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(%i8) map(’fs, [1, 3, 5] );
%pi x 3 %pi x %pi x

8 cos(-----) 8 cos(-------) 8 cos(-----)
2 2 2

(%o8) [1 - ------------, - -------------- - ------------ + 1,
2 2 2

%pi 9 %pi %pi
5 %pi x 3 %pi x %pi x

8 cos(-------) 8 cos(-------) 8 cos(-----)
2 2 2

- -------------- - -------------- - ------------ + 1]
2 2 2

25 %pi 9 %pi %pi
(%i9) (load(draw),load(qdraw))$

qdraw(...), qdensity(...), syntax: type qdraw();

(%i10) qdraw( ex([abs(x),fs(1)],x,-2,2),key(bottom) )$
(%i11) qdraw( ex([abs(x),fs(1),fs(3)],x,-2,2),key(bottom) )$
(%i12) qdraw( ex([abs(x),fs(5) ],x,-2,2),key(bottom) )$

The first function in the plot list is |x|, represented by abs(x), which appears in the color blue. We see that the
expansion out to n = 5 provides a close fit to |x|. Here is that comparison:

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

1
2

Figure 3: n = 5 Approximation to |x|

We now try out the package fourie.mac on this example:

(%i1) ( load(fourie),facts() );
(%o1) []
(%i2) (declare(n,integer),facts());
(%o2) [kind(n, integer)]
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(%i3) fourier(abs(x),x,2);
(%t3) a = 1

0

n
4 (- 1) 4

(%t4) a = -------- - -------
n 2 2 2 2

%pi n %pi n

(%t5) b = 0
n

(%o5) [%t3, %t4, %t5]
(%i6) clist : foursimp(%);
(%t6) a = 1

0

n
4 ((- 1) - 1)

(%t7) a = --------------
n 2 2

%pi n

(%t8) b = 0
n

(%o8) [%t6, %t7, %t8]
(%i9) facts();
(%o9) [kind(n, integer), n > 0]
(%i10) fs(nmax) := fourexpand(clist,x,2,nmax )$
(%i11) map( ’fs, [1,3,5] );

%pi x 3 %pi x %pi x
8 cos(-----) 8 cos(-------) 8 cos(-----)

2 2 2
(%o11) [1 - ------------, - -------------- - ------------ + 1,

2 2 2
%pi 9 %pi %pi

5 %pi x 3 %pi x %pi x
8 cos(-------) 8 cos(-------) 8 cos(-----)

2 2 2
- -------------- - -------------- - ------------ + 1]

2 2 2
25 %pi 9 %pi %pi

Notice that (a0)fourie = 1 = 1
2

(a0)ourdef , (see Eq. (10.7) ) so that fourie.mac’s expansion starts off with
the term a0 rather than 1

2
a0. Of course, the actual end results look the same, with the first term in this example

being 1, which is the average value of |x| over the domain (−2,2).

Here we chose to use the package function foursimp to simplify the appearance of the coefficients. We see
that fourie.mac is able to cope with the appearance of abs(x) in the integrand, and produces the same
coefficients and expansions as were found ”by hand”.
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10.2.6 Fourier Series Expansion of a Rectangular Pulse

We define f(x) to be a function of period 4, with f = 0 for −2 ≤ x < −1, 3/2 for −1 ≤ x ≤ 1 and f = 0 for
1 < x ≤ 2.

(%i1) f(x):= if x >= -1 and x <= 1 then 3/2 else 0$
(%i2) map(’f, [-3/2,-1,0,1,3/2] );

3 3 3
(%o2) [0, -, -, -, 0]

2 2 2
(%i3) (load(draw),load(qdraw) )$

qdraw(...), qdensity(...), syntax: type qdraw();

(%i4) qdraw( yr(-0.5,2), ex1(f(x),x,-2,2,lw(5),lc(blue) ) )$

The plot of f(x) shows a square pulse with height 3/2 above the x axis and with a width of 2 units over the
interval −1 ≤ x ≤ 1. Over the rest of the domain −2 ≤ x ≤ 2, f(x) is defined to be zero.

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Figure 4: Rectangular Pulse of Height 3/2

Although we can make a plot of the function f(x) as defined , Maxima’s integrate function cannot do anything
useful with it, and hence neither can fourie.mac at the time of writing.

(%i5) integrate(f(x),x,-2,2);
2
/
[ 3

(%o5) I (if (x >= - 1) and (x <= 1) then - else 0) dx
] 2
/
- 2

Hence we must compute the Fourier series expansion ”by hand”. We see that f(x) is an even function
(f(−x) = f(x)), so only the cos(nπ x/2) terms will contribute, so we only need to calculate the an coeffi-
cients.

(%i6) (declare(n,integer), assume(n>0),facts() );
(%o6) [kind(n, integer), n > 0]
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(%i7) a0 : (1/2)*integrate( (3/2),x,-1,1 );
3

(%o7) -
2

(%i8) define(a(n),(1/2)*integrate((3/2)*cos(n*%pi*x/2),x,-1,1));
%pi n

3 sin(-----)
2

(%o8) a(n) := ------------
%pi n

(%i9) map( ’a, makelist(i,i,1,7) );
3 1 3 3

(%o9) [---, 0, - ---, 0, -----, 0, - -----]
%pi %pi 5 %pi 7 %pi

We see that for n > 0, an = 0 for n even, and the non-zero coefficients have n = 1,3,5,7, .... Hence we only
get a better approximation if we increase nmax by 2 each time.

(%i10) fs(nmax) := a0/2 + sum( a(m)*cos(m*%pi*x/2),m,1,nmax )$
(%i11) map( ’fs, [1,3] );

%pi x 3 %pi x %pi x
3 cos(-----) cos(-------) 3 cos(-----)

2 3 2 2 3
(%o11) [------------ + -, - ------------ + ------------ + -]

%pi 4 %pi %pi 4
(%i12) qdraw( yr(-0.5,2),ex([f(x),fs(1),fs(3) ],x,-2,2) )$
(%i13) qdraw( yr(-0.5,2),ex([f(x),fs(11) ],x,-2,2) )$

The plot with the approximations fs(1) and fs(3) was drawn first.
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Figure 5: nmax = 1,3 Approx. to Rectangular Pulse
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Then a plot showing the fs(11) approximation:

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

1
2

Figure 6: nmax = 11 Approx. to Rectangular Pulse

10.2.7 Fourier Series Expansion of a Two Element Pulse

We compute the Fourier series expansion of a function which has the definition over the interval (−10,10)
(and whose Fourier series expansion will be a function with period 20 for all x) given by: for −10 ≤ x < −5,
f = 0, and for −5 ≤ x < 0, f = −5, and for 0 ≤ x ≤ 5, f = 5, and for 5 < x ≤ 10, f = 0. First we define
such a function for our plots.

(%i1) f(x):= if x >= -5 and x < 0 then -5
elseif x >= 0 and x <= 5 then 5 else 0$

(%i2) map(’f,[-6,-5,-1,0,1,5,6]);
(%o2) [0, - 5, - 5, 5, 5, 5, 0]

and plot the function

(%i3) ( load(draw),load(qdraw) )$
qdraw(...), qdensity(...), syntax: type qdraw();

(%i4) qdraw( yr(-8,8), ex1(f(x),x,-10,10,lw(5),lc(blue) ) )$

which looks like
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Figure 7: Two Element Pulse with Period 20
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Since we have an odd function, only terms like bn sin(nπ x/10) will contribute to the expansion, but, just for
practice, we find an too.

(%i5) a0 : (1/10)*( integrate( -5, x, -5, 0 ) +
integrate( 5, x, 0, 5 ) );

(%o5) 0
(%i6) an : (1/10)*(integrate( -5*cos( n*%pi*x/10 ), x, -5, 0 ) +

integrate(5*cos(n*%pi*x/10), x, 0, 5 ) );
(%o6) 0
(%i7) bn : ( (1/10)*(integrate( -5*sin(n*%pi*x/10), x, -5, 0 ) +

integrate( 5*sin(n*%pi*x/10), x, 0, 5 ) ),
ratsimp(%%) );

%pi n
10 cos(-----) - 10

2
(%o7) - ------------------

%pi n
(%i8) define( b(n), bn );

%pi n
10 cos(-----) - 10

2
(%o8) b(n) := - ------------------

%pi n
(%i9) map(’b,makelist(i,i,1,7));

10 10 10 2 10 10
(%o9) [---, ---, -----, 0, ---, -----, -----]

%pi %pi 3 %pi %pi 3 %pi 7 %pi
(%i10) fs(nmax) := sum( b(m)*sin(m*%pi*x/10), m, 1, nmax )$
(%i11) map(’fs,[1,2,3]);

%pi x %pi x %pi x
10 sin(-----) 10 sin(-----) 10 sin(-----)

10 5 10
(%o11) [-------------, ------------- + -------------,

%pi %pi %pi
3 %pi x %pi x %pi x

10 sin(-------) 10 sin(-----) 10 sin(-----)
10 5 10

--------------- + ------------- + -------------]
3 %pi %pi %pi

(%i12) qdraw( xr(-15, 15), yr(-10, 10),
ex( [f(x), fs(1), fs(2) ], x, -10, 10 ) )$

The plot of f(x) with the two lowest approximations looks like
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Figure 8: Two Lowest Order Approximations
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The expansion fs(11) does pretty well as a rough approximation

(%i13) qdraw( xr(-15, 15), yr(-10, 10),
ex( [ f(x), fs(11) ], x, -10, 10 ) )$
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Figure 9: nmax = 11 Approx. to Two Element Pulse

Whether you are working with a periodic function or not, the Fourier series expansion always represents a
periodic function for all x. For this example, the period is 20, and if we make a plot of fs(11) over the range
[-10, 30], we are including two periods.

(%i14) qdraw(yr(-10, 10),ex( fs(11), x, -10 , 30 ) )$

which looks like

-10

-5

 0

 5

 10

-10 -5  0  5  10  15  20  25  30

1

Figure 10: nmax = 11 Approx. Drawn for Two Periods
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10.2.8 Exponential Form of a Fourier Series Expansion

The exponential form of a Fourier series can be based on the completeness and orthogonality (in the Hermitian
sense) of the set of exponential functions

{
exp

(
2π i n x

b− a

)}
(n = 0, ±1, ±2, · · · ) (10.8)

on the interval (a, b). Define the function φn(x) as

φn(x) = exp

(−2π i n x

b− a

)
. (10.9)

This function has the properties

φ−n(x) = φn(x)∗, φn(x) φn(x)∗ = 1. (10.10)

in which the asterisk indicates the complex conjugate.

The (Hermitian) orthogonality of the {φn(x)} over (a, b) is expressed by

∫ b

a

φn(x) φm(x)∗ dx = (b− a) δnm, (10.11)

in which the Kronecker delta symbol is

δnm =

{
1 for n = m
0 for n 6= m.

}
(10.12)

Eq.(10.11) is clearly true for n = m, using Eq.(10.10). For m 6= n, we can simplify this integral by us-
ing the exponential product law eA eB = eA+B, letting r = m− n 6= 0, and changing the variable of inte-
gration x → y via x = (b− a)y + a. The resulting integral in terms of y will then be over the interval
(0, 1). The differential dx → (b− a)dy and (b− a) comes outside the integral. Also, inside the exponential,
x/(b− a) → a/(b− a) + y, and we can take outside an exponential function of a constant. Thus the integral
is proportional to

∫ 1

0
exp(2π i r y)dy, which is proportional to exp(2π i r)− 1 = exp(2π i)r − 1 = 0.

We now write some function of x as a linear combination of the φn(x) with coefficients Cn to be determined.

f(x) =
∞∑

n=−∞
Cn φn(x). (10.13)

To find the {Cn}, we multiply both sides of Eq.(10.13) by φm(x)∗ dx, integrate both sides over the interval
(a, b), and use orthogonality, Eq.(10.11).

∫ b

a

f(x) φm(x)∗ dx =
∞∑

n=−∞
Cn

∫ b

a

φn(x) φm(x)∗ dx

=
∞∑

n=−∞
Cn (b− a) δnm

= (b− a)Cm.
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Hence we have for the coefficients

Cn =
1

(b− a)

∫ b

a

f(x) φn(x)∗ dx. (10.14)

Inserting these coefficients into Eq.(10.13) we can write

f(x) =
∞∑

n=−∞
Cn φn(x)

=
∞∑
−∞

exp

(−2π i n x

b− a

)
1

b− a

∫ b

a

f(y) exp

(
2π i n y

b− a

)
dy

=
1

b− a

∞∑
−∞

∫ b

a

f(y) exp

(
2π i n (y − x)

b− a

)
dy.

We now separate out the n = 0 term and combine the n = ±m terms into a sum over the positive integers.

f(x) =
1

b− a

∫ b

a

f(y)dy +
1

b− a

∞∑
n=1

∫ b

a

f(y)

[
exp

(
2π i n (y − x)

b− a

)
+ exp

(−2π i n (y − x)

b− a

)]
dy

=
1

b− a

∫ b

a

f(y)dy +
2

b− a

∞∑
n=1

∫ b

a

f(y) cos

(
2π n (y − x)

b− a

)
dy

Using the trig identity cos(A−B) = cosAcosB + sinAsinB, we recover the trigonometric form of the
Fourier series expansion of a function over the interval (a, b), which will represent a function which has period
equal to (b - a) for all values of x.

f(x) =
1

2
a0 +

∞∑
n=1

[
an cos

(
2π nx

b− a

)
+ bn sin

(
2π nx

b− a

)]
(10.15)

The coefficients are given by the integrals

an =
2

b− a

∫ b

a

f(y) cos

(
2π ny

b− a

)
dy, bn =

2

b− a

∫ b

a

f(y) sin

(
2π ny

b− a

)
dy. (10.16)

The expansion starts with the term

f(x) =
1

2
a0 + · · · = 1

b− a

∫ b

a

f(y) + · · · (10.17)

which is the (unweighted) average of f(x) over (a, b).

If we specialize to a function defined over the interval (-p, p), whose Fourier expansion will represent a function
which has period 2 p for all x, the above results have the replacements 2/(b− a) → 2/(2p) → 1/p, and the
appropriate exspansion equations are

f(x) =
1

2
a0 +

∞∑
n=1

[
an cos

(
π nx

p

)
+ bn sin

(
π nx

p

)]
(10.18)

with coefficients

an =
1

p

∫ p

−p

f(y) cos

(
π ny

p

)
dy, bn =

1

p

∫ p

−p

f(y) sin

(
π ny

p

)
dy. (10.19)
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If we specialize further to p = π, the appropriate equations are

f(x) =
1

2
a0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)] (10.20)

with coefficients
an =

1

π

∫ π

−π

f(y) cos(ny)dy, bn =
1

π

∫ π

−π

f(y) sin(ny)dy. (10.21)

10.3 Fourier Integral Transform Pairs
10.3.1 Fourier Cosine Integrals and fourintcos(..)

Given some function f(x) defined for x ≥ 0, we define the Fourier cosine transform of this function as

FC(f ,ω) =
2

π

∫ ∞

0

cos(ω x) f(x)dx (10.22)

The given function f(x) can then be written as an integral over positive values of ω:

f(x) =

∫ ∞

0

FC(f ,ω) cos(ω x)dω (10.23)

The two equations (10.22) and (10.23) are an example of a ”Fourier transform pair”, which include conventions
about where to place the factor of 2/π.

Here is a simple example. We let the function be f(x) = sin(x) e−x, defined for x ≥ 0. Let the letter w be
used to stand for ω. We first calculate the Fourier cosine transform FC(f , ω) (we use the symbol fcw in our
work here) using integrate and then show that the inverse integral over ω gives back the original function.

(%i1) f:sin(x)*exp(-x)$
(%i2) integrate(f*cos(w*x),x,0,inf);

2
2 2 w

(%o2) ------ - --------
4 4
w + 4 2 w + 8

(%i3) fcw : (2/%pi)*ratsimp(%);
2

2 (w - 2)
(%o3) - ------------

4
%pi (w + 4)

(%i4) integrate(fcw*cos(w*x),w,0,inf);
Is x positive, negative, or zero?
p;

- x
(%o4) %e sin(x)
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We can also use the package fourie.mac, which we explored in the section on Fourier series. This package
provides for the calculation of our Fourier cosine transform integral via the fourintcos(expr,var) function.
The function fourintcos(f,x) returns an answer with the label az which contains the Fourier cosine integral
FC(f , z), with the letter z being the package convention for what we called w (ω),

(%i5) load(fourie);
(%o5) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/calculus/fourie.mac
(%i6) fourintcos(f,x);

2
2 z

2 (------ - ------)
4 4

z + 4 z + 4
(%t6) a = -------------------

z %pi

(%o6) [%t6]
(%i7) az : ratsimp(rhs(%t6));

2
2 z - 4

(%o7) - --------------
4

%pi z + 4 %pi
(%i8) (2/%pi)*ratsimp(%pi*az/2);

2
2 (z - 2)

(%o8) - ------------
4

%pi (z + 4)

Thus fourintcos(expr,var) agrees with our definition of the Fourier cosine transform.

10.3.2 Fourier Sine Integrals and fourintsin(..)

Given some function f(x) defined for x ≥ 0, we define the Fourier sine transform of this function as

FS(f ,ω) =
2

π

∫ ∞

0

sin(ω x) f(x)dx (10.24)

The given function f(x) can then be written as an integral over positive values of ω:

f(x) =

∫ ∞

0

FS(f ,ω) sin(ω x)dω (10.25)

The two equations (10.24) and (10.25) are another ”Fourier transform pair”, which include conventions about
where to place the factor of 2/π.
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Here is a simple example. We let the function be f(x) = cos(x) e−x, defined for x ≥ 0. Let the letter w stand
for ω. We first calculate the Fourier sine transform FS(f , ω) (we use the symbol fsw in our work here) using
integrate and then show that the inverse integral over ω gives back the original function.

(%i1) f:cos(x)*exp(-x)$
(%i2) assume(w>0)$
(%i3) integrate(f*sin(w*x),x,0,inf);

3
w

(%o3) ------
4
w + 4

(%i4) fsw : (2/%pi)*%;
3

2 w
(%o4) ------------

4
%pi (w + 4)

(%i5) integrate(fsw*sin(w*x),w,0,inf);
Is x positive, negative, or zero?

p;
- x

(%o5) %e cos(x)

We can also use the package fourie.mac, which we used above. This package provides for the calculation of
our Fourier sine transform integral via the fourintsin(expr,var) function. The function fourintsin(f,x) returns
an answer with the label bz which contains the Fourier sine integral FS(f , z), with the letter z being the
package convention for what we called w (ω).

(%i6) load(fourie);
(%o6) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/calculus/fourie.mac
(%i7) facts();
(%o7) [w > 0]
(%i8) (forget(w>0),facts());
(%o8) []
(%i9) fourintsin(f,x);

3
2 z

(%t9) b = ------------
z 4

%pi (z + 4)

(%o9) [%t9]
(%i10) bz : rhs(%t9);

3
2 z

(%o10) ------------
4

%pi (z + 4)

Thus fourintsin(expr,var) agrees with our definition of the Fourier sine transform.
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10.3.3 Exponential Fourier Integrals and fourint

Given some function f(x) defined for −∞ < x < ∞, we define the exponential Fourier transform of this
function as

FExp(f ,ω) =
1

2π

∫ ∞

−∞
f(x)eiω x dx (10.26)

The given function f(x) can then be written as an integral over both positive and negative values of ω:

f(x) =

∫ ∞

−∞
FExp(f , ω) e−iω x dω (10.27)

The two equations (10.26) and (10.27) are another ”Fourier transform pair”, which include conventions about
where to place the factor of 2π as well as which member has the minus sign in the exponent.

If the given function is even, f(−x) = f(x), then the exponential Fourier transform has the symmetry

FExp(f , −ω) = FExp(f ,ω) (10.28)

and can be expressed in terms of the Fourier cosine transform:

FExp(f ,ω) =
1

2
FC(f ,ω). (10.29)

If the given function is odd, f(−x) = −f(x), then the exponential Fourier transform has the symmetry

FExp(f ,−ω) = −FExp(f , ω) (10.30)

and can be expressed in terms of the Fourier sine transform:

FExp(f , ω) =
i

2
FS(f , ω). (10.31)

If the given function is neither even nor odd, the function can always be written as the sum of an even function
fe(x) and an odd function fo(x):

f(x) ≡ fe(x) + fo(x) =
1

2
(f(x) + f(−x) +

1

2
(f(x)− f(−x) (10.32)

and can be expressed in terms of the Fourier cosine transform of fe(x) and the Fourier sine transform of fo(x):

FExp(f ,ω) ≡ FExp(fe + fo,ω) =
1

2
FC(fe, ω) +

i

2
FS(fo,ω) (10.33)

The fourie.mac package function fourint(expr,var) displays the non-zero coefficients az and/or the bz, in
terms of which we can write down the value of FExp(f , z) (with our conventions):

FExp(f , z) =
1

2
az +

i

2
bz (10.34)

10.3.4 Example 1: Even Function

We calculate here the exponential fourier transform FExp(f ,ω) when the function is f(x) = cos(x) e−|x| which
is an even function f(−x) = f(x) and is defined for −∞ < x < ∞.

We first use integrate, by separating the integral into two pieces, i1 is the integral over (−∞,0) and i2 is the
integral over (0,∞) (we ignore the overall factor of 1/(2π) initially).
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(%i1) assume(w>0)$
(%i2) i1:integrate(exp(%i*w*x)*cos(x)*exp(x),x,minf,0);

2 3
w + 2 %i w

(%o2) ------ - ------
4 4

w + 4 w + 4
(%i3) i2:integrate(exp(%i*w*x)*cos(x)*exp(-x),x,0,inf);

3 2
%i w w + 2

(%o3) ------ + ------
4 4

w + 4 w + 4
(%i4) i12:ratsimp(i1+i2);

2
2 w + 4

(%o4) --------
4
w + 4

(%i5) 2*ratsimp(i12/2);
2

2 (w + 2)
(%o5) ----------

4
w + 4

(%i6) iexp:%/(2*%pi);
2
w + 2

(%o6) ------------
4

%pi (w + 4)

Hence, direct use of integrate provides the exponential Fourier transform

FExp(cos(x) exp(−|x|), ω) =
ω2 + 2

π (ω4 + 4)
(10.35)

We can use integrate to calculate the inverse Fourier exponential transform, recovering our original even
function of x.

(%i7) integrate(exp(-%i*w*x)*iexp,w,minf,inf);
Is x positive, negative, or zero?
p;

- x
(%o7) %e cos(x)
(%i8) integrate(exp(-%i*w*x)*iexp,w,minf,inf);
Is x positive, negative, or zero?
n;

x
(%o8) %e cos(x)
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Next we use integrate again directly to calculate the Fourier cosine transform of the given even function, now
considered as defined for x ≥ 0 and confirm that the required exponential Fourier transform in this case is
correctly given by 1

2
FC(f , ω).

(%i9) i3:ratsimp(integrate(cos(x)*exp(-x)*cos(w*x),x,0,inf));
2
w + 2

(%o9) ------
4
w + 4

(%i10) i3:(2/%pi)*i3;
2

2 (w + 2)
(%o10) ------------

4
%pi (w + 4)

Output %o10 is the value of FC(f , ω), and one half of that value is the required exponential Fourier transform.

Next we use fourint(expr,var) with this even function.

(%i1) load(fourie);
(%o1) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/calculus/fourie.mac
(%i2) fourint(cos(x)*exp(-abs(x)),x);

2
z 2

2 (------ + ------)
4 4

z + 4 z + 4
(%t2) a = -------------------

z %pi

(%t3) b = 0
z

(%o3) [%t2, %t3]
(%i4) ratsimp(rhs(%t2));

2
2 z + 4

(%o4) --------------
4

%pi z + 4 %pi
(%i5) (2/%pi)*ratsimp(%pi*%/2);

2
2 (z + 2)

(%o5) ------------
4

%pi (z + 4)

which confirms that for an even function, the required exponential Fourier transform is correctly given (using
fourint) by FExp(f , z) = az/2.
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10.3.5 Example 2: Odd Function

We calculate here the exponential fourier transform FExp(f ,ω) when the function is f(x) = sin(x) e−|x| which
is an odd function f(−x) = −f(x) and is defined for −∞ < x < ∞.

We first use integrate, by separating the integral into two pieces, i1 is the integral over (−∞,0) and i2 is the
integral over (0,∞) (we ignore the overall factor of 1/(2π) initially).

(%i1) ( assume(w>0), facts());
(%o1) [w > 0]
(%i2) i1:ratsimp(integrate(exp(%i*w*x)*sin(x)*exp(x),x,minf,0));

2
w + 2 %i w - 2

(%o2) ---------------
4
w + 4

(%i3) i2:ratsimp(integrate(exp(%i*w*x)*sin(x)*exp(-x),x,0,inf));
2

w - 2 %i w - 2
(%o3) - ---------------

4
w + 4

(%i4) iexp:ratsimp(i1+i2)/(2*%pi);
2 %i w

(%o4) ------------
4

%pi (w + 4)
(%i5) facts();
(%o5) [w > 0]

Hence, direct use of integrate provides the exponential Fourier transform

FExp(sin(x) exp(−|x|), ω) =
2 iω

π (ω4 + 4)
(10.36)

We can use integrate to calculate the inverse Fourier exponential transform, recovering our original odd func-
tion of x.

(%i6) integrate(exp(-%i*w*x)*iexp,w,minf,inf);
Is x positive, negative, or zero?
p;

- x
(%o6) %e sin(x)
(%i7) integrate(exp(-%i*w*x)*iexp,w,minf,inf);
Is x positive, negative, or zero?
n;

x
(%o7) %e sin(x)
(%i8) facts();
(%o8) [w > 0]
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Next we use integrate again directly to calculate the Fourier sine transform of the given odd function, now
considered as defined for x ≥ 0 and confirm that the required exponential Fourier transform in this case is
correctly given by i

2
FS(f ,ω).

(%i9) ratsimp(integrate(sin(x)*exp(-x)*sin(w*x),x,0,inf));
2 w

(%o9) ------
4
w + 4

(%i10) (2/%pi)*%;
4 w

(%o10) ------------
4

%pi (w + 4)

Output %o10 is the value of FS(f , ω), and multiplying by i/2 yields the required exponential Fourier trans-
form.

Next we use fourint(expr,var) with this odd function.

(%i11) load(fourie);
(%o11) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/calculus/fourie.mac
(%i12) fourint(sin(x)*exp(-abs(x)),x);
(%t12) a = 0

z

4 z
(%t13) b = ------------

z 4
%pi (z + 4)

(%o13) [%t12, %t13]

which confirms that for an odd function, the required exponential Fourier transform is correctly given (using
fourint) by FExp(f , z) = (i bz)/2.
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10.3.6 Example 3: A Function Which is Neither Even nor Odd

We calculate here the exponential fourier transform FExp(f ,ω) when the function is f(x) = cos2(x− 1) e−|x|

which is defined for −∞ < x < ∞ and is neither even nor odd.

We first use integrate, by separating the integral into two pieces. i1 is the integral over (−∞,0) and i2 is the
integral over (0,∞) (we ignore the overall factor of 1/(2π) initially).

(%i1) ( assume(w>0), facts());
(%o1) [w > 0]
(%i2) i1:ratsimp(integrate(exp(%i*w*x)*cos(x-1)ˆ2*exp(x),x,minf,0));

5 4
(%o2) - ((%i cos(2) + %i) w + (- 2 sin(2) - cos(2) - 1) w

3 2
+ (- 4 %i sin(2) - 2 %i cos(2) - 6 %i) w + (8 sin(2) - 6 cos(2) + 6) w
+ (- 4 %i sin(2) - 3 %i cos(2) + 25 %i) w + 10 sin(2) - 5 cos(2) - 25)

6 4 2
/(2 w - 10 w + 38 w + 50)
(%i3) i2:ratsimp(integrate(exp(%i*w*x)*cos(x-1)ˆ2*exp(-x),x,0,inf));

5 4
(%o3) ((%i cos(2) + %i) w + (- 2 sin(2) + cos(2) + 1) w

3 2
+ (4 %i sin(2) - 2 %i cos(2) - 6 %i) w + (8 sin(2) + 6 cos(2) - 6) w
+ (4 %i sin(2) - 3 %i cos(2) + 25 %i) w + 10 sin(2) + 5 cos(2) + 25)

6 4 2
/(2 w - 10 w + 38 w + 50)
(%i4) i12 : rectform(ratsimp(i1 + i2));

4 2
(cos(2) + 1) w + (6 cos(2) - 6) w + 5 cos(2) + 25

(%o4) ---------------------------------------------------
6 4 2

w - 5 w + 19 w + 25
3

%i (4 sin(2) w + 4 sin(2) w)
+ -----------------------------

6 4 2
w - 5 w + 19 w + 25

(%i5) i12 : map(’ratsimp,i12);
4 2

(cos(2) + 1) w + (6 cos(2) - 6) w + 5 cos(2) + 25 4 %i sin(2) w
(%o5) --------------------------------------------------- + --------------

6 4 2 4 2
w - 5 w + 19 w + 25 w - 6 w + 25

(%i6) i12 : realpart(i12)/(2*%pi) + %i*imagpart(i12)/(2*%pi);
4 2

(cos(2) + 1) w + (6 cos(2) - 6) w + 5 cos(2) + 25
(%o6) ---------------------------------------------------

6 4 2
2 %pi (w - 5 w + 19 w + 25)

2 %i sin(2) w
+ --------------------

4 2
%pi (w - 6 w + 25)

The final i12 is the desired exponential Fourier transform.
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We can now calculate the inverse Fourier transform.

(%i7) integrate(exp(-%i*w*x)*i12,w,minf,inf);
Is x positive, negative, or zero?
p;

- x
%e (sin(2) sin(2 x) + cos(2) cos(2 x) + 1)

(%o7) ---------------------------------------------
2

As an exercise in the manipulation of trigonometric functions, we now go back and forth between the coefficient
of %eˆ(-x) in this result and our starting function (for positive x).

(%i8) cos(x-1)ˆ2;
2

(%o8) cos (x - 1)
(%i9) trigreduce(%);

cos(2 (x - 1)) + 1
(%o9) ------------------

2
(%i10) ratsimp(%);

cos(2 x - 2) + 1
(%o10) ----------------

2
(%i11) trigexpand(%);

sin(2) sin(2 x) + cos(2) cos(2 x) + 1
(%o11) -------------------------------------

2

which gets us from the original coefficient to that returned by our inverse transform integral. Now we go in the
opposite direction:

(%i12) trigreduce(%);
cos(2 x - 2) + 1

(%o12) ----------------
2

(%i13) factor(%);
cos(2 (x - 1)) + 1

(%o13) ------------------
2

(%i14) trigexpand(%);
2 2

- sin (x - 1) + cos (x - 1) + 1
(%o14) -------------------------------

2
(%i15) trigsimp(%);

2
(%o15) cos (x - 1)

which returns us from the transform integral coefficient to our original coefficient. Hence we have verified the
correctness of the exponential Fourier transform for this case.
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Next we use fourint(expr,var) with this function which is neither even nor odd.

(%i16) load(fourie);
(%o16) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/calculus/fourie.mac
(%i17) fourint(cos(x-1)ˆ2*exp(-abs(x)),x);

4 2
(cos(2) + 1) z + (6 cos(2) - 6) z + 5 cos(2) + 25

(%t17) a = ---------------------------------------------------
z 6 4 2

%pi (z - 5 z + 19 z + 25)

4 sin(2) z
(%t18) b = --------------------

z 4 2
%pi (z - 6 z + 25)

(%o18) [%t17, %t18]
(%i19) az : rhs(%t17);

4 2
(cos(2) + 1) z + (6 cos(2) - 6) z + 5 cos(2) + 25

(%o19) ---------------------------------------------------
6 4 2

%pi (z - 5 z + 19 z + 25)
(%i20) bz : rhs(%t18);

4 sin(2) z
(%o20) --------------------

4 2
%pi (z - 6 z + 25)

(%i21) iexp_f : az/2 + %i*bz/2;
4 2

(cos(2) + 1) z + (6 cos(2) - 6) z + 5 cos(2) + 25
(%o21) ---------------------------------------------------

6 4 2
2 %pi (z - 5 z + 19 z + 25)

2 %i sin(2) z
+ --------------------

4 2
%pi (z - 6 z + 25)

To compare this with our result using integrate we need to replace z by w:

(%i22) subst(z=w,iexp_f) - i12;
(%o22) 0

which shows that, except for notation, the results are the same. We have confirmed that for a general function,
the required exponential Fourier transform is correctly given (using fourint) by FExp(f , z) = az/2 + (i bz)/2.

10.3.7 Dirac Delta Function δ(x)

It is conventional to define the Dirac delta function (unit impulse function) δ(x) by

δ(−x) = δ(x) even function (10.37)
δ(x) = 0 for x 6= 0 (10.38)

∫ b

−a

δ(x)dx = 1 for a, b > 0 (10.39)
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These equations imply
δ(y − x) = δ(x− y) (10.40)

and ∫
f(y) δ(y − x)dy = f(x) (10.41)

for any well behaved function f(x) (we are more careful below), provided the range of integration includes the
point x. For since δ(y − x) is zero except at the single point y = x, we can evaluate f(y) at that single point
and take the result outside the integral. The resulting integral which is left is

∫
δ(y − x)dy, and the change of

variables y → t = y − x for fixed x yields the integral
∫

δ(t)dt = 1.

Now let c be a positive constant (independent of the integration variable x). In the integral
∫ b

−a
δ(c x)dx, we

change variables, x → y = c x so dx = dy/c.
∫ b

−a

δ(c x)dx =
1

c

∫ cb

−c a

δ(y)dy =
1

c
(10.42)

since (c a) > 0 and (cb) > 0.

If, on the other hand, c is a negative constant, c = −|c|, and we make the same change of variables,
∫ b

−a

δ(c x)dx =
1

c

∫ cb

−c a

δ(y)dy =
1

c

∫ −|c|b

|c|a
δ(y)dy = −1

c

∫ |c|a

−|c|b
δ(y)dy =

1

|c| (10.43)

Evidently, we can always write (since both x and y are dummy integration variables
∫

δ(c x)dx =

∫
δ(x)

|c| dx (10.44)

or simply (with the understanding that this kind of relation only makes sense inside an integral)

δ(c x) =
δ(x)

|c| (10.45)

We can find a sometimes useful representation of the Dirac delta function by using the exponential Fourier
transform pair Eqs.(10.26) and (10.27). If we use y as the (dummy) variable of integration in Eq.(10.26), and
insert into Eq.(10.27), we get (interchanging the order of integration)

f(x) =

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
eiω y f(y)dy

]
e−iω x dω

=

∫ ∞

−∞
f(y)

[
1

2π

∫ ∞

−∞
eiω(y−x) dω

]
dy

=

∫ ∞

−∞
f(y) δ(y − x)dy

Hence we can write
δ(x) =

1

2π

∫ ∞

−∞
eiω x dω (10.46)

One use of such a representation of the one dimensional Dirac delta function is to derive in a different way the
result of Eq.(10.45). From Eq.(10.46) we have

δ(c x) =
1

2π

∫ ∞

−∞
eiω cx dω (10.47)
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Again, suppose c is a constant and c > 0. Then if we change variables ω → y = ω c, we have dω = dy/c.
When ω = −∞,y = −∞. When ω = ∞,y = ∞. Hence

δ(c x) =
1

c

(
1

2π

∫ ∞

−∞
ei y x dy

)
=

1

c
δ(x) (10.48)

If, on the other hand, c < 0, c = −|c| in Eq.(10.47), and we make the same change of variables, when
ω = −∞, y = ∞, and when ω = ∞, y = −∞. Hence, for this case,

δ(c x) =
1

c

(
1

2π

∫ −∞

∞
ei y x dy

)
=

1

c

(
− 1

2π

∫ ∞

−∞
ei y x dy

)
=

1

|c| δ(x). (10.49)

Combining the two cases leads us again to Eq.(10.45).

Although the representation Eq.(10.46) can be useful for formal properties of the Dirac delta function, for
actual calculation of integrals one is safer using a limiting form of that result, or even simpler versions, as we
will see. If we replace the infinite limits in Eq.(10.46) by finite limits, we can work with the representation

δ(x) = lim
L→∞

dL(x) (10.50)

where

dL(x) =
1

2π

∫ L

−L

ei x y dy =
sin(xL)

π x
(10.51)

which can then be used as
∫

f(x) δ(x)dx = lim
L→∞

∫
f(x)dL(x)dx = lim

L→∞

∫
f(x)

sin(xL)

π x
. (10.52)

However, this will only be useful if the resulting integrals can be done.

An easier approach to the careful use of the Dirac delta function for the calculation of integrals is to create a
mathematically simple model of a function of x which has the required properties and whose use will result
in integrals which can easily be done. Mathematically rigorous treatments (see the Theory of Distributions) of
the Dirac delta function justify the use of such models .

Here we follow the approach of William E. Boyce and Richard C. DiPrima, in their textbook ”Elementary Dif-
ferential Equations and Boundary Value Problems”, Fifth Edition, John Wiley & Sons, Inc, New York, 1992,
Section 6.5, ”Impulse Functions”.

Let

dε(x) =

{
1/(2 ε) for −ε < x < ε

0 for x ≤ −ε or x ≥ ε

}
(10.53)

which defines a rectangular pulse with base length 2 ε, height 1/(2 ε) with area ”under the curve” equal to 1.
This is an even function of x centered on x = 0 which gets narrower and taller as ε → 0.

Then

dε(y − x) =

{
1/(2 ε) for (x− ε) < y < (x + ε)

0 for y ≤ (x− ε) or y ≥ (x + ε)

}
(10.54)
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This model can then be used in the form (with the range of integration assumed to include the point y = x):
∫

f(y) δ(y − x)dy = lim
ε→0

∫
f(y)dε(y − x)dy = lim

ε→0

1

2 ε

∫ x+ε

x−ε

f(y)dy. (10.55)

The integral should be done before taking the limits in this safer approach.

However, if f(y) is a continuous function and possesses a derivative in a complete neighborhood of x, we can
use the mean value theorem of calculus to write this limit as

lim
ε→0

1

2 ε
f(ŷ) (2 ε) = lim

ε→0
f(ŷ)). (10.56)

where (x− ε) < ŷ < (x + ε) As ε → 0, ŷ → x, and f(ŷ) → f(x), which recovers Eq. (10.41), and which
we repeat here for emphasis. ∫

f(y) δ(y − x)dy = f(x) (10.57)

for any function f(x) which is continuous and possesses a derivative in a complete neighborhood of x, provided
the range of integration includes the point x.

10.3.8 Laplace Transform of the Delta Function Using a Limit Method

Use of Eq. (10.57) allows us to immediately write down the Laplace transform of δ(t− t0) for t0 > 0, the
integral

∫∞
0

e−s t δ(t− t0)dt, since the function e−s t which multiplies the delta function is continuous and
possesses a derivative for all values of t.

However, as a consistency check, let’s also use the limit method just discussed to derive this result.

L{δ(t− t0)} ≡
∫ ∞

0

e−s t δ(t− t0)dt = e−s t0 (10.58)

provided s and t0 are positive.

(%i1) assume(s>0,e>0,t0>0)$
(%i2) i1: integrate(exp(-s*t),t,t0-e,t0+e)/(2*e);

e s - s t0 - s t0 - e s
%e %e
------------ - --------------

s s
(%o2) -----------------------------

2 e
(%i3) limit(i1,e,0,plus);

- s t0
(%o3) %e

As a bonus, the limit of Eq.(10.58) as t0 → 0+ then gives us the Laplace transform of δ(t).

L{δ(t)} ≡
∫ ∞

0

e−s t δ(t)dt = 1 (10.59)
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10.4 Laplace Transform Integrals
10.4.1 Laplace Transform Integrals: laplace(..), specint(..)

A subgroup of definite integrals is so useful in applications that Maxima has functions which calculate the
Laplace transform (laplace and specint) of a given expression, as well as the inverse Laplace transform (ilt).

laplace(expr, t, s) calculates the integral
∫ ∞

0

e−s t f(t)d t = L{f(t)} = F(s) (10.60)

where f(t) stands for the expr argument (here assumed to depend explicitly on t) of laplace. laplace assumes
that s is a very large positive number. If there are convergence issues of the integral, one allows s to be a
complex number s = x + i y and the assumption is made that the integral converges to the right of some line
Re(s) = const in the complex s plane.

10.4.2 Comparison of laplace and specint

specint( exp(- s*t) * expr, t) is equivalent to laplace(expr, t, s) in its effect, but has been specially designed
to handle special functions with care. You need to prepare specint with assume statement(s) that s is both
positive and larger than other positive parameters in expr.

L{1} = 1/s

We start the following comparison of laplace and specint with an assume statement (needed by specint alone).

(%i1) assume( s>0, a > 0, b > 0, s > a, s > b )$
(%i2) laplace(1,t,s);

1
(%o2) -

s
(%i3) specint(exp(-s*t),t);

1
(%o3) -

s
(%i4) ilt(%,s,t);
(%o4) 1

L{t} = 1/s2

(%i5) laplace(t,t,s);
1

(%o5) --
2

s
(%i6) specint(exp(-s*t)*t,t);

1
(%o6) --

2
s

(%i7) ilt(%,s,t);
(%o7) t
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L{ea t} = 1/(s− a)

(%i8) laplace(exp(a*t),t,s);
1

(%o8) -----
s - a

(%i9) specint(exp(-s*t)*exp(a*t),t);
1

(%o9) -----
s - a

L{sin(a t)/a} = (s2 + a2)−1

(%i10) laplace(sin(a*t)/a,t,s);
1

(%o10) -------
2 2
s + a

(%i11) (specint(exp(-s*t)*sin(a*t)/a,t),ratsimp(%%) );
1

(%o11) -------
2 2
s + a

L{cos(a t)} = s (s2 + a2)−1

(%i12) laplace(cos(a*t),t,s);
s

(%o12) -------
2 2
s + a

(%i13) (specint(exp(-s*t)*cos(a*t),t ), ratsimp(%%) );
s

(%o13) -------
2 2
s + a

L{t sin(a t)/(2a)} = s (s2 + a2)−2

(%i14) laplace(sin(a*t)*t/(2*a),t,s);
s

(%o14) ----------
2 2 2

(s + a )
(%i15) (specint(exp(-s*t)*sin(a*t)*t/(2*a),t ),ratsimp(%%) );

s
(%o15) -----------------

4 2 2 4
s + 2 a s + a

(%i16) map(’factorsum,%);
s

(%o16) ----------
2 2 2

(s + a )
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L{ea t cos(b t)} = (s− a) ( (s− a)2 + b2 )−1

(%i17) laplace(exp(a*t)*cos(b*t),t,s);
s - a

(%o17) --------------------
2 2 2
s - 2 a s + b + a

(%i18) map(’factorsum,%);
s - a

(%o18) -------------
2 2

(s - a) + b
(%i19) (specint(exp(-s*t)*exp(a*t)*cos(b*t),t ),ratsimp(%%) );

s - a
(%o19) --------------------

2 2 2
s - 2 a s + b + a

(%i20) map(’factorsum,%);
s - a

(%o20) -------------
2 2

(s - a) + b

L{√t bessel j (1,2
√

a t)} =
√

a s−2 e−a/s

(%i21) expr : tˆ(1/2) * bessel_j(1, 2 * aˆ(1/2) * tˆ(1/2));
(%o21) bessel_j(1, 2 sqrt(a) sqrt(t)) sqrt(t)
(%i22) laplace(expr,t,s);

- a/s
sqrt(a) %e

(%o22) ---------------
2

s
(%i23) specint(exp(-s*t)*expr,t);

- a/s
sqrt(a) %e

(%o23) ---------------
2

s
(%i24) ilt(%,s,t);

- a/s
sqrt(a) %e

(%o24) ilt(---------------, s, t)
2
s

We find in the above example that ilt cannot find the inverse Laplace transform.
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L{erf(√t)} = ( s
√

s + 1 )−1

Here again ilt fails.

(%i25) assume(s>0)$
(%i26) laplace(erf(sqrt(t)),t,s);

1
(%o26) -------------

s sqrt(s + 1)
(%i27) specint(exp(-s*t)*erf(sqrt(t)),t);

1
(%o27) ----------------

1 3/2
sqrt(- + 1) s

s
(%i28) radcan(%);

1
(%o28) -------------

s sqrt(s + 1)
(%i29) ilt(%,s,t);

1
(%o29) ilt(-------------, s, t)

s sqrt(s + 1)

L{erf(t)} = es2/4 (1− erf(s/2)) s−1

Here laplace succeeds, and ilt and specint fail.

(%i30) laplace(erf(t),t,s);
2

s
--
4 s

%e (1 - erf(-))
2

(%o30) -----------------
s

(%i31) ilt(%,s,t);
2
s
--
4 s

%e (1 - erf(-))
2

(%o31) ilt(-----------------, s, t)
s

(%i32) specint(exp(-s*t)*erf(t),t);
- s t

(%o32) specint(%e erf(t), t)
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10.4.3 Use of the Dirac Delta Function (Unit Impulse Function) delta with laplace(..)

The laplace function recognises delta(arg) as part of the expression supplied to laplace. We have introduced
the Dirac delta function (unit impulse function) in Sections 10.3.7 and 10.3.8. Here are three examples of using
delta with laplace.

L{δ(t)} = 1

(%i1) laplace(delta(t),t,s);
(%o1) 1
(%i2) ilt(1,s,t);
(%o2) ilt(1, s, t)

L{δ(t− a)} = e−a s

(for a > 0):

(%i3) laplace(delta(t-a),t,s);
Is a positive, negative, or zero?
p;

- a s
(%o3) %e

L{δ(t− a) sin(b t)} = sin(ab) e−a s

(for a > 0):

(%i4) laplace(delta(t-a)*sin(b*t),t,s);
Is a positive, negative, or zero?
p;

- a s
(%o4) sin(a b) %e

In this last example, we see that laplace is simply using
∫ ∞

0

f(t) δ(t− a)dt = f(a) (10.61)

with a > 0 and f(t) = e−s t sin(b t).

10.5 The Inverse Laplace Transform and Residues at Poles
10.5.1 ilt: Inverse Laplace Transform

The Maxima function: ilt (expr, s, t) computes the inverse Laplace transform of expr with respect to s and in
terms of the parameter t. This Maxima function is able to compute the inverse Laplace transform only if expr
is a rational algebraic function (a quotient of two polynomials).

In elementary work with Laplace transforms, one uses a ”look-up table” of Laplace transforms, together with
general properties of Laplace and inverse Laplace transforms, to determine inverse Laplace transforms of ele-
mentary and special functions.
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For advanced work, one can use the general formula for the inverse Laplace transform

f(t > 0) =
1

2π i

∫ σ+i∞

σ−i∞
es t F(s)ds (10.62)

where the contour of integration is a vertical line in the complex s = x + i y plane (ie., along a line x = σ), to
the right of all singularities (poles, branch points, and essential singularities) of the integrand. Here we assume
the only type of singularities we need to worry about are poles, isolated values of s where the approximate
power series expansion for s near sj is g(sj)/(s− sj)

m, where g(sj) is a finite number, and m is the ”order” of
the pole. If m = 1, we call it a ”simple pole”. At a particular point (x,y) of the contour, the exponential factor
has the form es t = ei t y et x. Because t > 0 the integrand is heavily damped by the factor ex t when x → −∞,
and the contour of integration can be turned into a closed contour by adding a zero contribution which is the
integral of the same integrand along a large arc in the left hand s plane (in the limit that the radius of the arc
approaches ∞), and the resulting closed contour integral can then be evaluated using the residue theorem of
complex variable theory. The (counter-clockwise) closed contour integral is then given by 2π i times the sum
of the residues of the integrand at the isolated poles enclosed by the contour.

The factor 2π i coming from the integral part of Eq.(10.62) is then cancelled by the factor 1/(2π i) which
appears in the definition (Eq.(10.62)) of the inverse Laplace transform, and one has the simple result that the
inverse Laplace transform is the sum of the residues of the poles of the integrand.

10.5.2 residue: Residues at Poles

We can use the Maxima residue function to illustrate how the sum of the residues at all the poles of the
integrand reproduces the answer returned by ilt.

residue (expr, z, z_0)
Computes the residue in the complex plane of the expression expr when the variable z assumes
the value z_0. The residue is the coefficient of (z - z_0)ˆ(-1) in the Laurent series for
expr.

(%i1) residue (s/(sˆ2+aˆ2), s, a*%i);
1

(%o1) -
2

(%i2) residue (sin(a*x)/xˆ4, x, 0);
3
a

(%o2) - --
6

We start with some arbitrary rational algebraic function of s, use ilt to determine the corresponding function
of t, and then compute the inverse Laplace transform (a second way) by summing the values of the residues of
the Laplace inversion integrand in the complex s plane.

(%i3) fs : -s/(sˆ3 +4*sˆ2 + 5*s +2)$
(%i4) ft : ( ilt(fs,s,t),collectterms(%%,exp(-t),exp(-2*t) ) );

- t - 2 t
(%o4) (t - 2) %e + 2 %e
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(%i5) (laplace(ft,t,s), ratsimp(%%) );
s

(%o5) - -------------------
3 2
s + 4 s + 5 s + 2

(%i6) fs - %;
(%o6) 0
(%i7) fst : exp(s*t)*fs;

s t
s %e

(%o7) - -------------------
3 2
s + 4 s + 5 s + 2

(%i8) partfrac(fst,s);
s t s t s t

2 %e 2 %e %e
(%o8) ------- - ------- + --------

s + 2 s + 1 2
(s + 1)

The inverse Laplace transform integrand above was called fst, and we used partfrac on fst to exhibit the poles
of this integrand. We see that there is one simple pole at s = −2 and one pole of order 2 located at s = −1.

To use the Maxima function residue, we need to tell Maxima that t > 0.

(%i9) assume( t > 0 )$
(%i10) r1 : residue(fst,s,-2);

- 2 t
(%o10) 2 %e
(%i11) r2 : residue(fst,s,-1);

- t
(%o11) (t - 2) %e
(%i12) r1 + r2 - ft;
(%o12) 0

which shows that the sum of the residues reproduces the function of t which ilt produced.

This concludes our discussion of the inverse Laplace transform.
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Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qfft.mac (used in this chapter),
using the brief version load(qfft), you either need to place
qfft.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work3/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see Ch. 1, Introduction
to Maxima for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work3/qfft.mac"),

We always use the brief load version in our examples, which are generated
using the Xmaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima, a Computer Algebra System.
Version 5.19.0 (2009) using Lisp GNU Common Lisp (GCL) GCL 2.6.8
(aka GCL). http://maxima.sourceforge.net/

The homemade function fll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
defined in the Ch.1 utility file mbe1util.mac. We will include a reference to this definition when working with lists.

This function is defined by:

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
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11.1 Examples of the Use of the Fast Fourier Transform Functions fft and inverse fft

We discuss the use of Maxima’s fast Fourier transform package fft.lisp, which has been rewritten (effective with
version 5.19) to allow list input and output (rather than being restricted to array input and output).

We first present five simple examples of using Maxima’s fast Fourier transform functions fft and inverse fft. We then
discuss our notation and the utility functions available in the Ch.11 file qfft.mac. We then present a derivation of the
discrete Fourier transformation pairs, using Maxima’s conventions.

11.1.1 Example 1: FFT Spectrum of a Monochromatic Signal

We load in the Maxima package fft.lisp and also our own package qfft.mac.

(%i1) load(fft);
(%o1) C:/PROGRA˜1/MA89DF˜1.0/share/maxima/5.19.0/share/numeric/fft.lisp
(%i2) load(qfft);
(%o2) c:/work3/qfft.mac

Our first example uses the simplest possible signal which still contains some information, a signal having one intrinsic
frequency. We assume the signal is F(t) = cos(6 π t). This signal has an angular frequency ω = 6 π = 2 π f where f
is the frequency in Hertz (ie., in sec−1). Thus the frequency f = 3 sec−1. We bind the symbol e to this signal expression
for later use:

(%i3) e : cos ( 6*%pi*t )$

Let ns be the (even) number of function samples, and fs be the sampling frequency.

The qfft package function nyquist(ns, fs) computes the time interval between signal samples dt = 1/fs, the Nyquist
integer knyq = ns/2, the frequency resolution df = fs/ns, and the Nyquist frequency
fnyq = knyq * df = fs/2.

The product of the time interval dt between samples of the signal and the frequency resolution df is always the inverse
of the total number of signal samples ns:

dt * df = 1 / ns

We select fs and ns to satisfy two conditions. The only intrinsic frequency of the signal is f0 = 3 s−1. First we need
fs > 2 f0 which means that fs > 6 s−1. Secondly we need the frequency resolution df to satisfy df < f0, which will be
satisfied if we choose df such that f0 = 3df , or df = 1 hertz. But then df = fs / ns = 1, or fs = ns, so
the first condition becomes ns > 6, but we also need ns to be an even number of the form 2m for some integer m, so we
choose ns = 8.

We then bind both ns and fs to the value 8 and assign dt (the sampling interval) to the first element of the list produced
by the package function nyquist( ns, fs ), which also prints out dt, knyq, fnyq, and df.

(%i4) ( ns : 8, fs : 8 )$
(%i5) dt : first (nyquist (ns,fs));
sampling interval dt = 0.125
Nyquist integer knyq = 4
Nyquist freq fnyq = 4.0
freq resolution df = 1.0
(%o5) 0.125



4

We then use the package function sample(expr, var, ns, dvar) to generate a list of floating point numbers as
the expression expr is evaluated ns times, generating the list (with dvar being the time step dt here)
[F(0),F(dt),F(2*dt),...,F((ns-1)*dt )] holding the values F(m*dt), for m = 0,1,2,...,ns-1. More
details of the syntax of the qfft.mac package functions can be found in Section 11.3. Recall that we have just bound
ns and dt to numerical values and that the expression e depends on the variable t.

(%i6) flist : sample (e,t,ns,dt);
(%o6) [1.0, - 0.707, - 1.83691E-16, 0.707, - 1.0, 0.707, 5.51073E-16, - 0.707]

We see that elements three, F(2*dt), and seven, F(6*dt), are tiny numbers of the order of the default floating
point errors, and are numerically equivalent to zero.

We first make a plot of both the given function (the signal) and a list of points [m*dt, F(m*dt)] constructed using
the package function vf (flist, dt). Recall that the signal is first sampled at t = 0.

(%i7) tflist : vf (flist,dt);
(%o7) [[0, 1.0], [0.125, - 0.707], [0.25, - 1.83691E-16], [0.375, 0.707],

[0.5, - 1.0], [0.625, 0.707], [0.75, 5.51073E-16], [0.875, - 0.707]]

We let tmax be the “sampling time”, the number of signal samples times the time interval between samples.

(%i8) tmax : ns*dt;
(%o8) 1.0
(%i9) plot2d([e ,[discrete,tflist]], [t,0,tmax],

[style,[lines,3],[points,3,2,1]],
[legend,false])$
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t

Figure 1: F(t) = cos(6 π t) with Sample Points
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Now that we have looked at both the signal and sample signal values (on the same plot), we next look at the fast Fourier
frequency spectrum implied by this single frequency signal sample. We first define glist to be the fast fourier trans-
form of flist

(%i10) glist : fft (flist);
(%o10) [- 2.34662E-17, 1.11022E-16 - 3.30546E-17 %i,
1.52656E-16 %i - 4.59227E-17, 0.5 - 1.18171E-16 %i, 1.15312E-16,
2.16746E-16 %i + 0.5, - 1.52656E-16 %i - 4.59227E-17,
5.55112E-17 - 6.55197E-17 %i]
(%i11) fchop (%);
(%o11) [0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0]

in which we have used Maxima’s fast fourier transform function fft. We then used our package function fchop to set
tiny floating point numbers to zero. The qfft package function current_small() prints out the current setting of the
qfft.mac parameter _small% used by fchop.

(%i12) current_small()$
current default small chop value = 1.0E-13

The first element of glist corresponds to k = 0, and the list glist contains the values of the fast Fourier transform amplitudes
G(k*df) for k = 0, 1, 2, ..., ns -1, where df is the frequency resolution (for this example, df = 1 hertz). We
call the value G(k*df) the “fast Fourier transform amplitude” corresponding to the frequency f = k*df.

If we look at the chopped version, we see that the first non-zero fast fourier transform amplitude occurs at element four, which
corresponds to k = 3, which corresponds to the frequency f = k*df = 3 * 1 = 3 hertz. In a later section exploring the
basic ideas of the fast Fourier transform, we explain why all the usable spectrum information is contained in the interval k = 0 to
k = knyq = 4.

To make a simple point plot of the fourier amplitudes, we first use the package function kg to make a list of the points [k, G(k*df)]
out to the Nyquist integer knyq. Since we want real numbers for a plot, this function takes the absolute value of each Fourier ampli-
tude and also chops tiny numbers.

(%i13) kglist : kg (glist);
(%o13) [[0, 0.0], [1, 0.0], [2, 0.0], [3, 0.5], [4, 0.0]]
(%i14) plot2d ( [discrete, kglist],[x,0,5],[y,0,0.8],

[style,[points,5,1,1]],[xlabel,"k"],
[ylabel," "],[gnuplot_preamble,"set grid;"])$

which produces the simple plot
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Figure 2: Spectrum of cos(6 π t)
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We can also use plot2d to make a simple histogram, using kglist.

(%i15) vbars : makelist ( [discrete,
[[kglist[i][1],0],[kglist[i][1],kglist[i][2]]]] ,

i,1,length(kglist) );
(%o15) [[discrete, [[0, 0], [0, 0.0]]], [discrete, [[1, 0], [1, 0.0]]],
[discrete, [[2, 0], [2, 0.0]]], [discrete, [[3, 0], [3, 0.5]]],
[discrete, [[4, 0], [4, 0.0]]]]
(%i16) plot2d ( vbars,[y,0,0.8],[style,[lines,5,1]],

[ylabel," "],[xlabel," k "],[legend,false],
[gnuplot_preamble,"set grid;"] )$

which produces the plot
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Figure 3: Line Spectrum of cos(6 π t)

The production of such a frequency space spectrum plot can be automated by accepting the fast Fourier transform list glist
and defining a Maxima function spectrum (glist, nlw, ymax) which would be used with the specific syntax spectrum
(glist, 5, 0.8) to obtain a histogram similar to the above but cleaner. (nlw is the line width and ymax is the vertical extent
of the canvas starting at y = 0.)

We have designed spectrum to also allow the expanded syntax spectrum (glist, nlw, ymax, k1, k2) which zooms in on
the interval k1 <= k <= k2, where k2 <= knyq. In addition, we have avoided, in spectrum, creating vertical bars
when a fast Fourier transform amplitude is less than a very small number.
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The entry

(%i17) spectrum (glist, 5, 0.8 )$

produces the plot
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Figure 4: spectrum ( glist, 5, 0.8 )

We will use spectrum, included in qfft.mac, in our following examples as a quick way to look at the frequency spectrum.

Finally, let’s use the Maxima function inverse fft to apply the inverse fast Fourier transform to the list of fast Fourier
transform amplitudes glist, and see how closely the result matches the original signal sample list flist.

(%i18) flist1 : inverse_fft(glist);
(%o18) [1.0, 1.11022E-16 %i - 0.707, 2.24949E-32 %i - 1.83691E-16,
6.77259E-17 %i + 0.707, - 1.0, 0.707 - 1.11022E-16 %i,
5.51073E-16 - 2.24949E-32 %i, - 6.77259E-17 %i - 0.707]
(%i19) fchop(%);
(%o19) [1.0, - 0.707, 0.0, 0.707, - 1.0, 0.707, 0.0, - 0.707]
(%i20) fchop( flist);
(%o20) [1.0, - 0.707, 0.0, 0.707, - 1.0, 0.707, 0.0, - 0.707]
(%i21) lmax ( abs (flist1 - flist));
(%o21) 1.30049E-16

We see that inverse fft (glist) recovers our original signal sample list flist to within floating point errors.
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11.1.2 Example 2: FFT Spectrum of a Sum of Two Monochromatic Signals

Almost all signals will contain more than one intrinsic frequency, and to recover a portion of the frequency spectrum with
fidelity, we need to satisfy the two conditions

fs > 2 fhigh and df ≤ flow, (11.1)

in which flow is the lowest intrinsic frequency to be identified, and fhigh is the highest intrinsic frequency to be identified.
(Again, fs is the sampling frequency, and df is the frequency resolution).

We assume now that the signal is F(t) = cos(2 π t) + sin(4 π t). We thus have a signal with the frequencies f1 = 1 s−1

and f2 = 2 s−1. With fs being the sampling frequency, and ns being the number of signal samples, we require fs > 2 fhigh = 4, as
well as df ≤ flow = 1. If we choose flow = 3df , then df = 1/3 = fs/ns, or fs = ns/3. So the first condtion then implies
we need ns/3 > 4, or ns > 12. Since ns also should be equal to 2m for some integer m, we choose ns = 16. Then fs = 16/3
and df = fs/ns = 1/3 hertz.

(%i1) ( load(fft), load(qfft) )$
(%i2) e : cos(2*%pi*t) + sin(4*%pi*t)$
(%i3) (ns : 16, fs : 16/3)$
(%i4) dt : first (nyquist (ns,fs));
sampling interval dt = 0.188
Nyquist integer knyq = 8
Nyquist freq fnyq = 2.6667
freq resolution df = 0.333
(%o4) 0.188
(%i5) flist : sample (e,t,ns,dt)$
(%i6) %,fll;
(%o6) [1.0, - 0.324, 16]
(%i7) tmax: ns*dt;
(%o7) 3.0
(%i8) tflist : vf (flist,dt)$
(%i9) %,fll;
(%o9) [[0, 1.0], [2.8125, - 0.324], 16]
(%i10) plot2d([e ,[discrete,tflist]], [t,0,tmax],

[style,[lines,3],[points,3,2,1]],
[legend,false])$

We have used our utility function fll described in the preface, which returns the first and last element of a list, as well as the length
of the list. The plot thus produced is
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Figure 5: cos(2 π t) + sin(4 π t) with Sample Points
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We next generate the list glist of fast Fourier transform amplitudes G(k*df) and use spectrum to look at the implied
frequency spectrum.

(%i11) glist : fft (flist)$
(%i12) %,fll;
(%o12) [- 7.94822E-17, 1.52656E-16 - 5.7151E-17 %i, 16]
(%i13) spectrum (glist,5,0.6)$

which produces the spectrum histogram:
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Figure 6: Spectrum of cos(2 π t) + sin(4 π t)

Since df = 1/3, the line at k = 3 corresponds to the frequency f = k*df = 3*(1/3) = 1 Hertz and the line at
k = 6 corresponds to the frequency f = k*df = 6*(1/3) = 2 Hertz.
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11.1.3 Example 3: FFT Spectrum of a Rectangular Wave

A rectangular wave as a function of time t with period equal to 64 sec which cycles between plus and minus 1 can be
constructed from floor and mod in the form: rwave(t) := 2*mod(floor(t/32),2) - 1.

For t = 0, t/32 = 0, floor(t/32) = floor(0) = 0, mod(0,2) = 0, so rwave(0) = -1.

(%i1) rwave(t):= 2*mod(floor(t/32),2) -1 $
(%i2) [floor(0),mod(0,2),rwave(0)];
(%o2) [0, 0, - 1]

For t = 32, floor(32/32) = floor(1) = 1, mod(1,2) = 1, rwave(32) = 1.

(%i3) [floor(1),mod(1,2),rwave(32)];
(%o3) [1, 1, 1]

For t = 64, floor(64/32) = floor(2) = 2, mod(2,2) = 0, rwave(64) = -1.

(%i4) [floor(2),mod(2,2),rwave(64)];
(%o4) [2, 0, - 1]

Hence rwave(0 + 64) = rwave(0) and rwave(t) has a period equal to 64 sec.

We first look at the rectangular wave signal with a plot.

(%i5) plot2d(rwave(t),[t,0,128],[y,-1.5,1.5],
[ylabel," "],[style,[lines,5]],
[gnuplot_preamble,"set grid;set zeroaxis lw 2;"])$
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Figure 7: Rectangular Wave with Period 64 sec.

If we consider sampling this signal at intervals dt = 1 sec, the sampling frequency will be fs = 1/dt =
1 hertz = 1 per sec = 64 per cycle. The lowest intrinsic frequency of this signal is f_low =
1/64 hertz—, corresponding to the period of the rectangular wave. If we choose 4*df = f_low, then
df = 1/256 = fs/ns = 1/ns, so ns = 256. Due to the sharp corners of a rectangular wave we expect many high
frequency components to be present in the spectrum.
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We thus try the combination, ns = 256, and fs = 1 hertz.

(%i6) (ns:256, fs:1)$
(%i7) (load(fft),load(qfft) )$
(%i8) dt:first(nyquist(ns,fs));
sampling interval dt = 1.0
Nyquist integer knyq = 128
Nyquist freq fnyq = 0.5
freq resolution df = 0.00391
(%o8) 1.0
(%i9) flist : sample(rwave(t),t,ns,dt)$
(%i10) fll (flist);
(%o10) [- 1.0, 1.0, 256]
(%i11) makelist (flist[i],i,1,10);
(%o11) [- 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0]
(%i12) tmax: ns*dt;
(%o12) 256.0
(%i13) tflist : vf (flist,dt)$
(%i14) fll (tflist);
(%o14) [[0, - 1.0], [255.0, 1.0], 256]
(%i15) plot2d([rwave(t) ,[discrete,tflist]], [t,0,tmax],

[y,-1.5,1.5],[ylabel," "],
[style,[lines,3],[points,1,0,1]],
[legend,false])$

The sample_plot invocation produces the black points of the sample on top and bottom of the rectangular wave shown
here:
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Figure 8: Black Sample Points with Rectangular Wave
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Next we look at the signal frequency spectrum from k = 0 to k = knyq = 128. Since f = k*df, and df = 1/256
hertz, the low fundamental intrinsic frequency f_0 = 1/64 hertzwill be located at k = 4, and the maximum possible
frequency component will be fnyq = knyq*df = 0.5 hertz = 32*f_0. The spectrum plot is generated by passing
the list flist containing ns = 256 signal samples, along with nlw = 3, and ymax = 0.7 to spectrum:

(%i16) glist : fft (flist)$
(%i17) %,fll;
(%o17) [0.0, 0.0, 256]
(%i18) spectrum (glist,3,0.7)$

which produces the spectrum plot:
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Figure 9: Spectrum from k = 0 to knyq = 128

The plot shows lines at k = 4, 12, 20, 28, 36, ..... Since f = k*df and f_0 = 4*df is the fundamental
frequency, the frequencies present are f_0, 3*f_0, 5*f_0, 7*f_0,... which is the “fundamental” plus odd har-
monics of the fundamental. We know there must be high frequency components to account for the sharp corners of the
signal.
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11.1.4 Example 4: FFT Spectrum Sidebands of a Tone Burst Before and After Filtering

A tone burst signal consisting of a sine wave begins at t = 0 and ends abruptly after forty five seconds. The fast Fourier
frequency spectrum of such a signal, when sampled over the duration of the sine wave plus some time following the sine
wave end, will contain “sideband” frequencies above and below the intrinsic frequency of the sine wave. Many signal
filters can be used to allow the easy identification of the intrinsic sine wave frequency by surpressing the sideband frequen-
cies. We use for the tone burst the sine wave: sin(2 π t/5) during the time interval 0 ≤ t ≤ 45 sec, and then abruptly
dropping to 0 for t > 45 sec. The intrinsic frequency of the sine wave is f0 = 1/5 hertz, and the corresponding
period is 5 sec, thus the sine wave lasts for nine periods. We will use the following idealized model of such a signal by
ignoring the actual time needed to end the sine wave.

(%i1) sig(t) := if t < 45 then sin(2*%pi*t/5.0) else 0$

We will use this definition only for t ≥ 0 in our work. With fs the sampling frequency, if we want about 10 samples/cycle (ie.,
10 per 5 sec), then we want period*fs = 10, or fs roughly equal to 2 hertz. We want the intrinsic, frequency f0 (
0.2 hertz) to not be too close to the left end of the frequency spectrum plot so we can see the low frequency sidebands as well

as the higher frequency sidebands.

Suppose we try requiring that f0 = 0.2 hertz = 50*df = 50*fs/ns. Solving for the number of signal samples ns, we
get ns = 50 * 2 * 5 = 500. To get a power of 2 we choose the closest such quantity, ns = 512. We then return to our f0
location requirement to solve for the resulting value of fs to get fs = 512/250 = 2.048 hertz.

(%i2) load (qfft)$
(%i3) (ns:512,fs:2.048)$
(%i4) dt : first(nyquist(ns,fs));
sampling interval dt = 0.488
Nyquist integer knyq = 256
Nyquist freq fnyq = 1.024
freq resolution df = 0.004
(%o4) 0.488
(%i5) tmax : ns*dt;
(%o5) 250.0

We can plot a Maxima function defined with the if then else construct without problem since plot2d evaluates its arguments.

(%i6) plot2d ( sig(t),[t,0,tmax],[y,-1.5,1.5],
[style,[lines,1,0]],[ylabel," "],[nticks,100],
[legend,false],[gnuplot_preamble,"set grid;"])$

which produces the plot:
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Figure 10: Sine Wave Tone Burst, Period = 5 sec, Duration = Nine Periods
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Using the qfft package function sample with a Maxima function defined with the if...then construct produces a list
each element of which includes if then else, which can be used with plot2d. However, we will include an extra
evaluation in defining our flist so we can see the numerical values as a list. Note that the syntax expr, fll; causes an
extra evaluation, so to be careful we need to use the syntax fll (expr).

(%i7) flist : sample (sig(t),t,ns,dt)$
(%i8) fll (flist);
(%o8) [if 0.0 < 45.0 then 0.0 else 0.0,

if 249.51 < 45.0 then - 0.576 else 0.0, 512]
(%i9) flist : ev (flist)$
(%i10) fll (flist);
(%o10) [0.0, 0.0, 512]
(%i11) makelist(flist[i],i,1,10);
(%o11) [0.0, 0.576, 0.942, 0.964, 0.634, 0.0736, - 0.514, - 0.914, - 0.981,

- 0.69]
(%i12) tflist : vf (flist,dt)$
(%i13) fll (tflist);
(%o13) [[0, 0.0], [249.51, 0.0], 512]

We now use plot2d to show our sample points on top of our tone burst signal (both in black).

(%i14) plot2d([sig(t) ,[discrete,tflist]], [t,0,tmax],
[y,-1.5,1.5],[ylabel," "],

[style,[lines,1,0],[points,1,0,1]],
[legend,false])$

which produces the plot:
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Figure 11: Signal and Sample Points Which Include 0’s for t > 45 sec
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We now plot the unfiltered tone burst spectrum after generating glist with fft.

(%i15) load (fft)$
(%i16) glist : fft (flist)$
(%i17) fll (glist);
(%o17) [- 8.08763E-5, 0.00174 - 0.00286 %i, 512]
(%i18) spectrum (glist, 2, 0.1 )$

which produces the spectrum plot: We see strong sideband frequencies on both the low and high side of the intrinsic
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Figure 12: Frequency Spectrum of Unfiltered Tone Burst

frequency f0 = 50*df, which is the highest peak at k = 50 (f = k*df = 50*(1/250) = 1/5 = 0.02). The sidebands
are a mathematical artifact of the finite duration of the sine wave tone burst with its abrupt beginning and end.

A windowing filter which smooths out the beginning and end of the “burst envelope” is used by defining a smoothed
envelope signal as the product of the unsmoothed signal and a suitable windowing function. The von Hann window
employs a sin2 pinch envelope.

(%i19) hannw(x,m) := sin(%pi*(x-1)/(m-1))ˆ2$
(%i20) sig_w(t) := hannw(t,45)*sig(t)$
(%i21) plot2d ( sig_w(t),[t,0,tmax],[y,-1.5,1.5],

[style,[lines,1,0]],[ylabel," "],[nticks,100],
[legend,false],[gnuplot_preamble,"set grid;"])$
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which shows the filtered tone burst
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Figure 13: Filtered Tone Burst

Using now the filtered tone burst signal sig_w(t), we construct a filtered signal sample list flist_w and look at the altered fast
Fourier spectrum (remember dt has been bound to 0.488 and ns to 512):

(%i22) flist_w : sample (sig_w(t),t,ns,dt)$
(%i23) fll (flist_w);
(%o23) [0.00509 (if 0.0 < 45.0 then 0.0 else 0.0),

0.799 (if 249.51 < 45.0 then - 0.576 else 0.0), 512]
(%i24) flist_w : ev (flist_w)$
(%i25) fll (flist_w);
(%o25) [0.0, 0.0, 512]
(%i26) makelist (flist_w[i],i,1,5);
(%o26) [0.0, 7.68319E-4, 2.63668E-6, 0.00106, 0.00293]
(%i27) glist_w : fft (flist_w)$
(%i28) makelist (glist_w[i],i,1,5);
(%o28) [1.59068E-5, 3.93191E-6 - 1.99372E-5 %i, - 1.83151E-5 %i - 1.84837E-5,

2.09989E-6 %i - 2.59175E-5, 1.69797E-5 %i - 9.67992E-6]
(%i29) spectrum (glist_w, 2, 0.1)$

and we see deletion of most of the sideband frequency peaks:
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Figure 14: Frequency Spectrum of the Filtered Tone Burst
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11.1.5 Example 5: Cleaning a Noisy Signal using FFT Methods

We use the same signal as used in Example 2, Sec. (11.1.2), but add some random noise to it. Without the noise, the
signal is F(t) = cos(2 π t) + sin(4 π t). Thus the clean signal contains the frequencies f1 = 1 s−1 and f2 = 2 s−1,
and two corresponding periods τ 1 = 1/f1 = 1 sec and τ 2 = 1/f2 = 0.5 sec. To get a noisy looking signal we have to
sample and add noise a lot of times within one or two periods of the clean signal, where we use the maximum of the
intrinsic periods. Let’s try N = 512 samples over a time tmax = 2 sec. Then N δt = 2 sec, so fs = 1/dt = N/2 = 256.
The first condition on the sampling frequency is that fs > 2 fhigh, or fs > 4 s−1, which is certainly satisfied. The second
condition on fs is δf < flow, or df < 1 s−1, or fs/ns < 1 s−1, or fs < ns, which is also true. Hence we try ns = 512,
fs = 256.

(%i1) e : cos(2*%pi*t) + sin(4*%pi*t)$
(%i2) (load(fft), load(qfft))$
(%i3) [ns:512,fs:256]$
(%i4) dt : first(nyquist(ns,fs));
sampling interval dt = 0.00391
Nyquist integer knyq = 256
Nyquist freq fnyq = 128.0
freq resolution df = 0.5
(%o4) 0.00391
(%i5) flist : sample(e,t,ns,dt)$
(%i6) %,fll;
(%o6) [1.0, 0.951, 512]
(%i7) flist_noise : makelist(flist[j]+0.3*(-1.0+random(2.0)),j,1,ns)$
(%i8) %,fll;
(%o8) [1.2483, 1.0073, 512]
(%i9) tflist_noise : vf (flist_noise,dt)$
(%i10) %,fll;
(%o10) [[0, 1.2483], [1.9961, 1.0073], 512]
(%i11) plot2d ([discrete,tflist_noise],[y,-2,2],

[style,[lines,1]],[ylabel," "])$

which produces the noisy signal plot
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Figure 15: Noisy Signal
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One way to “clean” this signal is to set small numbers in the fast Fourier transform to zero and inverse transform back to
the time domain using inverse fft.

In order to “chop” small numbers in the fast Fourier transform amplitude list, we need to produce that list, which we call
glist noise from the noisy signal sample flist noise by using fft.

(%i12) glist_noise : fft (flist_noise)$
(%i13) %,fll;
(%o13) [- 0.0022, 5.09918E-4 %i - 0.00338, 512]

Before “chopping” small numbers in glist noise, we take a look at the fast Fourier frequency spectrum implied by
glist noise.

(%i14) spectrum (glist_noise,2,0.6)$

which produces the plot
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Figure 16: Noisy Signal Frequency Spectrum

The dominant lines are still those corresponding to the two intrinsic frequencies of the clean signal we started with, but
there are many more frequencies present due to the noise.
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To see more clearly the dominant line region, we show another plot with the integer k in the range (0, 10):

(%i15) spectrum (glist_noise,4,0.6,0,10)$

which produces the plot:
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Figure 17: Noisy Signal Frequency Spectrum with k in (0,10)

We now use fchop1 with the value 0.2 to set small floating point numbers less than 0.2 to zero in the frequency space list
glist noise, and again use spectrum to look at the frequency spectrum associated with the chopped frequency space list.

(%i16) glist_noise_chop : fchop1(glist_noise,0.2)$
(%i17) %,fll;
(%o17) [0.0, 0.0, 512]
(%i18) spectrum (glist_noise_chop,2,0.6)$

which produces the plot
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Figure 18: Chopped Frequency Spectrum
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Here is the cleaned spectrum in the range k = (0,10):
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Figure 19: Chopped Frequency Spectrum for k in (0,10)

We now create a cleaned up signal list using inverse fft on the chopped glist, transforming back to the time domain.

(%i19) flist_clean : inverse_fft ( glist_noise_chop )$
(%i20) %,fll;
(%o20) [2.22045E-16 %i + 1.0016, 0.952 - 3.16992E-15 %i, 512]
(%i21) flist_clean : realpart(flist_clean)$
(%i22) %,fll;
(%o22) [1.0016, 0.952, 512]

Since the inverse Fourier transform will often include small imaginary parts due to floating point error, we took care
to take the real part of the returned list before looking at the cleaned up signal. We now construct the list of points [t,
F clean]:

(%i23) tflist_clean : vf ( flist_clean, dt )$
(%i24) %,fll;
(%o24) [[0, 1.0016], [1.9961, 0.952], 512]
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and plot first just the cleaned up signal points

(%i25) plot2d ([discrete,tflist_clean],[y,-2,2],
[style,[lines,1]],[ylabel," "])$

which produces
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Figure 20: Cleaned Signal Points

We now show both the cleaned list points together with the original clean two frequency signal we started with, to show that the
cleaned up points lie right on top of the original two frequency signal.

(%i26) plot2d([e ,[discrete,tflist_clean]], [t,0,2],
[style,[lines,1],[points,1,0,1]],
[legend,false])$

which produces the plot
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Figure 21: Cleaned Signal Points on Top of Original Clean Signal

We see that the inverse fast Fourier transform of the chopped glist frequency spectrum yields a cleaned up signal, as
desired.
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11.2 Our Notation for the Discrete Fourier Transform and its Inverse

Given a real valued signal F(t) which is to be sampled N times at the moments (separated by equal time intervals δt)
t = 0, δt, 2 δt, ..., (N− 1) δt, one needs to select the two parameters N = 2m and fs, where the latter is called the
sampling frequency. The sampling time interval is then given by

δt =
1
fs

(11.2)

(or else use the data determined value of δt to calculate fs). Note that the fast fourier transform algorithm used by Maxima
assumes that the number of signal samples N is some integral power of 2, N = 4,8,16,32,64, ... so an experimental
sample might have to be padded with zeroes to achieve this condition on N. The sampling frequency fs should be greater
than twice the highest frequency component to be identified in the signal and the frequency resolution δf should be
smaller than the lowest frequency to be identified in the signal. Given the sampling frequency fs and the number of signal
samples N, the frequency resolution δf is given by

δf =
fs
N

(11.3)

We will motivate this definition below. Assuming this definition, we then require that

fs
N

< flow (11.4)

The sampling frequency fs thus needs to satisfy the two conditions:

2 fhigh < fs < Nflow (11.5)

A convenient choice which automatically satisfies the low frequency part of these conditions is to arrange that

flow = n δf , (11.6)

where n = 3 or 4, say. Then that choice determines the frequency resolution to be used δf = flow/n, and from the
definition of δf , Eq.(11.3), this requires that

fs = Nflow/n (11.7)

and then Eq.(11.5) implies the condition on N:

N >
2n fhigh

flow
(11.8)

In the simple case that flow = fhigh = f0 Eq.(11.7) becomes

fs = N
f0
n

, (11.9)

Eq.(11.5) becomes
N > 2n, (11.10)

and
δf =

f0
n

(11.11)

In Example 1, the signal frequency is f0 = 3, and we chose n = 3. Then, Eq.(11.9) implies that fs = N, Eq.(11.10)
implies that N > 6, and Eq.(11.11) implies that δf = 1. Since we need N = 2m as well, we chose fs = N = 8.

In Example 2, flow = 1 and fhigh = 2, and we again chose n = 3. Then, Eq.(11.6) implies that δf = 1/3, Eq.(11.7)
implies that fs = N/3, and Eq.(11.8) implies that N > 12. Since we need N = 2m as well, we chose N = 16 and this
forces fs = 16/3.
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The N real numbers F(0), F(δt), F(2 δt), ...,F(m δt), ...,F((N− 1) δt) can be used to define N complex numbers
G(k δf), where k = 0, 1, ..., (N− 1), according to (this incorporates Maxima’s conventions):

G(k δf) =
1
N

N−1∑

m=0

F(m δt) e−2π imk/N (11.12)

The Maxima conventions include where to put the factor of 1/N and what sign to use in the exponent argument. Our
notation uses i to stand for the pure imaginary number

√−1. Common engineering notation uses j for
√−1.

Equation (11.12) can be exactly inverted to arrive at an expression for the values of the original signal at N discrete times
in terms of the N values of the discrete Fourier transform.

F(m δt) =
N−1∑

k=0

G(k δf) e2π i km/N (11.13)

where m = 0, 1, ..., (N− 1).

Using Eqs. (11.3) and (11.2), we make the replacement

1
N

= δf δt (11.14)

in Equations (11.12) and (11.13) to get

G(fk) =
1
N

N−1∑

m=0

F(tm) e−2π i fk tm (11.15)

and

F(tm) =
N−1∑

k=0

G(fk) e2π i tm fk (11.16)

where fk = k δf and tm = m δt.

A simpler looking set of transform pairs can be achieved by letting Fm = F(tm) and Gk = G(fk), in terms of which
Equations (11.12) and (11.13) become

Gk =
1
N

N−1∑

m=0

Fm e−2π imk/N (11.17)

and

Fm =
N−1∑

k=0

Gk e2π i km/N (11.18)

We can use
e−2π imk = (e−2π i k)m = (−1)m = 1 (11.19)

to show that the fast Fourier amplitudes have the periodicity N

Gk+N = Gk. (11.20)

We can now formally admit negative frequencies by letting k take on negative integral values, and setting k = −N/2 we
then get

GN/2 = G−N/2. (11.21)
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This means that the amplitude corresponding to the “Nyquist frequency”

fNyquist =
N
2

δf (11.22)

is the same complex number as the amplitude corresponding to the frequency −fNyquist.
In the qfft package, the function nyquist calculates what we call the “Nyquist integer” kNyquist, which is just

kNyquist =
N
2

, (11.23)

in terms of which
fNyquist = kNyquist δf (11.24)

Likewise we can show that
GN/2+1 = G−N/2+1. (11.25)

which means that the amplitude corresponding to the frequency (N/2 + 1) δf = fNyquist + δf is the same complex
number as the amplitude corresponding to the frequency −fNyquist + δf . The only useful part of the spectrum in that
contained in the frequency interval between zero and fNyquist − δf , ie., in the range
k = 0,1,2, ..., (N/2)− 1.

In a similar manner we can show that Fm+N = Fm, or that F(tm + T) = F(tm), where

T = N δt =
N
fs

=
1
δf

, (11.26)

so that the fast Fourier amplitudes describe a signal which has the basic inevitable long period T no matter what other
shorter periods (and correspondingly higher frequencies) are also present in the signal. This low frequency, long period
property is an artifact of the approximate nature of Equations (11.12) and (11.13).

The fast fourier transform and its inverse should be considered as a distinct type of transform pair rather than as an
approximation to either a Fourier series expansion or a Fourier integral expression of a continuous spectrum. The basic
idea of the fast Fourier transform is that one has waited long enough for a physical system to “settle down” and the system
is then sampled for a certain finite length of time Ts (we use frequency-time language only for simplicity here, the same
ideas apply to wavelength-spatial domain problems).
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11.3 Syntax of qfft.mac Functions

FAST FOURIER TRANSFORM UTILITIES
nyquist (ns,fs)
sample (expr,var,ns,dvar)
vf (flist,dvar)
kg (glist)
fchop (expr)
fchop1 (expr,small)
current_small ()
setsmall (val)
spectrum ( glist, nlw, ymax, k1,k2 )

1. nyquist (ns, fs), given ns, the number of signal
samples, and fs, the sampling frequency,
returns the list [dt,knyq,fnyq,df] where dt is the time
interval between function samples (dt = 1/fs), knyq in the Nyquist
integer (knyq = ns/2), fnyq is the Nyquist frequency
(fnyq = fs/2 = knyq*df), and df is the frequency
resolution (df = fs/ns) for the output of fft.
For given ns, the values of df and dt are linked
by the equation df*dt = 1/ns.

Thus nyquist(8,8); returns the list
[0.125, 4, 4.0, 1.0], and also prints out:

sampling interval dt = 0.125
Nyquist integer knyq = 4
Nyquist freq fnyq = 4.0
freq resolution df = 1.0

2. sample (expr, var, ns, dvar) constructs a list of ns
floating point samples F(m*dvar),
[F(0), F(dvar), F(2*dvar),...,F((ns-1)*dvar) ],
given the expression expr depending on var.

sample(cos(t),t,16,1) returns a list of 16 values
of cos(t) at intervals dt = 1, with list element
number 1 holding cos(0), element number 2 holding
cos(dt) = cos(1), etc.

A signal sample list to be used with fft(flist) should
have a length ns which is 2 raised to some integer power,
2ˆ3 = 8, 2ˆ4 = 16,... If your experimental signal sample
size does not have such a power of 2 length, you should pad
the sample list with extra zeros.

3. vf ( flist, dvar ), given a list of function samples flist,
consisting of ns values, and the step size dvar, returns a

list of the form (if dvar = dt, say),
[ [0, F(0)],[dt, F(dt)],...,[(ns-1)*dt, F( (ns-1)*dt)]]
useful for a plot.
For example, if the length of flist is 8, vf (flist, 1) returns the list

[ [0, F(0)], [1, F(1)], ... , [7, F(7)] ]
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4. kg ( glist ) constructs a list of [ k, abs( g(k*df) ) ]
for k = 0, 1, ..., knyq, which can be used with plot2d.

knyq is the Nyquist integer, knyq = ns/2,
where ns is the number of function samples and also the
length of flist and glist. fchop(abs(glist[j])) is
used to be able to plot real numbers and set tiny

numbers to zero.

glist is the fast Fourier transform list of complex amplitudes
produced by glist : fft( flist ).

Using inverse_fft( glist ) should produce flist again to within
floating point errors. Since floating point errors will also
introduce tiny imaginary numbers in inverse_fft ( fft (flist) )
(if flist is real), you can use realpart(...) to recover
a list of real numbers.

5. fchop(expr) or fchop(list) sets tiny floating point
numbers (with package default, less than 10ˆ(-13) ) to zero.

6. fchop1(expr,small) is used to override the default value of
the small chop value with your desired value.

Example: fchop1(s1, 1.0e-3) to set numbers smaller than
10ˆ(-3) to zero in the expression or list s1.

7. current_small() returns the current default small chop value.

8. setsmall(val) allows you to set a new value for the
current default small chop value; use floating point
numbers like 2.0e-3 or 2.0E-3.

9. spectrum (glist, nlw, ymax ) creates a histogram of the frequency
spectrum implied by glist = fft ( flist ), with line width nlw

and vertical canvas height ymax. The range of integers
k is 0 <= k <= knyq. The frequency associated with a given
line is given by f = k*df, where df is the frequency
resolution df = fs/ns. ns is the total number of signal samples
and fs is the sampling frequency: fs = 1/dt (dt is the time
interval between signal samples).

spectrum (glist, nlw, ymax, k1, k2) restricts the plot to
the range k1 <= k <= k2.
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11.4 The Discrete Fourier Transform Derived via a Numerical Integral Approximation

Review of Trapezoidal Rule

If we let f0 = f(a), f1 = f(a + h), f2 = f(a + 2h), ... and fN = f(b) = f(a + Nh), then the trapezoidal rule approx-
imation is ∫ b

a
f(x)dx ≈ h

2
(f0 + 2 f1 + 2 f2 + · · ·+ 2 fN−1 + fN) (11.27)

where b = a + Nh defines h = (b− a)/N. If we now specialize to functions such that f(a) = f(b) then the trapezoidal
rule reduces to

∫ b

a
f(x)dx ≈ h (f(a) + f(a + h) + f(a + 2h) + · · ·+ f(b− 2h) + f(b− h)) (11.28)

with h = (b− a)/N.

If we now make the replacements x → t, a → 0, b → T, h = (b− a)/N → T/N = ∆t,
(b− h) → T− (T/N) = (N− 1)∆t, then

∫ T

0
f(t)dt ≈ (T/N) (f(0) + f(∆t) + f(2∆t) + · · ·+ f( (N− 1)∆t) ) (11.29)

or ∫ T

0
f(t)dt ≈ ∆t

N−1∑

m=0

f(m∆t) (11.30)

where ∆t = T/N and assuming f(0) = f(T).

A Path to the Discrete Fourier Transform

If we knew the value of a signal F(t) at all moments of the interval 0 ≤ t ≤ T then we could evaluate the Fourier
coefficients

Ck =
1
T

∫ T

0
F(t) e−2π i k t/T dt (11.31)

(k is an integer) in terms of which the signal could be represented as the sum

F(t) =
∞∑

k=−∞
Ck e2π i k t/T (11.32)

which would be a complex form of Fourier series expansion in terms of an infinite number of Fourier coefficients Ck. We
have adopted here sign and prefactor conventions which will lead us to Maxima’s fast Fourier conventions.

Now assume we only know the signal at N discrete values F(m∆t), where m = 0,1,2, ...,N− 1, and that F(t) = f(t + T).
We can then approximate the integral in Eq.(11.31) using the trapezoidal approximation expressed by Eq.(11.30).

Ck ≈ 1
T

(T/N)
N−1∑

m=0

F(m∆t) e−2π i km∆t/T (11.33)

Defining a “frequency resolution” δf given by

δf =
1
T

=
1

∆tN
=

fs
N

(11.34)

in which fs = 1/∆t is the “sampling frequency”, and making the replacements T → 1/δf , Ck → G(k δf)

G(k δf) =
1
N

N−1∑

m=0

F(m∆t) e−2π i (k δf) (m∆t) (11.35)
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With fk = k δf and tm = m∆t, we can write this as

G(fk) =
1
N

N−1∑

m=0

F(tm) e−2π i fk tm (11.36)

which we recognise as the same as Eq.(11.15). With only N values of F(tm) we can only determine N values of G(fk),
which by convention we take to be for the values of the integer k = 0,1,2, ...,N− 1.

We see from Eq.(11.34) that

δf ∆t =
1
N

(11.37)

which allows Eq.(11.35) to be written as

G(k δf) =
1
N

N−1∑

m=0

F(m∆t) e−2π i km/N (11.38)

which reproduces our starting point Eq.(11.12) in Sec. 11.2.

The Inverse Discrete Fourier Transform

Although the discrete Fourier transform, Eq.(11.38), is an approximation which gets better as N increases for fixed T (or since
Eq.(11.34) indicates that the latter condition is equivalent to the ratio fs/N being fixed, gets better as N and fs are each increased in
the same ratio), the inversion formula involves no further approximations.

Multiplying both sides of Eq.(11.38) by exp(2π i k n/N) and then summing both sides over k, and then interchanging the order of
the k and m summations on the right hand side, results in

N−1∑

k=0

G(k δf) e2 π i k n/N =
1
N

N−1∑
m=0

F(m∆t)
N−1∑

k=0

e2 π i k (n−m)/N =
1
N

N−1∑
m=0

F(m∆t) (N δm,n) = F(n∆t) (11.39)

which reproduces our discrete inverse Fourier transform formula Eq.(11.13), since n is an arbitrary integer.

That the sum over k is equal to zero if m 6= n can be seen by letting l = n−m and using eka = (ea)k and recognising that we
have a simple geometric sum. We can also let Maxima confirm this as follows:

(%i1) declare([k,l,N],integer)$
(%i2) sum (exp(2*%pi*%i*k*l/N),k,0,N-1),simpsum;

2 %i %pi l
%e - 1

(%o2) ----------------
2 %i %pi l
----------

N
%e - 1

(%i3) %,demoivre;
(%o3) 0

In the last step the exponentials of complex arguments are converted into their trig function equivalents using

ei θ = cos θ + i sin θ (11.40)

11.5 Fast Fourier Transform References
We have consulted the treatment of the fast Fourier transform in the following books:

1. Mathematica for the Sciences, Richard E. Crandall, Addison-Wesley, 1991

2. A First Course in Computational Physics, Paul L. Davies, John Wiley, 1994

3. Applied Mathematica: Getting Started, Getting it Done, William T. Shaw and Jason Tigg, Addison-Wesley, 1994



Maxima by Example:
Ch. 12, Dirac Algebra and Quantum Electrodynamics ∗

Edwin L. Woollett

September 13, 2010

Contents

12.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
12.2 High Energy Physics Notation Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
12.3 Introduction to the Dirac Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
12.4 traceConEx.mac: Examples of Frequently Used Functions in the Dirac Package . . . . . . . . . . . . . . 7

12.4.1 Dirac Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
12.5 moller0.mac: Scattering of Identical Scalar Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . 16
12.6 moller1.mac: High Energy Elastic Scattering of Two Electrons . . . . . . . . . . . . . . . . . . . . . . . 20
12.7 moller2.mac: Arbitrary Energy Moller Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12.8 bhabha1.mac: High Energy Limit of Bhabha Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12.9 bhabha2.mac: Arbitrary Energy Bhabha Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.10 photon1.mac: Photon Transverse Polarization 3-Vector Sums . . . . . . . . . . . . . . . . . . . . . . . 37
12.11 Covariant Physical External Photon Polarization 4-Vectors - A Review . . . . . . . . . . . . . . . . . . 39
12.12 compton0.mac: Compton Scattering by a Spin 0 Structureless Charged Particle . . . . . . . . . . . . . . 39
12.13 compton1.mac: Lepton-photon scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.14 pair1.mac: Unpolarized Two Photon Pair Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.15 pair2.mac: Polarized Two Photon Pair Annihilation Amplitudes . . . . . . . . . . . . . . . . . . . . . . 50
12.16 moller3.mac: Squared Polarized Amplitudes Using Symbolic or Explicit Matrix Trace Methods . . . . . 61
12.17 List of Dirac Package Files and Example Batch Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

∗This version uses Maxima 5.21.1 Check http://www.csulb.edu/˜woollett/ for the latest version of these notes. Send comments
and suggestions to woollett@charter.net

1



Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the XMaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.18.1
(2009). http://maxima.sourceforge.net/

The homemade function fll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
automatically loaded in with mbe1util.mac from Ch. 1. We will include a reference to this definition when working with lists.

This function has the definitions

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxima html help manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html.

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
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12.1 References

The following works are useful sources. Some abbreviations (which will be used in the following sections) are defined
here.

• Aitchison, I.J.R., Relativistic Quantum Mechanics, Barnes and Noble,1972

• A/H: Aitchison,I.J.R, and Hey, A.J.G., Gauge Theories in Particle Physics, Adam Hilger, 1989

• B/D: Bjorken, James D. and Drell, Sidney D, Relativistic Quantum Mechanics, McGraw Hill, 1964

• BLP: Berestetskii, V. B, Lifshitz, E. M., and Pitaevskii, L. P., Quantum Electrodynamics, Course of Theoretical
Physics, Vol. 4, 2nd. Ed. Pergamon Press, 1982

• Berestetskii, V. B, Lifshitz, E. M., and Pitaevskii, L. P., Relativistic Quantum Theory, Part 1, Course of Theoretical
Physics, Vol. 4, Pergamon Press, 1971

• De Wit, B. and Smith, J., Field Theory in Particle Physics, North-Holland, 1986

• G/R: Greiner, Walter, and Reinhardt, Joachim, Quantum Electrodynamics, fourth ed., Springer, 2009

• Griffiths, Introduction to Elementary Particles, Harper and Row, 1987

• H/M: Halzen, Francis and Martin, Alan D., Quarks and Leptons, John Wiley, 1984

• I/Z: Itzykson, Claude and Zuber, Jean-Bernard, Quantum Field Theory, McGraw-Hill, 1980

• Jauch, J.M., and Rohrlich, F., The Theory of Photons and Electrons, Second Expanded Edition, Springer-Verlag,
1976

• Kaku, Michio, Quantum Field Theory, Oxford Univ. Press, 1993

• Maggiore, Michele, A Modern Introduction to Quantum Field Theory, Oxford Univ. Press, 2005

• P/S: Peskin, Michael E. and Schroeder, Daniel V., An Introduction to Quantum Field Theory, Addison-Wesley,
1995

• Quigg, Chris, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, Benjamin/Cummings, 1983

• Renton, Peter, Electroweak Interactions, Cambridge Univ. Press, 1990

• Schwinger, Julian, Particles, Sources, and Fields, Vol. 1, Addison-Wesley, 1970

• Sterman, George, An Introduction to Quantum Field Theory, Cambridge Univ. Press, 1993

• Weinberg, Steven, The Quantum Theory of Fields, Vol.I, Cambridge Univ. Press, 1995

12.2 High Energy Physics Notation Conventions

We use the same conventions as P/S (Peskin and Schroeder) and Maggiore. The electromagnetic units are Heaviside-
Lorentz, and natural units are used, so e2 = 4πα.

The only exception is that we interpret the Feynman rules as an expression for the quantity−iM , following the conven-
tions of Griffiths, and Halzen/Martin.

The diagonal elements of the metric tensor are (1,−1,−1,−1), and the helicity (chiral) representation used for explicit

matrix methods with the Dirac gamma matrices is (in 2 × 2 block form)

γ0 =

(
0 1
1 0

)
, γj =

(
0 σj

−σj 0

)
, γ5 =

(−1 0
0 1

)
, (12.1)
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in which σj for j = 1, 2, 3 are the 2 × 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (12.2)

The above form for γ5 is equivalent to

γ5 = i γ0 γ1 γ2 γ3. (12.3)

The lepton Dirac spinor is the four element column matrix u(p, σ) where σ = +1 picks out positive helicity h = +1/2

and σ = −1 picks out negative helicity h = −1/2. The corresponding barred particle spinor is a four element row

matrix

ū(p, σ) = u† γ0 (12.4)

and the particle Dirac spinor normalization is

ū(p, σ) u(p, σ′) = 2 mδσ σ′, σ, σ′ = ±1, (12.5)

and we also have ∑
σ

u(p, σ) ū(p, σ) = p/ + m, (12.6)

in which a 4 × 4 unit matrix is understood to be multiplying the scalar mass symbol m, and p/ = pµ γµ with use of the
summation convention.

The antilepton Dirac spinor is the four element column matrix v(p, σ) in which σ = +1 picks out the positive helicity

h = +1/2 antiparticle state and σ = −1 picks out negative helicity h = −1/2 antiparticle state, is defined (with P/S

phase choice) via

v(p, σ) = −γ5 u(p,−σ) (12.7)

The corresponding barred antiparticle spinor is a four element row matrix

v̄(p, σ) = v† γ0 (12.8)

and the normalization is

v̄(p, σ) v(p, σ′) = −2 mδσ σ′ σ, σ′ = ±1. (12.9)

We also have ∑
σ

v(p, σ) v̄(p, σ) = p/−m (12.10)

We define the 4× 4 the spin projection matrix

S(p, σ) =
1

2
(1 + σ γ5 s/R(p)) (12.11)

in which the 1 is interpreted as the 4 × 4 unit matrix and in which s/R(p) = sR µ γµ, and the right handed spin 4-vector

sµ
R generated by the 4-vector p has the components

sµ
r (p) =

(|p|
m

,
E

m
p̂

)
(12.12)
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in which E =
√

m2 + p2.

For finite (non-zero) mass m we have

u(p, σ) ū(p, σ) = S(p, σ) (p/ + m) = (p/ + m) S(p, σ) (12.13)

and again for finite mass,

v(p, σ) v̄(p, σ) = S(p, σ) (p/−m) = (p/−m) S(p, σ) (12.14)

In the case of zero mass leptons

u(p, σ) ū(p, σ) =
1

2
(1 + σ γ5) p/ (12.15)

and for zero mass antiparticles

v(p, σ) v̄(p, σ) =
1

2
(1− σ γ5) p/. (12.16)

Calculation of unpolarized cross sections requires summing the absolute value squared of a polarized amplitude over the
helicity quantum numbers of the particles involved, and the result can be written as the matrix trace of a 4× 4 matrix. A
simple example follows. We use a compressed notation in which, for example, u1 stands for u(p1, σ1) and u2 stands for
u(p2, σ2). Let Γ be an arbitrary 4× 4 matrix.

One can show that

(ū2 Γ u1)
∗ = ū1 Γ̄ u2 (12.17)

in which

Γ̄ = γ0 Γ† γ0. (12.18)

Then ∑
σ1 σ2

|ū2 Γ u1|2 =
∑
σ1 σ2

ū2 Γ u1 ū1 Γ̄ u2 (12.19)

We use the sum over σ1 to replace u1 ū1 by (p/1 + m), and are left with
∑
σ2

ū2 Γ̂ u2, Γ̂
.
= Γ (p/1 + m) Γ̄. (12.20)

Writing out the matrix indices explicitly, the sum becomes (using the summation convention for repeated matrix indices)
∑
σ2

ū2 a Γ̂a b u2 b = Γ̂a b

∑
σ2

u2 b ū2 a = Γ̂a b (p/2 + m)b a = Trace {Γ̂ (p/2 + m)} (12.21)

Note that Trace (AB) = Trace (B A). We then have
∑
σ1 σ2

|ū2 Γ u1|2 = Trace {(p/2 + m) Γ (p/1 + m) Γ̄}. (12.22)
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12.3 Introduction to the Dirac Package

Three independent Dirac algebra methods are available in our package. One can gain confidence in an unexpected result
by doing the same calculation in multiple ways. The explicit Dirac spinor methods, which use an explicit representation
of the gamma matrices, are bug free, fast, and the route to polarized amplitudes (rather that the square of polarized am-
plitudes). Moreover, summing the absolute square of the polarized amplitudes over all helicity values leads quickly and
reliably to the unpolarized cross section in terms of the frame dependent kinematic variables such as scattering angle.
However the version available with this package is not a covariant method and is always frame dependent. The explicit
Dirac matrix methods using the Maxima function mat_trace are inherently less bug prone and also are faster in exe-
cution than the purely symbolic methods. However, the purely symbolic contraction and trace methods available in this
package are capable of introducing the kinematic invariants s, t, and u into the calculation in a simple way, or to reducing
the types of four vector dot products to two, leading to useful covariant results. In the following examples, we usually
use the fastest and most convenient method for a given problem. An example of using the matrix trace and contraction
methods, and the symbolic trace and contraction methods to generate the square of polarized amplitudes is provided in
the section dealing with the batch file moller3.mac.

Each physics calculation is written in the form of a batch file with an appropriate name, such as moller1.mac. Al-
though one can start a problem calculation in two steps by first loading the Dirac package with load("dirac.mac")
and then, for example, launching the batch file using batch ("moller1.mac"), it is easier during the process of
experimentation to have one file called, say, work.mac which contains both of these commands. With this latter sys-
tem, one can redo an edited batch file by restarting Maxima, and then using Alt+P to recall the last command (if
the last command was load("work.mac")), or to type in load("work.mac"). This can be made even eas-
ier by defining the function w() := load ("work.mac") in the file work.mac. The later versions of Max-
ima will not print out the batch command (when using the work.mac file method) but rather will print the message
read and interpret file: #pc:/work4/moller1.mac for example.

The batch files use some private code in the author’s startup file maxima-init.mac to print out the year-month-day
of the batch file run, and also to print the Maxima version number. The startup file code fragments are

load("new-timedate.lisp")$
mydate : apply (’sconcat, rest (charlist (timedate(+7)),-15))$

_binfo% : "Maxima 5.21.1"$

The lisp file new-timedat.lisp, available on the author’s webpage, was written by Maxima developer Leo Butler,
and allows Windows users to overcome a bug to get a year-month-day stamp using Maxima’s timedate function. One
can then, for example, print out the year-month-day at the start of a Maxima session, using

disp (mydate)$

as a line in the startup file.

In our batch files is a line

print (" ver: ",_binfo%," date: ",mydate )$

which prints out the Maxima version number and year-month-day as:

ver: Maxima 5.21.1 date: 2010-09-01
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12.4 traceConEx.mac: Examples of Frequently Used Functions in the Dirac Package

Once you have loaded the Dirac package (which includes loading five files in addition to dirac.mac), you can find
traces using tr (for symbolic traces), or Gtr (for symbolic traces using a G argument), or nc_tr, equivalent to
noncov (tr(..)) which begins with a symbolic trace and ends with a reduction to frame dependent quantities.

For the trace of explicit matrix expressions, the functions m_tr and mat_trace have a different syntax but both do
the same ultimate job, since the m_tr form is converted automatically into the mat_trace form. To obtain useful ex-
pressions, one should first use comp_def to define the frame dependent components of relevant 4-vectors, and combine
mcon with either m_tr or mat_trace.

You can calculate contractions using Con (for any type of argument), scon (for symbolic contraction), mcon (for con-
traction of expressions involving explicit matrices), and econ (for contraction of expressions produced by noncov).

D(p,q) = D(q,p) stands for the 4-vector inner product p · q = q · p.

Gm(mu,nu) stands for gµν or gµν depending on the context.

UI(p,mu) stands for pµ and LI(p,mu) stands for pµ. With our metric convention, p0 = p0.

comp_def (p1(a,b,c,d)) creates an array with the name p1whose elements can be viewed using listarray (p1)
and whose elements can be accessed by using p1[0] to get the value a. The array element p1[mu] (with mu = 0,1,2,3)
stands for pµ

1 . comp_def is used to assign components to 4-vectors in a given frame of reference.

Eps(mu,nu,rh,la) stands for εµ ν ρ λ, but the antisymmetry property only comes into play with
noncov(Eps(a,b,c,d)) --> eps4[a,b,c,d], with the convention that ε0123 = 1. Dummy indices
N1, N2, ... are automatically generated when needed and are eventually summed over using noncov. Any contrac-
tion involving Eps expressions is automatically done using noncov which converts any Eps(a,b,c,d) to the array
eps4[a,b,c,d] (which is the quantity defined to be antisymmetric), and converts Gm(a,b) to the array gmet[a,b]
(which is delared as symmetric).

G(mu,p,nu,q) is algebraically equivalent to the matrix
Gam[mu] . sL(p) . Gam[nu] . sL(q)

in which the Lorentz indices mu and nu take on possible values 0,1,2,3, and sL(p) is the Feynman slash matrix
generated for the 4-vector labeled p. This interpretation depends on the content of the package list indexL, which tells
the package functions which symbols are to be treated as Lorentz indices. Any other symbol is treated as a symbol for
a four-momentum, unless that symbol appears on the list massL (in which case the symbol is treated as a mass), or
unless the symbol has been declared a scalar with the command, for example using the package function mscalar:
mscalar (c1,c2,c3)$, which not only declares c1,.. scalars but puts them on the list scalarL. However,
G(mu,p,nu,q) is treated as a purely symbolic expression in this package and is not represented as an explicit matrix.
In fact, the function Gtr simply replaces the symbol G by the symbol tr and evaluates the result. Further mass symbols
can be placed on massL via the package function mass(), as in mass (m1,m2).

We illustrate some key functions at work with the batch file traceConEx.mac, (using a work.mac file to first load
the dirac package and then the batch file of examples). Note that tr automatically contracts on repeated Lorentz indices.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
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indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/traceConEx.mac
(%i2) " ======================================================"
(%i3) " file traceConEx.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-01

(%i9) " ======================================================"
(%i10) " Examples of Symbolic Traces "
(%i11) " ---------------------------------------------------"
(%i12) " Symbolic contraction on repeated Lorentz indices is "
(%i13) " automatically carried out by the tr and Gtr functions."
(%i14) " Symbols appearing on the list indexL are recognised"
(%i15) " as Lorentz indices."
(%i16) " You can add symbols to indexL using function index."
(%i17) " You can remove symbols from indexL using function unindex."
(%i18) " ---------------------------------------------------"
(%i19) " Three examples of using mat_trace for the trace of an "
(%i20) " explicit matrix expression are also given."
(%i21) " Gam[mu] for mu = 0,1,2,3, and Gam[5] are explicit Dirac matrices"
(%i22) " Z4 is the 4 x 4 zero matrix, I4 is the 4 x 4 identity matrix"
(%i23) " defined by the Dirac package."
(%i24) indexL
(%o24) [la,mu,nu,rh,si,ta,al,be,ga]
(%i25) tr(mu,mu)
(%o25) 16
(%i26) Gtr(G(mu,mu))
(%o26) 16
(%i27) tr(mu,nu)
(%o27) 4*Gm(mu,nu)
(%i28) noncov(%)
(%o28) 4*gmet[mu,nu]
(%i29) Gtr(G(mu,nu))
(%o29) 4*Gm(mu,nu)
(%i30) " Examples of mat_trace "
(%i31) I4
(%o31) matrix([1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1])
(%i32) mat_trace(I4)
(%o32) 4
(%i33) Z4
(%o33) matrix([0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0])
(%i34) mat_trace(Z4)
(%o34) 0
(%i35) a(mu,nu):=mat_trace(Gam[mu] . Gam[nu])
(%i36) b(mu,nu):=4*gmet[mu,nu]
(%i37) c(mu,nu):=is(equal(a(mu,nu),b(mu,nu)))
(%i38) c(0,0)
(%o38) true
(%i39) for mu from 0 thru 3 do

(for nu from 0 thru 3 do
if not c(mu,nu) then print(mu,nu," false"))

(%i40) tr(mu,p,q,mu)
(%o40) 16*D(p,q)
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(%i41) Gtr(G(mu,p,q,mu))
(%o41) 16*D(p,q)
(%i42) tr(G5,mu,nu,rh,la)
(%o42) -4*%i*Eps(mu,nu,rh,la)
(%i43) noncov(%)
(%o43) 4*%i*eps4(la,mu,nu,rh)
(%i44) Gtr(G(G5,mu,nu,rh,la))
(%o44) -4*%i*Eps(mu,nu,rh,la)
(%i45) tr(G5,p,mu,nu,rh)
(%o45) -4*%i*LI(p,N1)*Eps(N1,mu,nu,rh)
(%i46) " Symbols for masses, like m, which appear on the list massL are treated"
(%i47) " differently, and automatic expansion is carried out."
(%i48) massL
(%o48) [m,M]
(%i49) tr(m+p1,mu,m+p2,mu)
(%o49) 16*mˆ2-8*D(p1,p2)

and examples of factoring out scalar constants, if declared:

(%i50) " ======================================================"
(%i51) " The symbolic trace will recognise scalar constants multiplying"
(%i52) " momentum symbols and factor them out correctly. By using "
(%i53) " mscalar to declare scalar constant symbols, you maintain "
(%i54) " a list scalarL, and you can remove the scalar property "
(%i55) " using unscalar "
(%i56) scalarL
(%o56) []
(%i57) mscalar(c1,c2)
scalarL = [c2,c1]

(%o57) done
(%i58) tr(c1*p,q)
(%o58) 4*c1*D(p,q)
(%i59) tr(c1*p,c2*q)
(%o59) 4*c1*c2*D(p,q)
(%i60) tr(m+c1*p,m+c2*q)
(%o60) 4*c1*c2*D(p,q)+4*mˆ2
(%i61) tr(G5,c1*p,mu,nu,rh)
(%o61) -4*%i*c1*LI(p,N2)*Eps(N2,mu,nu,rh)
(%i62) unscalar(c1)
scalarL = [c2]
(%i63) tr(c1*p,q)
(%o63) 4*D(c1*p,q)

and examples of symbolic contractions and contractions of explicit matrices:

(%i64) " ======================================================="
(%i65) "Examples of Symbolic and Explicit Matrix Contractions "
(%i66) " Symbolic contractions using Con or scon do not require "
(%i67) " the contraction indices, if automatic contraction over "
(%i68) " all repeated Lorentz indices is desired."
(%i69) " Contractions of explicit matrix expressions require"
(%i70) " the contraction indices be specified, as in mcon (e,mu,nu)"
(%i71) " Remember that Con is (hopefully) designed to select either"
(%i72) " scon, econ, or mcon depending on the type of expression."
(%i73) Con(G(mu,mu))
(%o73) 4
(%i74) " Con fails if you don’t supply the intended contraction "
(%i75) " index is the expression is an explicit matrix expression."
(%i76) Con(Gam[mu] . Gam[mu])
(%o76) Gam[mu]ˆˆ2
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(%i77) "But providing the contraction index, we get the correct result."
(%i78) Con(Gam[mu] . Gam[mu],mu)
(%o78) matrix([4,0,0,0],[0,4,0,0],[0,0,4,0],[0,0,0,4])
(%i79) is(equal(Con(Gam[mu] . Gam[mu],mu),4*I4))
(%o79) true
(%i80) Con(G(mu,nu,nu,mu))
(%o80) 16
(%i81) Con(Gam[mu] . Gam[nu] . Gam[nu] . Gam[mu],mu,nu)
(%o81) matrix([16,0,0,0],[0,16,0,0],[0,0,16,0],[0,0,0,16])
(%i82) is(equal(Con(Gam[mu] . Gam[nu] . Gam[nu] . Gam[mu],mu,nu),16*I4))
(%o82) true
(%i83) " Control symbolic contractions by providing contraction indices."
(%i84) Con(G(mu,nu,nu,mu),mu)
(%o84) 4*Gm(nu,nu)
(%i85) Con(G(mu,nu,nu,mu),nu)
(%o85) 4*G(mu,mu)
(%i86) Con(G(mu,p,q,mu))
(%o86) 4*D(p,q)
(%i87) Con(G(p,mu,mu,q))
(%o87) 4*G(p,q)
(%i88) Con(G(p,mu,mu,p))
(%o88) 4*D(p,p)
(%i89) Con(UI(p,mu)*UI(q,mu))
(%o89) D(p,q)
(%i90) Con(UI(p,mu)*Gm(mu,nu))
(%o90) UI(p,nu)
(%i91) Con(G(a,mu,b,c,mu,a))
(%o91) 4*D(a,a)*D(b,c)
(%i92) Con(G(G5,mu,nu,nu,mu))
(%o92) 16*G(G5)
(%i93) Con(Gam[5] . Gam[mu] . Gam[nu] . Gam[nu] . Gam[mu],mu,nu)
(%o93) matrix([-16,0,0,0],[0,-16,0,0],[0,0,16,0],[0,0,0,16])
(%i94) is(equal(Con(Gam[5] . Gam[mu] . Gam[nu] . Gam[nu] . Gam[mu],mu,nu),

16*Gam[5]))
(%o94) true

and examples of noncov, comp_def, and VP:

(%i95) " ======================================================"
(%i96) " Examples of Use of noncov, comp_def, VP "
(%i97) noncov(D(p,q))
(%o97) -p[3]*q[3]-p[2]*q[2]-p[1]*q[1]+p[0]*q[0]
(%i98) noncov(Gm(mu,nu))
(%o98) gmet[mu,nu]
(%i99) " gmet is a two dimensional numeric array "
(%i100) gmet[0,0]
(%o100) 1
(%i101) noncov(UI(p,mu))
(%o101) p[mu]
(%i102) noncov(LI(p,mu))
(%o102) p[3]*gmet[3,mu]+p[2]*gmet[2,mu]+p[1]*gmet[1,mu]+p[0]*gmet[0,mu]
(%i103) noncov(LI(p,N1)*Eps(N1,1,2,3))
(%o103) p[0]
(%i104) noncov(Eps(mu,nu,rh,la))
(%o104) -eps4(la,mu,nu,rh)
(%i105) " eps4 is declared antisymmetric "
(%i106) eps4(mu,nu,rh,la)
(%o106) -eps4(la,mu,nu,rh)
(%i107) " eps4 is a two dimensional numeric array "
(%i108) eps4[0,1,2,3]
(%o108) 1
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(%i109) "Use comp_def to specify 4-vec. components in a given frame "
(%i110) " Syntax: comp_def (pn (energy symbol,3-mom_x,3-mom_y,3-mom_z)) "
(%i111) " or, comp_def ( pa(Ea,pax,pay,paz), pb (Eb,pbx,pby,pbz ),...)"
(%i112) " Here, we assume scattering in the z-x plane."
(%i113) assume(E > 0,th >= 0,th <= %pi)
(%i114) comp_def(p1(E,0,0,E),p2(E,0,0,-E),p3(E,E*sin(th),0,E*cos(th)),

p4(E,-E*sin(th),0,-E*cos(th)))
(%i115) listarray(p1)
(%o115) [E,0,0,E]
(%i116) p1[0]
(%o116) E
(%i117) p1[3]
(%o117) E
(%i118) noncov(D(p1,p2))
(%o118) 2*Eˆ2
(%i119) noncov(D(p2+p1,p2+p1))
(%o119) 4*Eˆ2
(%i120) " can also use VP for 4-vector product in terms of components"
(%i121) VP(p2+p1,p2+p1)
(%o121) 4*Eˆ2
(%i122) factor(VP(p1-p3,p1-p3))
(%o122) 2*(cos(th)-1)*Eˆ2

and examples of nc_tr, econ, mcon, m_tr, and mat_trace:

(%i123) " ======================================================"
(%i124) " Comparing econ,nc_tr, mcon, m_tr, mat_trace Methods "
(%i125) Con_comp:Con(nc_tr(p3,mu,p1,nu)*nc_tr(p4,mu,p2,nu),mu,nu)
(%o125) 64*sin(th)ˆ2*Eˆ4+96*cos(th)ˆ2*Eˆ4+64*cos(th)*Eˆ4+96*Eˆ4
(%i126) Con_comp-econ(nc_tr(p3,mu,p1,nu)*nc_tr(p4,mu,p2,nu),mu,nu)
(%o126) 0
(%i127) Con_comp-Con(m_tr(p3,mu,p1,nu)*m_tr(p4,mu,p2,nu),mu,nu)
(%o127) 0
(%i128) Con_comp-mcon(m_tr(p3,mu,p1,nu)*m_tr(p4,mu,p2,nu),mu,nu)
(%o128) 0
(%i129) Con_comp-Con(mat_trace(sL(p3) . Gam[mu] . sL(p1) . Gam[nu])

*mat_trace(sL(p4) . Gam[mu] . sL(p2) . Gam[nu]),mu,nu)
(%o129) 0
(%i130) Con_comp-mcon(mat_trace(sL(p3) . Gam[mu] . sL(p1) . Gam[nu])

*mat_trace(sL(p4) . Gam[mu] . sL(p2) . Gam[nu]),mu,nu)
(%o130) 0

It is easy to verify two properties of Gam[5] using explicit matrices.

(%i131) " ======================================================"
(%i132) " Gam[5] has zero trace and Gam[5].Gam[5] = I4 "
(%i133) mat_trace(Gam[5])
(%o133) 0
(%i134) is(equal(Gam[5] . Gam[5],I4))
(%o134) true
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12.4.1 Dirac Spinors

Finally, we present an example of an expression constructed from Dirac spinors and matrices for given helicity quantum
numbers.

We generate an explicit Dirac “spinor”, a four element column matrix, corresponding to u(p1, σ) using the func-
tion UU(E,p,theta,phi,sv) which descibes a spin 1/2 particle with relativistic energy E, 3-momentum magni-
tude p, whose 3-vector momentum is described by polar angles (theta,phi), where 0 <= theta <= %pi and
0 <= phi < 2*%pi, and whose helicity quantum number sv is 1 for helicity +1/2 and sv is -1 for helicity -1/2.

We normally describe scattering in the z-x plane, and if p1 makes an angle th <= %pi with the positive z axis and
we are describing “positive” helicity (sv = 1) (or “righthanded, R”) we would use the syntax
up1 : UU(E1,p1,th,0,1).

If a different particle is moving in the z-x plane in a direction opposite to p1 with 3-momentum p2 and energy E2, we
would use the syntax (taking sv2 = +1)
up2 : UU (E2,p2,%pi - th, %pi, 1). For a negative helicity particle, we would use sv = -1.

A barred particle spinor (a row matrix) is generated by using sbar which has the definition
sbar (_uu%) := hc (_uu%) . Gam[0]$

in which hc is the package defined hermitian conjugate function.

We would use the syntax up1b : sbar (UU(E1,p1,th,0,1)) for example.

To generate the antiparticle spinor corresponding to v(p,σ) for an antiparticle of energy E1 and 3-momentum p1 we use
the function
VV(E,p,theta,phi,sv).
We normally describe scattering in the z-x plane, and if p1 makes an angle th <= %pi with the positive z axis and
we are describing “positive” helicity (sv = 1) (or “righthanded, R”) we would use the syntax
vp1 : VV(E1,p1,th,0,1). For a negative helicity antiparticle, we would use sv = -1.

If a different antiparticle is moving in the z-x plane in a direction opposite to p1 with 3-momentum p2 and energy E2,
we would use the syntax (taking for example sv2 = +1)
vp2 : VV (E2,p2,%pi - th, %pi, 1).

A barred antiparticle spinor (a row matrix) is generated by using sbar with the syntax
vp1b : sbar (VV (E1,p1,th,0,1)) for example.

In the following example, we construct spinors needed to calculate the matrix element for the RL --> RL process
e(-,p1,1) + e(+,p2,-1) --> mu(-,p3,1) + mu(+,p4,-1)
in which the electron and muon have positive helicity and the positron and antimuon have negative helicity. Since in the
high energy limit the energy and 3-momentum magnitude are the same, we replace p by E, and we are working in the
center of momentum frame, so each “particle” has the same energy.

( up1 : UU(E,E,0,0,1), vp2b : sbar (VV (E,E,%pi,0,-1)),
a12 : vp2b.Gam[mu].up1,

up3b : sbar (UU (E,E,th,0,1)), vp4 : VV (E,E,%pi-th,%pi,-1),
a34 : up3b.Gam[mu].vp4)$

Ignoring the factor -eˆ2, the numerator Mn of the transition amplitude is given by the contraction of the product
a12*a34 on the index mu.
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(%i135) " ======================================================"
(%i136) " Contraction example involving Dirac spinors"
(%i137) " High energy limit in center of momentum frame of "
(%i138) " e(-,p1,1) + e(+,p2,-1) --> mu(-,p3,1) + mu(+,p4,-1) "
(%i139) " sv1 = 1, sv2 = -1, sv3 = 1, sv4 = -1 "
(%i140) " ref: P/S p. 131 ff "
(%i141) (up1:UU(E,E,0,0,1),vp2b:sbar(VV(E,E,%pi,0,-1)),

a12:vp2b . Gam[mu] . up1,up3b:sbar(UU(E,E,th,0,1)),
vp4:VV(E,E,%pi-th,%pi,-1),a34:up3b . Gam[mu] . vp4)

(%i142) " The numerator of the amplitude, ignoring -eˆ2 factor"
(%i143) Mn:Con(a12*a34,mu)
(%o143) 8*cos(th/2)ˆ2*Eˆ2
(%i144) " the denominator of the amplitude "
(%i145) s_th:VP(p2+p1,p2+p1)
(%o145) 4*Eˆ2
(%i146) Amp_RL_RL:Mn/s_th
(%o146) 2*cos(th/2)ˆ2
(%i147) (display2d:true,display(Amp_RL_RL),display2d:false)

2 th
Amp_RL_RL = 2 cos (--)

2

We next look at the Dirac spinor normalization in the simplest case.

(%i148) " ======================================================"
(%i149) " in the high energy limit considered above, the spinor "
(%i150) " normalization becomes zero: "
(%i151) sbar(up1) . up1
(%o151) 0
(%i152) " In the arbitrary energy case, the normalization is 2*m "
(%i153) up1:UU(E,p,0,0,1)
(%i154) sbar(up1) . up1
(%o154) 2*sqrt(E-p)*sqrt(E+p)
(%i155) rootscontract(%)
(%o155) 2*sqrt(Eˆ2-pˆ2)
(%i156) ratsubst(m,sqrt(Eˆ2-pˆ2),%)
(%o156) 2*m

We can check the square of the polarized amplitude calculated above by using either the mat_trace method, the m_tr
method, or the purely symbolic nc_tr method. The matrix method using m_tr syntax is designed to have arguments
which look the same as the purely symbolic case.

(%i157) " ======================================================"
(%i158) " Using m_tr, mat_trace, and nc_tr for |A_RL_RL|ˆ2 "
(%i159) " -----------------------------------------------------"
(%i160) " First, the mat_trace method using Dirac matrices."
(%i161) " P(sv) is the massless case helicity projection matrix "
(%i162) " which becomes (I4 + sv*Gam[5])/2."
(%i163) " In the massless limit P(+1) picks out negative helicty"
(%i164) " in the case of antiparticles."
(%i165) Mn_sq:(a12:mat_trace(P(1) . sL(p2)

. Gam[mu] . P(1) . sL(p1) . Gam[nu]),
a34:mat_trace(P(1) . sL(p3)

. Gam[mu] . P(1) . sL(p4) . Gam[nu]),
mcon(a12*a34,mu,nu),factor(%%))

(%o165) 16*(cos(th)+1)ˆ2*Eˆ4
(%i166) time(%)
(%o166) [0.05]
(%i167) Mn_sq:to_ao2(Mn_sq,th)
(%o167) 64*cos(th/2)ˆ4*Eˆ4
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(%i168) M_sq:Mn_sq/s_thˆ2
(%o168) 4*cos(th/2)ˆ4
(%i169) M_sq-Amp_RL_RLˆ2
(%o169) 0
(%i170) " which shows agreement with the explicit Dirac spinor method"
(%i171) " -----------------------------------------------------"
(%i172) " Next the m_tr method, which is translated into mat_trace "
(%i173) Mn_sq:(a12:m_tr(S(1),p2,mu,S(1),p1,nu),

a34:m_tr(S(1),p3,mu,S(1),p4,nu),mcon(a12*a34,mu,nu),factor(%%))
(%o173) 16*(cos(th)+1)ˆ2*Eˆ4
(%i174) time(%)
(%o174) [0.06]
(%i175) Mn_sq:to_ao2(Mn_sq,th)
(%o175) 64*cos(th/2)ˆ4*Eˆ4
(%i176) M_sq:Mn_sq/s_thˆ2
(%o176) 4*cos(th/2)ˆ4
(%i177) M_sq-Amp_RL_RLˆ2
(%o177) 0
(%i178) " Finally the pure symbolic method, using nc_tr "
(%i179) " After using nc_tr = noncov (tr(..)), contractions"
(%i180) " should be done with econ."
(%i181) " S(sv) --> (1 + sv*G5)/2, effectively, is the massless"
(%i182) " helicity projection operator for the symbolic method."
(%i183) Mn_sq:(a12:nc_tr(S(1),p2,mu,S(1),p1,nu),

a34:nc_tr(S(1),p3,mu,S(1),p4,nu),econ(a12*a34,mu,nu),
factor(%%))

(%o183) -16*(sin(th)ˆ2-2*cos(th)-2)*Eˆ4
(%i184) time(%)
(%o184) [0.14]
(%i185) Mn_sq:to_ao2(Mn_sq,th)
(%o185) 64*cos(th/2)ˆ4*Eˆ4
(%i186) M_sq:Mn_sq/s_thˆ2
(%o186) 4*cos(th/2)ˆ4
(%i187) M_sq-Amp_RL_RLˆ2
(%o187) 0

Examples of symbolic traces of the product of G5 with six or eight gammas.

(%i188) " ====================================================="
(%i189) " Traces of G5 with 6 and 8 gamma matrices "
(%i190) " Easier to follow if we use numbered Lorentz indices "
(%i191) index(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10)
(%o191) [n1,n2,n3,n4,n5,n6,n7,n8,n9,n10]
(%i192) indexL
(%o192) [la,mu,nu,rh,si,ta,al,be,ga,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10]
(%i193) tr6:tr(G5,n1,n2,n3,n4,n5,n6)
(%o193) 4*%i*Eps(n3,n2,n1,n4)*Gm(n5,n6)-4*%i*Eps(n3,n2,n1,n5)*Gm(n4,n6)

+4*%i*Eps(n3,n2,n1,n6)*Gm(n4,n5)
-4*%i*Gm(n1,n2)*Eps(n3,n4,n5,n6)
+4*%i*Gm(n1,n3)*Eps(n2,n4,n5,n6)
-4*%i*Eps(n1,n4,n5,n6)*Gm(n2,n3)

(%i194) tr8:tr(G5,n1,n2,n3,n4,n5,n6,n7,n8)
(%o194) 4*%i*Gm(n1,n2)*Eps(n5,n4,n3,n6)*Gm(n7,n8)

-4*%i*Gm(n1,n3)*Eps(n5,n4,n2,n6)*Gm(n7,n8)
+4*%i*Gm(n1,n4)*Eps(n5,n3,n2,n6)*Gm(n7,n8)
-4*%i*Gm(n2,n3)*Eps(n5,n1,n4,n6)*Gm(n7,n8)
+4*%i*Gm(n2,n4)*Eps(n5,n1,n3,n6)*Gm(n7,n8)
-4*%i*Gm(n3,n4)*Eps(n5,n1,n2,n6)*Gm(n7,n8)
+4*%i*Gm(n2,n3)*Eps(n4,n1,n6,n5)*Gm(n7,n8)
+4*%i*Eps(n2,n1,n6,n5)*Gm(n3,n4)*Gm(n7,n8)
-4*%i*Gm(n2,n4)*Eps(n3,n1,n6,n5)*Gm(n7,n8)
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+4*%i*Gm(n1,n5)*Eps(n2,n3,n4,n6)*Gm(n7,n8)
-4*%i*Gm(n1,n6)*Eps(n2,n3,n4,n5)*Gm(n7,n8)
-4*%i*Gm(n1,n2)*Eps(n5,n4,n3,n7)*Gm(n6,n8)
+4*%i*Gm(n1,n3)*Eps(n5,n4,n2,n7)*Gm(n6,n8)
-4*%i*Gm(n1,n4)*Eps(n5,n3,n2,n7)*Gm(n6,n8)
+4*%i*Gm(n2,n3)*Eps(n5,n1,n4,n7)*Gm(n6,n8)
-4*%i*Gm(n2,n4)*Eps(n5,n1,n3,n7)*Gm(n6,n8)
+4*%i*Gm(n3,n4)*Eps(n5,n1,n2,n7)*Gm(n6,n8)
-4*%i*Gm(n2,n3)*Eps(n4,n1,n7,n5)*Gm(n6,n8)
-4*%i*Eps(n2,n1,n7,n5)*Gm(n3,n4)*Gm(n6,n8)
+4*%i*Gm(n2,n4)*Eps(n3,n1,n7,n5)*Gm(n6,n8)
-4*%i*Gm(n1,n5)*Eps(n2,n3,n4,n7)*Gm(n6,n8)
+4*%i*Gm(n1,n7)*Eps(n2,n3,n4,n5)*Gm(n6,n8)
+4*%i*Gm(n1,n2)*Eps(n5,n4,n3,n8)*Gm(n6,n7)
-4*%i*Gm(n1,n3)*Eps(n5,n4,n2,n8)*Gm(n6,n7)
+4*%i*Gm(n1,n4)*Eps(n5,n3,n2,n8)*Gm(n6,n7)
-4*%i*Gm(n2,n3)*Eps(n5,n1,n4,n8)*Gm(n6,n7)
+4*%i*Gm(n2,n4)*Eps(n5,n1,n3,n8)*Gm(n6,n7)
-4*%i*Gm(n3,n4)*Eps(n5,n1,n2,n8)*Gm(n6,n7)
+4*%i*Gm(n2,n3)*Eps(n4,n1,n8,n5)*Gm(n6,n7)
+4*%i*Eps(n2,n1,n8,n5)*Gm(n3,n4)*Gm(n6,n7)
-4*%i*Gm(n2,n4)*Eps(n3,n1,n8,n5)*Gm(n6,n7)
+4*%i*Gm(n1,n5)*Eps(n2,n3,n4,n8)*Gm(n6,n7)
-4*%i*Gm(n1,n8)*Eps(n2,n3,n4,n5)*Gm(n6,n7)
-4*%i*Gm(n2,n3)*Eps(n4,n1,n6,n7)*Gm(n5,n8)
-4*%i*Eps(n2,n1,n6,n7)*Gm(n3,n4)*Gm(n5,n8)
+4*%i*Gm(n2,n4)*Eps(n3,n1,n6,n7)*Gm(n5,n8)
+4*%i*Gm(n1,n6)*Eps(n2,n3,n4,n7)*Gm(n5,n8)
-4*%i*Gm(n1,n7)*Eps(n2,n3,n4,n6)*Gm(n5,n8)
+4*%i*Gm(n2,n3)*Eps(n4,n1,n6,n8)*Gm(n5,n7)
+4*%i*Eps(n2,n1,n6,n8)*Gm(n3,n4)*Gm(n5,n7)
-4*%i*Gm(n2,n4)*Eps(n3,n1,n6,n8)*Gm(n5,n7)
-4*%i*Gm(n1,n6)*Eps(n2,n3,n4,n8)*Gm(n5,n7)
+4*%i*Gm(n1,n8)*Eps(n2,n3,n4,n6)*Gm(n5,n7)
-4*%i*Gm(n2,n3)*Eps(n4,n1,n7,n8)*Gm(n5,n6)
-4*%i*Eps(n2,n1,n7,n8)*Gm(n3,n4)*Gm(n5,n6)
+4*%i*Gm(n2,n4)*Eps(n3,n1,n7,n8)*Gm(n5,n6)
+4*%i*Gm(n1,n7)*Eps(n2,n3,n4,n8)*Gm(n5,n6)
-4*%i*Gm(n1,n8)*Eps(n2,n3,n4,n7)*Gm(n5,n6)
+4*%i*Gm(n1,n2)*Gm(n3,n5)*Eps(n4,n6,n7,n8)
-4*%i*Gm(n1,n3)*Gm(n2,n5)*Eps(n4,n6,n7,n8)
+4*%i*Gm(n1,n5)*Gm(n2,n3)*Eps(n4,n6,n7,n8)
-4*%i*Gm(n1,n2)*Eps(n3,n6,n7,n8)*Gm(n4,n5)
+4*%i*Gm(n1,n3)*Eps(n2,n6,n7,n8)*Gm(n4,n5)
-4*%i*Eps(n1,n6,n7,n8)*Gm(n2,n3)*Gm(n4,n5)
+4*%i*Gm(n1,n4)*Gm(n2,n5)*Eps(n3,n6,n7,n8)
-4*%i*Gm(n1,n5)*Gm(n2,n4)*Eps(n3,n6,n7,n8)
-4*%i*Gm(n1,n4)*Eps(n2,n6,n7,n8)*Gm(n3,n5)
+4*%i*Eps(n1,n6,n7,n8)*Gm(n2,n4)*Gm(n3,n5)
+4*%i*Gm(n1,n5)*Eps(n2,n6,n7,n8)*Gm(n3,n4)
-4*%i*Eps(n1,n6,n7,n8)*Gm(n2,n5)*Gm(n3,n4)

(%i195) tr10:tr(G5,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10)
(%o195) g5TRACE(G5,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10)
(%i196) " present reduce_g5 punts with ten gammas "
(%i197) " (homework problem?) "
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12.5 moller0.mac: Scattering of Identical Scalar Charged Particles

The batch file moller0.mac treats the scattering event

π+(p 1) + π+(p 2) → π+(p 3) + π+(p 4) (12.23)

With the definitions

s = (p 1 + p 2)
2, t = (p 1 − p 3)

2, u = (p 1 − p 4)
2, (12.24)

The symbolic method is used to derive the unpolarized differential cross section, starting with the invariant amplitude

M = M1 + M2, in which

M1 = −e2 (p 1 + p 3) · (p 2 + p 4)

t
, (12.25)

and

M2 = −e2 (p 1 + p 4) · (p 2 + p 3)

u
. (12.26)

The Feynman rules for scalar electrodynamics are discussed in: G/R, QED, p. 434 ff, Renton, p.180 ff, I/Z, p. 282 ff,
B/D, RQM, p. 195, Aitchison, p. 51 ff, A/H, p. 158 ff, Kaku, p. 158 ff, Quigg, p. 49, Schwinger, p. 284 ff, H/M, Ch. 4.

The list invarR (rules for invariant dot products) is first populated using the Dirac package function invar, which will
be used by tr to replace invariant dot products such as D(p1,p1), D(p1,p2), etc by expressions in terms of the mass
m of the scalar particle, and the Mandelstam variables s, t, u.

We then use comp_def to define the components of the 4-vectors in the center of momentum (CM) frame, and evaluate
the Mandelstam variables in that frame.
Some othe Dirac package defined functions used in moller0.mac are ev_Ds, pullfac, sub_stu, and fr_ao2.

The batch file moller0.mac is used after loading in the dirac package. Both jobs are done using work.mac, which looks
like:

/* work4/work.mac */

load ("dirac.mac")$
batch ("moller0.mac")$

Inside Maxima, we then load in work.mac:

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/moller0.mac
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(%i2) " ======================================================"
(%i3) " file moller0.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-01

(%i9) " ======================================================"
(%i10) " ELASTIC SCATTERING OF SPIN 0 PARTICLES (SAME CHARGE)"
(%i11) " FOR EXAMPLE: "
(%i12) " PI(+,p1) PI(+,p2) ---> PI(+,p3) PI(+,p4) "
(%i13) " POPULATE THE LIST invarR OF 4-VEC DOT PRODUCT VALUES, "
(%i14) " Using p1 + p2 = p3 + p4, s = (p1+p2)ˆ2 = (p3+p4)ˆ2 ,"
(%i15) " t = (p1-p3)ˆ2 = (p2-p4)ˆ2,"
(%i16) " and u = (p1-p4)ˆ2 = (p2-p3)ˆ2 "
(%i17) " ---------------------------------------------"
(%i18) invar(D(p1,p1) = mˆ2,D(p1,p2) = s/2-mˆ2,D(p1,p3) = mˆ2-t/2,

D(p1,p4) = mˆ2-u/2,D(p2,p2) = mˆ2,D(p2,p3) = mˆ2-u/2,
D(p2,p4) = mˆ2-t/2,D(p3,p3) = mˆ2,D(p3,p4) = s/2-mˆ2,
D(p4,p4) = mˆ2)

(%i19) "------------------------------------------------------"
(%i20) " factor out -eˆ2 from Mfi, leaving Mfi = M1 + M2 "
(%i21) M1:D(p3+p1,p4+p2)/D(p1-p3,p1-p3)
(%i22) M2:D(p4+p1,p3+p2)/D(p1-p4,p1-p4)
(%i23) M1:ev_Ds(M1)
(%o23) s/t-u/t
(%i24) M1:pullfac(M1,1/t)
(%o24) (s-u)/t
(%i25) M2:ev_Ds(M2)
(%o25) s/u-t/u
(%i26) M2:pullfac(M2,1/u)
(%o26) (s-t)/u
(%i27) Mfi:M2+M1
(%o27) (s-u)/t+(s-t)/u
(%i28) " we get the result Mfi = (s-u)/t + (s-t)/u "
(%i29) "CM FRAME EVALUATION "
(%i30) assume(p > 0,th >= 0,th <= %pi)
(%i31) comp_def(p1(E,0,0,p),p2(E,0,0,-p),p3(E,p*sin(th),0,p*cos(th)),

p4(E,-p*sin(th),0,-p*cos(th)))
(%i32) s_th:noncov(D(p2+p1,p2+p1))
(%o32) 4*Eˆ2
(%i33) t_th:factor(noncov(D(p1-p3,p1-p3)))
(%o33) 2*pˆ2*(cos(th)-1)
(%i34) u_th:factor(noncov(D(p1-p4,p1-p4)))
(%o34) -2*pˆ2*(cos(th)+1)
(%i35) Mfi:sub_stu(Mfi)
(%o35) -4*Eˆ2/(pˆ2*sin(th)ˆ2)-4/sin(th)ˆ2+2
(%i36) " We want to combine the first two terms "
(%i37) " and replace pˆ2 by Eˆ2 - mˆ2 in the numerator"
(%i38) Mfi_12:ratsimp(take_parts(Mfi,1,2))
(%o38) -(4*Eˆ2+4*pˆ2)/(pˆ2*sin(th)ˆ2)
(%i39) Mfi_12n:num(Mfi_12)
(%o39) -4*Eˆ2-4*pˆ2
(%i40) Mfi_12n:factor(expand(subst(pˆ2 = Eˆ2-mˆ2,Mfi_12n)))
(%o40) -4*(2*Eˆ2-mˆ2)
(%i41) Mfi_12:Mfi_12n/denom(Mfi_12)
(%o41) -4*(2*Eˆ2-mˆ2)/(pˆ2*sin(th)ˆ2)
(%i42) " We now add in the third term and extract -2 "
(%i43) Mfi:pullfac(part(Mfi,3)+Mfi_12,-2)
(%o43) -2*(2*(2*Eˆ2-mˆ2)/(pˆ2*sin(th)ˆ2)-1)
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(%i44) " having absorbed eˆ4 into a factor A which multiplies"
(%i45) " |Mfi|ˆ2, and using eˆ2 = 4*%pi*alpha,"
(%i46) " in general, A = alphaˆ2*(pf/pi)/(4*Ecmˆ2) "
(%i47) " but here, pf = pi, and Ecm = 2*E, so "
(%i48) A:alphaˆ2/(16*Eˆ2)
(%i49) " We can now write down the differential scattering cross section:"
(%i50) dsigdo:A*Mfiˆ2
(%i51) (display2d:true,display(dsigdo),display2d:false)

2 2
2 2 (2 E - m ) 2

alpha (------------- - 1)
2 2

p sin (th)
dsigdo = ---------------------------

2
4 E

(%i52) " which agrees with Itzykson and Zuber, p. 286."
(%i53) " The factor 1/sin(th)ˆ2 can be displayed in terms of th/2"
(%i54) " using: "
(%i55) fr_ao2(1/cos(th/2)ˆ2+1/sin(th/2)ˆ2,th)
(%o55) 4/sin(th)ˆ2
(%i56) " and, of course pˆ2 = Eˆ2 - mˆ2 "

Since this is the first example of using a batch file to program the calculations, we show here the appearance of the batch
file moller0.mac.

To save space, we will only show the batch file run output for the remaining examples, even though the batch file output is
rather compressed (minimum white space) and symbols are rearranged in the way Maxima likes to organize printed output.

Of course you can edit your own batch file run output to include more white space which would make the results more
readable and easier to follow.

/* file moller0.mac
pi(+) pi(+) --> pi(+) pi(+)
in scalar electrodynamics, ie,
ignoring structure of pions */

/* references:
Renton p.182
I/Z p. 286
Schwinger, pp. 285 - 289
*/

" ======================================================"$
" file moller0.mac "$
" Maxima by Example, Ch. 12 "$
" Dirac Algebra and Quantum Electrodynamics "$
" Edwin L Woollett, woollett@charter.net "$
" http://www.csulb.edu/˜woollett "$

print (" ver: ",_binfo%," date: ",mydate )$
" ======================================================"$
" ELASTIC SCATTERING OF SPIN 0 PARTICLES (SAME CHARGE)"$
" FOR EXAMPLE: "$

" PI(+,p1) PI(+,p2) ---> PI(+,p3) PI(+,p4) "$



19

" POPULATE THE LIST invarR OF 4-VEC DOT PRODUCT VALUES, "$
" Using p1 + p2 = p3 + p4, s = (p1+p2)ˆ2 = (p3+p4)ˆ2 ,"$
" t = (p1-p3)ˆ2 = (p2-p4)ˆ2,"$
" and u = (p1-p4)ˆ2 = (p2-p3)ˆ2 "$
" ---------------------------------------------"$
invar (D(p1,p1) = mˆ2,

D(p1,p2) = s/2 - mˆ2,
D(p1,p3) = mˆ2 - t/2,
D(p1,p4) = mˆ2 - u/2,
D(p2,p2) = mˆ2,
D(p2,p3) = mˆ2 - u/2,
D(p2,p4) = mˆ2 - t/2,
D(p3,p3) = mˆ2,
D(p3,p4) = s/2 - mˆ2,
D(p4,p4) = mˆ2)$

"------------------------------------------------------"$
" factor out -eˆ2 from Mfi, leaving Mfi = M1 + M2 "$

M1 : D(p1+p3,p2+p4)/D(p1-p3,p1-p3)$

M2 : D(p1+p4,p2+p3)/D(p1-p4,p1-p4)$

M1 : ev_Ds (M1);

M1 : pullfac (M1,1/t);

M2 : ev_Ds (M2);

M2 : pullfac (M2,1/u);

Mfi : M1 + M2;

" we get the result Mfi = (s-u)/t + (s-t)/u "$

"CM FRAME EVALUATION "$

assume ( p > 0, th >= 0, th <= %pi )$

comp_def ( p1( E,0,0,p),
p2( E,0,0,-p),
p3 (E,p*sin(th),0,p*cos(th)),
p4 (E,-p*sin(th),0,-p*cos(th)) )$

s_th : noncov (D(p1+p2,p1+p2));

t_th : factor (noncov (D(p1-p3,p1-p3)));

u_th : factor (noncov (D(p1-p4,p1-p4)));
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Mfi : sub_stu(Mfi);

" We want to combine the first two terms "$
" and replace pˆ2 by Eˆ2 - mˆ2 in the numerator"$

Mfi_12 : ratsimp (take_parts (Mfi,1,2));

Mfi_12n : num (Mfi_12);

Mfi_12n : factor (expand (subst (pˆ2 = Eˆ2 - mˆ2, Mfi_12n)));

Mfi_12 : Mfi_12n/denom(Mfi_12);

" We now add in the third term and extract -2 "$

Mfi : pullfac (Mfi_12 + part(Mfi,3),-2);

" having absorbed eˆ4 into a factor A which multiplies"$
" |Mfi|ˆ2, and using eˆ2 = 4*%pi*alpha,"$
" in general, A = alphaˆ2*(pf/pi)/(4*Ecmˆ2) "$
" but here, pf = pi, and Ecm = 2*E, so "$

A : alphaˆ2/(16*Eˆ2)$

" We can now write down the differential scattering cross section:"$

dsigdo : A*Mfiˆ2$

(display2d:true, display (dsigdo), display2d:false)$
" which agrees with Itzykson and Zuber, p. 286."$
" The factor 1/sin(th)ˆ2 can be displayed in terms of th/2"$
" using: "$

fr_ao2(1/sin(th/2)ˆ2 + 1/cos(th/2)ˆ2, th );
" and, of course pˆ2 = Eˆ2 - mˆ2 "$

12.6 moller1.mac: High Energy Elastic Scattering of Two Electrons

The batch file moller1.mac treats the high energy limit of the scattering event

e−(p1, σ1) + e−(p2, σ2) → e−(p3, σ3) + e−(p4, σ4) (12.27)

We consider the unpolarized ultra-relativistic limit in which the masses of the electrons can be ignored (|p| >> m).

Some references are: C. Moller, 1932, Schwinger, PSF I, p. 300 - 305, Greiner-Reinhardt, QED, 4’th, Sec. 3.3, Griffith
Sec. 7.6, Jauch and Rohrlich, p. 252-257, Renton Sec. 4.3.1, B/D Sec. 7.9, BLP, Sec. 81.

(Note that BLP’s symbol re should be replaced by α/m to compare with our results - they use (along with Greiner/Reinhardt)
Gaussian units for electromagnetic equations, whereas we use (along with Peskin/Schroeder and Bjorken/Drell) rational-
ized Heaviside-Lorentz electromagnetic units. e2

HL = 4 π e2
G See Greiner/Reinhardt, Sec 4.2.).
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The invariant amplitude M = M1 −M2, has two terms. Using the definitions

s = (p 1 + p 2)
2, t = (p 1 − p 3)

2, u = (p 1 − p 4)
2, (12.28)

and the abbreviations

u1 = u(p1, σ1), u2 = u(p2, σ2), ū3 = ū(p3, σ3), ū4 = ū(p4, σ4) (12.29)

we have

M1 = −e2 ū3 γµ u1 ū4γµ u2

t
, (12.30)

and

M2 = −e2 ū4 γµ u1 ū3γµ u2

u
. (12.31)

The unpolarized differential cross section in the CM frame is first found using symbolic methods, first in terms of
s, t, u and then in terms of the scattering angle th.

The polarized amplitudes corresponding to definite electron helicity assignments are then calculated using explicit Dirac
spinors and matrices, and the sum of the squares of these amplitudes reproduces the unpolarized symbolic calculation.

Finally one polarized squared amplitude is calculated using the symbolic methods.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/moller1.mac
(%i2) " ======================================================"
(%i3) " file moller1.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-01

(%i9) " ======================================================"
(%i10) " MOLLER SCATTERING "
(%i11) " HIGH ENERGY LIMIT, CENTER OF MOMENTUM FRAME, NEGLECT MASSES "
(%i12) " e(-,p1,sv1) + e(-,p2,sv2) --> e(-,p3,sv3) + e(-,p4,sv4) "
(%i13) " m = electron mass is set to zero."
(%i14) " ------------------------------------------ "
(%i15) "NON-POLARIZED DIFFERENTIAL CROSS SECTION: SYMBOLIC METHODS"
(%i16) " POPULATE THE LIST invarR OF 4-VEC DOT PRODUCT VALUES, "
(%i17) " Using p1 + p2 = p3 + p4, s = (p1+p2)ˆ2 = (p3+p4)ˆ2 ,"
(%i18) " t = (p1-p3)ˆ2 = (p2-p4)ˆ2,"
(%i19) " and u = (p1-p4)ˆ2 = (p2-p3)ˆ2 "
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(%i20) " CASE HIGH ENERGY (HE) LIMIT E >> m "
(%i21) " ---------------------------------------------"
(%i22) invar(D(p1,p1) = 0,D(p1,p2) = s/2,D(p1,p3) = (-t)/2,D(p1,p4) = (-u)/2,

D(p2,p2) = 0,D(p2,p3) = (-u)/2,D(p2,p4) = (-t)/2,D(p3,p3) = 0,
D(p3,p4) = s/2,D(p4,p4) = 0)

(%i23) "------------------------------------------------------"
(%i24) " factor out -eˆ2 from Mfi, leaving Mfi = M1 - M2 "
(%i25) " With a sum over all helicities implied,"
(%i26) " |Mfi|ˆ2 = M1n/tˆ2 + M2n/uˆ2 -M12n/(t*u) - M21n/(t*u) "
(%i27) " M1n = tˆ2 * M1*conj(M1), M2n = uˆ2 * M2*conj(M2) "
(%i28) " M12n = (t*u)*M1*conj(M2), M21n = (t*u)*M2*conj(M1), and: "
(%i29) M1n:factor(Con(tr(p3,mu,p1,nu)*tr(p4,mu,p2,nu),mu,nu))
(%o29) 8*(uˆ2+sˆ2)
(%i30) M2n:factor(Con(tr(p4,mu,p1,nu)*tr(p3,mu,p2,nu),mu,nu))
(%o30) 8*(tˆ2+sˆ2)
(%i31) " NOTE AUTOMATIC PRETRACE CONTRACTION OF REPEATED "
(%i32) " LORENTZ INDICES WITHIN A SINGLE TRACE OCCURS USING tr."
(%i33) M12n:factor(tr(p3,mu,p1,nu,p4,mu,p2,nu))
(%o33) -8*sˆ2
(%i34) M21n:factor(tr(p4,mu,p1,nu,p3,mu,p2,nu))
(%o34) -8*sˆ2
(%i35) MfiSQ:pullfac((-M21n)/(t*u)+(-M12n)/(t*u)+M2n/uˆ2+M1n/tˆ2,8)
(%o35) 8*((uˆ2+sˆ2)/tˆ2+2*sˆ2/(t*u)+(tˆ2+sˆ2)/uˆ2)
(%i36) " We have absorbed eˆ4 into A, with eˆ2 = 4*%pi*alpha "
(%i37) " Averaging over initial spins means we need to divide A by 4"
(%i38) " to get the unpolarized differential cross section (CM, HE)"
(%i39) A:alphaˆ2/(4*s)
(%i40) dsigdo_unpol_CM_HE:A*MfiSQ/4
(%o40) alphaˆ2*((uˆ2+sˆ2)/tˆ2+2*sˆ2/(t*u)+(tˆ2+sˆ2)/uˆ2)/(2*s)
(%i41) (display2d:true,display(dsigdo_unpol_CM_HE),display2d:false)

2 2 2 2 2
2 u + s 2 s t + s

alpha (------- + ---- + -------)
2 t u 2

t u
dsigdo_unpol_CM_HE = ---------------------------------

2 s

(%i42) " which agrees with Renton’s function of s,t, and u "
(%i43) " on page 159, Eq.(4.54) "
(%i44) " CONVERSION TO EXPLICIT FUNCTION OF SCATTERING ANGLE "
(%i45) assume(p > 0,th >= 0,th <= %pi)
(%i46) comp_def(p1(E,0,0,E),p2(E,0,0,-E),p3(E,E*sin(th),0,E*cos(th)),

p4(E,-E*sin(th),0,-E*cos(th)))
(%i47) s_th:VP(p2+p1,p2+p1)
(%o47) 4*Eˆ2
(%i48) t_th:factor(VP(p1-p3,p1-p3))
(%o48) 2*(cos(th)-1)*Eˆ2
(%i49) u_th:factor(VP(p1-p4,p1-p4))
(%o49) -2*(cos(th)+1)*Eˆ2
(%i50) " To get an expression we can compare with Renton and G/R, "
(%i51) " work with one term at a time "
(%i52) " sub_stu replaces s by s_th, t by t_th "
(%i53) " and u by u_th "
(%i54) M1SQ:sub_stu(M1n/tˆ2)
(%o54) 8*cos(th)ˆ2/(cos(th)ˆ2-2*cos(th)+1)+16*cos(th)/(cos(th)ˆ2-2*cos(th)+1)

+40/(cos(th)ˆ2-2*cos(th)+1)
(%i55) " convert to (th/2) form "
(%i56) M1SQ:factor(ratsimp(to_ao2(M1SQ,th)))
(%o56) 8*(cos(th/2)ˆ4+1)/sin(th/2)ˆ4
(%i57) " ---------------- "
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(%i58) M2SQ:sub_stu(M2n/uˆ2)
(%o58) 8*cos(th)ˆ2/(cos(th)ˆ2+2*cos(th)+1)-16*cos(th)/(cos(th)ˆ2+2*cos(th)+1)

+40/(cos(th)ˆ2+2*cos(th)+1)
(%i59) M2SQ:ratsimp(to_ao2(M2SQ,th))
(%o59) (8*cos(th/2)ˆ4-16*cos(th/2)ˆ2+16)/cos(th/2)ˆ4
(%i60) M2SQ:factor(ratsubst(1-sin(th/2)ˆ2,cos(th/2)ˆ2,num(M2SQ)))/denom(M2SQ)
(%o60) 8*(sin(th/2)ˆ4+1)/cos(th/2)ˆ4
(%i61) " ---------------------- "
(%i62) M12INT:-2*sub_stu(M12n/(t*u))
(%o62) -64/(cos(th)ˆ2-1)
(%i63) M12INT:factor(M12INT)
(%o63) -64/((cos(th)-1)*(cos(th)+1))
(%i64) M12INT:subst([cos(th)-1 = -2*sin(th/2)ˆ2,1+cos(th) = 2*cos(th/2)ˆ2],

M12INT)
(%o64) 16/(cos(th/2)ˆ2*sin(th/2)ˆ2)
(%i65) " pull out a factor of 8 from each term. "
(%i66) MfiSQ:pullfac(M12INT+M2SQ+M1SQ,8)
(%o66) 8*((sin(th/2)ˆ4+1)/cos(th/2)ˆ4+2/(cos(th/2)ˆ2*sin(th/2)ˆ2)

+(cos(th/2)ˆ4+1)/sin(th/2)ˆ4)
(%i67) dsigdo_unpol_CM_HE:A*MfiSQ/4
(%o67) alphaˆ2*((sin(th/2)ˆ4+1)/cos(th/2)ˆ4+2/(cos(th/2)ˆ2*sin(th/2)ˆ2)

+(cos(th/2)ˆ4+1)/sin(th/2)ˆ4)
/(2*s)

(%i68) (display2d:true,display(dsigdo_unpol_CM_HE),display2d:false)
4 th 4 th

sin (--) + 1 cos (--) + 1
2 2 2 2

alpha (------------ + ----------------- + ------------)
4 th 2 th 2 th 4 th

cos (--) cos (--) sin (--) sin (--)
2 2 2 2

dsigdo_unpol_CM_HE = --------------------------------------------------------
2 s

(%i69) " which agrees with Renton, page 159, Eq.(4.55) "
(%i70) " as well as G/R, page 138, Eq. (3-139) "
(%i71) "-------------------------------------------------"
(%i72) " Convert to simple function of th displayed by G/R "
(%i73) MfiSQ:fr_ao2(MfiSQ,th)
(%o73) 16*cos(th)ˆ4/sin(th)ˆ4+96*cos(th)ˆ2/sin(th)ˆ4+144/sin(th)ˆ4
(%i74) MfiSQ:factor(ratsimp(MfiSQ))
(%o74) 16*(cos(th)ˆ2+3)ˆ2/sin(th)ˆ4
(%i75) dsigdo_unpol_CM_HE:A*MfiSQ/4
(%o75) alphaˆ2*(cos(th)ˆ2+3)ˆ2/(s*sin(th)ˆ4)
(%i76) dsigdo_unpol_CM_HE:subst(s = s_th,dsigdo_unpol_CM_HE)
(%o76) alphaˆ2*(cos(th)ˆ2+3)ˆ2/(4*sin(th)ˆ4*Eˆ2)
(%i77) (display2d:true,display(dsigdo_unpol_CM_HE),display2d:false)

2 2 2
alpha (cos (th) + 3)

dsigdo_unpol_CM_HE = ----------------------
4 2

4 sin (th) E

(%i78) " which agrees with G/R, page 139, top. "
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The next section of moller1.mac uses explicit Dirac spinors and matrices to calculate polarized amplitudes.

(%i79) " --------------------------------------------------"
(%i80) " HE POLARIZED AMPLITUDES USING EXPLICIT DIRAC SPINORS "
(%i81) " ------------------------------------------------- "
(%i82) " case HE RR --> RR, ie, (+1,+1) --> (+1,+1) polarized amplitude "
(%i83) " Define the needed Dirac spinors and barred spinors."
(%i84) (up1:UU(E,E,0,0,1),up3b:sbar(UU(E,E,th,0,1)),up2:UU(E,E,%pi,0,1),

up4b:sbar(UU(E,E,%pi-th,%pi,1)))
(%i85) " For example, following Halzen/Martin p. 120 ff :"
(%i86) " For helicity quantum numbers RR -> RR, the amplitude Mfi"
(%i87) " (pulling out -eˆ2) has the form Mfi = M1 - M2 "
(%i88) " where M1 = Mt/t and M2 = Mu/u, "
(%i89) " where t = (p1-p3)ˆ2 and u = (p1-p4)ˆ2, and "
(%i90) Mt:(a13:up3b . Gam[mu] . up1,a24:up4b . Gam[mu] . up2,mcon(a13*a24,mu),

trigsimp(%%))
(%o90) -8*Eˆ2
(%i91) Mu:(a14:up4b . Gam[mu] . up1,a23:up3b . Gam[mu] . up2,mcon(a14*a23,mu),

trigsimp(%%))
(%o91) 8*Eˆ2
(%i92) Mfi:Mt/t-Mu/u
(%o92) -8*Eˆ2/u-8*Eˆ2/t
(%i93) " Now replace s, t, and u by explicit functions of th "
(%i94) Mfi:sub_stu(Mfi)
(%o94) -8/(cos(th)ˆ2-1)
(%i95) Mfi_RR_RR:ts(Mfi,th)
(%o95) 8/sin(th)ˆ2
(%i96) " Now automate production of HE polarized amplitudes "
(%i97) " as functions of t and u "
(%i98) " Our definition of the amplitude does not include a factor of -eˆ2."
(%i99) he_me(sp1v,sp2v,sp3v,sp4v):=block([up1,up2,up3b,up4b,_mu%,Mt,Mu,temp],

up1:UU(E,E,0,0,sp1v),up3b:sbar(UU(E,E,th,0,sp3v)),
up2:UU(E,E,%pi,0,sp2v),up4b:sbar(UU(E,E,%pi-th,%pi,sp4v)),
a13:up3b . Gam[_mu%] . up1,a24:up4b . Gam[_mu%] . up2,
Mt:(Con(a13*a24,_mu%),expand(trigsimp(%%)))/t,
a14:up4b . Gam[_mu%] . up1,a23:up3b . Gam[_mu%] . up2,
Mu:(Con(a14*a23,_mu%),expand(trigsimp(%%)))/u,temp:Mt-Mu,
if temp # 0 then temp:pullfac(temp,-8*Eˆ2),temp)

(%i100) " test he_me for the case already worked out above "
(%i101) he_me(1,1,1,1)
(%o101) -8*(1/u+1/t)*Eˆ2
(%i102) sub_stu(%)
(%o102) -8/(cos(th)ˆ2-1)
(%i103) ts(%,th)
(%o103) 8/sin(th)ˆ2
(%i104) " which agrees with our previous work."
(%i105) " ---------------------------------------- "
(%i106) " AN ALTERNATIVE PATH TO THE UNPOLARIZED CROSS SECTION "
(%i107) " IS TO SUM THE ABSOLUTE VALUE SQUARED OF EACH "
(%i108) " OF THE POLARIZED AMPLITUDES, WHICH WE NOW DO."
(%i109) " The function Avsq(expr) is defined in dgmatrix.mac "
(%i110) " and computes the absolute value squared."
(%i111) " (We could also use here abs(expr)ˆ2 )"
(%i112) " Each nonzero amplitude is proportional to 8*Eˆ2*eˆ2"
(%i113) " here since we have not replaced t or u in the denominators"
(%i114) " by a function of th."
(%i115) " We have already pulled out -eˆ2 from our ’amplitude’ def"
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(%i116) " Pull out also the factor 8*Eˆ2 temporarily here."
(%i117) block([sL,s1,s2,s3,s4,temp],sL:[1,-1],mssq:0,print(" "),

print(" svp1 svp2 svp3 svp4 amplitude "),print(" "),
for s1 in sL do

for s2 in sL do
for s3 in sL do

for s4 in sL do
(temp:expand(he_me(s1,s2,s3,s4)/(8*Eˆ2)),
mssq:Avsq(temp)+mssq,print(" "),
print(s1,s2,s3,s4," ",temp)),

mssq:expand(fr_ao2(mssq,th)))
svp1 svp2 svp3 svp4 amplitude

1 1 1 1 -1/u-1/t

1 1 1 -1 0

1 1 -1 1 0

1 1 -1 -1 0

1 -1 1 1 0

1 -1 1 -1 cos(th/2)ˆ2/t

1 -1 -1 1 sin(th/2)ˆ2/u

1 -1 -1 -1 0

-1 1 1 1 0

-1 1 1 -1 sin(th/2)ˆ2/u

-1 1 -1 1 cos(th/2)ˆ2/t

-1 1 -1 -1 0

-1 -1 1 1 0

-1 -1 1 -1 0

-1 -1 -1 1 0

-1 -1 -1 -1 -1/u-1/t
(%i118) " -------------------------------------- "
(%i119) mssq
(%o119) 4/(t*u)+cos(th)ˆ2/(2*uˆ2)-cos(th)/uˆ2+5/(2*uˆ2)+cos(th)ˆ2/(2*tˆ2)

+cos(th)/tˆ2+5/(2*tˆ2)
(%i120) mssq:sub_stu(mssq)
(%o120) cos(th)ˆ4/(4*sin(th)ˆ4*Eˆ4)+3*cos(th)ˆ2/(2*sin(th)ˆ4*Eˆ4)

+9/(4*sin(th)ˆ4*Eˆ4)
(%i121) mssq:factor(ratsimp(mssq))
(%o121) (cos(th)ˆ2+3)ˆ2/(4*sin(th)ˆ4*Eˆ4)
(%i122) " restore (8*Eˆ2)ˆ2 = 64*Eˆ4 to mssq "
(%i123) mssq:64*Eˆ4*mssq
(%o123) 16*(cos(th)ˆ2+3)ˆ2/sin(th)ˆ4
(%i124) dsigdo_unpol_CM_HE:A*mssq/4
(%o124) alphaˆ2*(cos(th)ˆ2+3)ˆ2/(s*sin(th)ˆ4)
(%i125) dsigdo_unpol_CM_HE:subst(s = s_th,%)
(%o125) alphaˆ2*(cos(th)ˆ2+3)ˆ2/(4*sin(th)ˆ4*Eˆ2)
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(%i126) (display2d:true,display(dsigdo_unpol_CM_HE),display2d:false)
2 2 2

alpha (cos (th) + 3)
dsigdo_unpol_CM_HE = ----------------------

4 2
4 sin (th) E

(%i127) " which agrees with the symbolic calculation."

The last section of moller1.mac uses symbolic methods to find the square of polarized amplitudes. An argument
S(1) or S(-1) inside tr is effectively interpreted as 1

2
(1 + σ γ5), where σ = ±1 is the argument of S.

(%i128) " ================================ "
(%i129) " SYMBOLIC POLARIZED AMPLITUDE SQUARED "
(%i130) " -----------------------------------------"
(%i131) " Instead of summing over helicities, insert helicity "
(%i132) " projection operators appropriate to the zero mass limit "
(%i133) " CASE RR --> RR "
(%i134) M1n:trigsimp(Con(tr(S(1),p3,mu,S(1),p1,nu)*tr(S(1),p4,mu,S(1),p2,nu),

mu,nu))
(%o134) (-8*cos(th)ˆ2-16*cos(th)+24)*Eˆ4+2*uˆ2+2*sˆ2
(%i135) M2n:trigsimp(Con(tr(S(1),p4,mu,S(1),p1,nu)*tr(S(1),p3,mu,S(1),p2,nu),

mu,nu))
(%o135) (-8*cos(th)ˆ2+16*cos(th)+24)*Eˆ4+2*tˆ2+2*sˆ2
(%i136) " NOTE AUTOMATIC PRETRACE CONTRACTION OF REPEATED "
(%i137) " LORENTZ INDICES WITHIN A SINGLE TRACE OCCURS USING tr."
(%i138) M12n:tr(S(1),p3,mu,S(1),p1,nu,S(1),p4,mu,S(1),p2,nu)
(%o138) -4*sˆ2
(%i139) M21n:tr(S(1),p4,mu,S(1),p1,nu,S(1),p3,mu,S(1),p2,nu)
(%o139) -4*sˆ2
(%i140) MfiSQ:(-M21n)/(t*u)+(-M12n)/(t*u)+M2n/uˆ2+M1n/tˆ2
(%o140) ((-8*cos(th)ˆ2+16*cos(th)+24)*Eˆ4+2*tˆ2+2*sˆ2)/uˆ2

+((-8*cos(th)ˆ2-16*cos(th)+24)*Eˆ4+2*uˆ2+2*sˆ2)/tˆ2+8*sˆ2/(t*u)
(%i141) MfiSQ:sub_stu(MfiSQ)
(%o141) 64/sin(th)ˆ4
(%i142) " which is the square of the Dirac spinor amplitude found above "

12.7 moller2.mac: Arbitrary Energy Moller Scattering

The batch file moller2.mac works out the case of arbitrary energy particles in the CM frame. See the references and
kinematic notation in the previous section dealing with moller1.mac.

The first section of moller2.mac works out the unpolarized differential cross section for arbitrary energy, first in an
arbitrary frame in terms of s, t, u, and then in the CM frame, using symbolic methods.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "
read and interpret file: #pc:/work4/moller2.mac
(%i2) " ======================================================"
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(%i3) " file moller2.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-02

(%i9) " MOLLER SCATTERING "
(%i10) " ARBITRARY ENERGY, CENTER OF MOMENTUM FRAME "
(%i11) " e(-,p1,sv1) + e(-,p2,sv2) --> e(-,p3,sv3) + e(-,p4,sv4) "
(%i12) " ------------------------------------------ "
(%i13) " SYMBOLIC TRACES FOR UNPOLARIZED DIFFERENTIAL CROSS SECTION "
(%i14) " Supply s, t, and u expressions for dot products "
(%i15) " ---------------------------------------------- "
(%i16) invar(D(p1,p1) = mˆ2,D(p1,p2) = s/2-mˆ2,D(p1,p3) = mˆ2-t/2,

D(p1,p4) = mˆ2-u/2,D(p2,p2) = mˆ2,D(p2,p3) = mˆ2-u/2,
D(p2,p4) = mˆ2-t/2,D(p3,p3) = mˆ2,D(p3,p4) = s/2-mˆ2,
D(p4,p4) = mˆ2)

(%i17) M1n:Con(tr(m+p3,mu,m+p1,nu)*tr(m+p4,mu,m+p2,nu),mu,nu)
(%o17) 8*uˆ2-32*mˆ2*u+32*mˆ2*t+8*sˆ2-32*mˆ2*s+64*mˆ4
(%i18) M2n:Con(tr(m+p4,mu,m+p1,nu)*tr(m+p3,mu,m+p2,nu),mu,nu)
(%o18) 32*mˆ2*u+8*tˆ2-32*mˆ2*t+8*sˆ2-32*mˆ2*s+64*mˆ4
(%i19) " NOTE AUTOMATIC PRETRACE CONTRACTION OF REPEATED "
(%i20) " LORENTZ INDICES WITHIN A SINGLE TRACE OCCURS USING tr."
(%i21) M12n:tr(m+p3,mu,m+p1,nu,m+p4,mu,m+p2,nu)
(%o21) -16*mˆ2*u-16*mˆ2*t-8*sˆ2+48*mˆ2*s-32*mˆ4
(%i22) M21n:tr(m+p4,mu,m+p1,nu,m+p3,mu,m+p2,nu)
(%o22) -16*mˆ2*u-16*mˆ2*t-8*sˆ2+48*mˆ2*s-32*mˆ4
(%i23) " expressed as a function of s, t, and u "
(%i24) MfiSQ:(-M21n)/(t*u)+(-M12n)/(t*u)+M2n/uˆ2+M1n/tˆ2
(%o24) (8*uˆ2-32*mˆ2*u+32*mˆ2*t+8*sˆ2-32*mˆ2*s+64*mˆ4)/tˆ2

+(32*mˆ2*u+8*tˆ2-32*mˆ2*t+8*sˆ2-32*mˆ2*s+64*mˆ4)/uˆ2
+2*(16*mˆ2*u+16*mˆ2*t+8*sˆ2-48*mˆ2*s+32*mˆ4)/(t*u)

(%i25) " REPLACE s, t, and u WITH EXPLICIT FUNCTIONS OF th "
(%i26) " ------------------------------------------------- "
(%i27) assume(E > 0,p > 0,th >= 0,th <= %pi)
(%i28) comp_def(p1(E,0,0,p),p2(E,0,0,-p),p3(E,p*sin(th),0,p*cos(th)),

p4(E,-p*sin(th),0,-p*cos(th)))
(%i29) s_th:VP(p2+p1,p2+p1)
(%o29) 4*Eˆ2
(%i30) t_th:factor(VP(p1-p3,p1-p3))
(%o30) 2*pˆ2*(cos(th)-1)
(%i31) u_th:factor(VP(p1-p4,p1-p4))
(%o31) -2*pˆ2*(cos(th)+1)
(%i32) " ------------------------------------------------- "
(%i33) MfiSQ_th:factor(trigsimp(sub_stu(MfiSQ)))
(%o33) 16*(8*Eˆ4+2*mˆ2*cos(th)ˆ2*Eˆ2-10*mˆ2*Eˆ2+pˆ4*cos(th)ˆ4+6*pˆ4*cos(th)ˆ2

+10*mˆ2*pˆ2*cos(th)ˆ2+mˆ4*cos(th)ˆ2+pˆ4-2*mˆ2*pˆ2+3*mˆ4)
/(pˆ4*sin(th)ˆ4)

(%i34) " show this equals BLP’s expression in Eq. (81.10)"
(%i35) MfiSQ_cmp:16*(pˆ2+Eˆ2)ˆ2*((pˆ2/(pˆ2+Eˆ2))ˆ2*(4/sin(th)ˆ2+1)

-3/sin(th)ˆ2+4/sin(th)ˆ4)
/pˆ4

(%i36) trigsimp(expand(MfiSQ_th-MfiSQ_cmp))
(%o36) ((48*sin(th)ˆ2+64)*Eˆ4+((96*pˆ2-32*mˆ2)*sin(th)ˆ2-128*pˆ2-128*mˆ2)*Eˆ2

+(-144*pˆ4-160*mˆ2*pˆ2-16*mˆ4)*sin(th)ˆ2+64*pˆ4
+128*mˆ2*pˆ2+64*mˆ4)

/(pˆ4*sin(th)ˆ4)
(%i37) ratsubst(pˆ2+mˆ2,Eˆ2,%)
(%o37) 0
(%i38) " which confirms equality."
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(%i39) A:alphaˆ2/(4*s)
(%i40) A:sub_stu(A)
(%o40) alphaˆ2/(16*Eˆ2)
(%i41) " Averaging over initial spins means we need to divide A by 4"
(%i42) " to get the unpolarized differential cross section "
(%i43) dsigdo_unpol_CM:A*MfiSQ_cmp/4
(%o43) alphaˆ2*(Eˆ2+pˆ2)ˆ2

*(pˆ4*(4/sin(th)ˆ2+1)/(Eˆ2+pˆ2)ˆ2-3/sin(th)ˆ2+4/sin(th)ˆ4)
/(4*pˆ4*Eˆ2)

(%i44) (display2d:true,display(dsigdo_unpol_CM),display2d:false)
4 4

p (-------- + 1)
2

2 2 2 2 sin (th) 3 4
alpha (E + p ) (----------------- - -------- + --------)

2 2 2 2 4
(E + p ) sin (th) sin (th)

dsigdo_unpol_CM = -----------------------------------------------------------
4 2

4 p E

(%i45) " which agrees with BLP, p. 323, Eq (81.10). "
(%i46) " ========================================================="

The next section of moller1.mac uses explicit Dirac spinors and matrices to calculate polarized amplitudes.

(%i47) " POLARIZED DIRAC SPINOR AMPLITUDES "
(%i48) " ---------------------------------------------------------"
(%i49) E_pm(expr):=expand(ratsubst(mˆ2+pˆ2,Eˆ2,expr))
(%i50) p_Em(expr):=expand(ratsubst(Eˆ2-mˆ2,pˆ2,expr))
(%i51) Ep_m(expr):=expand(ratsubst(m,sqrt(E-p)*sqrt(p+E),expr))
(%i52) Ep_Mm(expr):=(expand(ratsubst(Mˆ2/4-mˆ2,pˆ2,expr)),

expand(ratsubst(M/2,E,%%)))
(%i53) " -----------------------------------------------"
(%i54) " convert t_th and u_th to th/2 forms "
(%i55) t_th2:to_ao2(t_th,th)
(%o55) -4*pˆ2*sin(th/2)ˆ2
(%i56) u_th2:to_ao2(u_th,th)
(%o56) -4*pˆ2*cos(th/2)ˆ2
(%i57) " dirac spinor amplitude given global s1,s2,s3,s4 "
(%i58) dA():=(

(up1:UU(E,p,0,0,s1),up3b:sbar(UU(E,p,th,0,s3)),up2:UU(E,p,%pi,0,s2),
up4b:sbar(UU(E,p,%pi-th,%pi,s4))),

Mt:(a13:up3b . Gam[mu] . up1,a24:up4b . Gam[mu] . up2,
mcon(a13*a24,mu)),Mt:Ep_m(Mt),M1:Mt/t_th2,

Mu:(a14:up4b . Gam[mu] . up1,a23:up3b . Gam[mu] . up2,
mcon(a14*a23,mu)),Mu:Ep_m(Mu),M2:Mu/u_th2,Mfi:M1-M2)

(%i59) " Print a table of polarized amplitudes."
(%i60) " Accumulate sum of squares mssq."
(%i61) block([sL,sv1,sv2,sv3,sv4,temp],sL:[1,-1],mssq:0,print(" "),

print(" svp1 svp2 svp3 svp4 amplitude "),print(" "),
for sv1 in sL do

for sv2 in sL do
for sv3 in sL do

for sv4 in sL do
([s1,s2,s3,s4]:[sv1,sv2,sv3,sv4],temp:dA(),
temp:E_pm(temp),mssq:Avsq(temp)+mssq,
print(" "),print(s1,s2,s3,s4," ",temp)),

mssq:E_pm(mssq),mssq:expand(fr_ao2(mssq,th)))
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svp1 svp2 svp3 svp4 amplitude

1 1 1 1 mˆ2*sin(th/2)ˆ2/(pˆ2*cos(th/2)ˆ2)+2*sin(th/2)ˆ2/cos(th/2)ˆ2
+mˆ2*cos(th/2)ˆ2/(pˆ2*sin(th/2)ˆ2)
+2*cos(th/2)ˆ2/sin(th/2)ˆ2+4

1 1 1 -1 m*sin(th/2)*E/(pˆ2*cos(th/2))-m*cos(th/2)*E/(pˆ2*sin(th/2))

1 1 -1 1 m*sin(th/2)*E/(pˆ2*cos(th/2))-m*cos(th/2)*E/(pˆ2*sin(th/2))

1 1 -1 -1 2*mˆ2/pˆ2

1 -1 1 1 m*cos(th/2)*E/(pˆ2*sin(th/2))-m*sin(th/2)*E/(pˆ2*cos(th/2))

1 -1 1 -1 mˆ2*cos(th/2)ˆ2/(pˆ2*sin(th/2)ˆ2)+2*cos(th/2)ˆ2/sin(th/2)ˆ2-mˆ2/pˆ2

1 -1 -1 1 mˆ2*sin(th/2)ˆ2/(pˆ2*cos(th/2)ˆ2)+2*sin(th/2)ˆ2/cos(th/2)ˆ2-mˆ2/pˆ2

1 -1 -1 -1 m*sin(th/2)*E/(pˆ2*cos(th/2))-m*cos(th/2)*E/(pˆ2*sin(th/2))

-1 1 1 1 m*cos(th/2)*E/(pˆ2*sin(th/2))-m*sin(th/2)*E/(pˆ2*cos(th/2))

-1 1 1 -1 mˆ2*sin(th/2)ˆ2/(pˆ2*cos(th/2)ˆ2)+2*sin(th/2)ˆ2/cos(th/2)ˆ2-mˆ2/pˆ2

-1 1 -1 1 mˆ2*cos(th/2)ˆ2/(pˆ2*sin(th/2)ˆ2)+2*cos(th/2)ˆ2/sin(th/2)ˆ2-mˆ2/pˆ2

-1 1 -1 -1 m*sin(th/2)*E/(pˆ2*cos(th/2))-m*cos(th/2)*E/(pˆ2*sin(th/2))

-1 -1 1 1 2*mˆ2/pˆ2

-1 -1 1 -1 m*cos(th/2)*E/(pˆ2*sin(th/2))-m*sin(th/2)*E/(pˆ2*cos(th/2))

-1 -1 -1 1 m*cos(th/2)*E/(pˆ2*sin(th/2))-m*sin(th/2)*E/(pˆ2*cos(th/2))

-1 -1 -1 -1 mˆ2*sin(th/2)ˆ2/(pˆ2*cos(th/2)ˆ2)+2*sin(th/2)ˆ2/cos(th/2)ˆ2
+mˆ2*cos(th/2)ˆ2/(pˆ2*sin(th/2)ˆ2)
+2*cos(th/2)ˆ2/sin(th/2)ˆ2+4

(%i62) mssq
(%o62) -192*mˆ2/(pˆ2*sin(th)ˆ2)-48*mˆ4/(pˆ4*sin(th)ˆ2)-128/sin(th)ˆ2

+256*mˆ2/(pˆ2*sin(th)ˆ4)+64*mˆ4/(pˆ4*sin(th)ˆ4)
+256/sin(th)ˆ4+16

(%i63) " SHOW THIS IS THE SAME AS MfiSQ_th computed above with traces "
(%i64) MfiSQ_p:E_pm(MfiSQ_th)
(%o64) 16*cos(th)ˆ4/sin(th)ˆ4+192*mˆ2*cos(th)ˆ2/(pˆ2*sin(th)ˆ4)

+48*mˆ4*cos(th)ˆ2/(pˆ4*sin(th)ˆ4)
+96*cos(th)ˆ2/sin(th)ˆ4+64*mˆ2/(pˆ2*sin(th)ˆ4)
+16*mˆ4/(pˆ4*sin(th)ˆ4)+144/sin(th)ˆ4

(%i65) trigsimp(mssq-MfiSQ_p)
(%o65) 0
(%i66) " which shows equality."
(%i67) " ========================================================="
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12.8 bhabha1.mac: High Energy Limit of Bhabha Scattering

This batch file treats the high energy limit of the scattering event

e−(p1, σ1) + e+(p2, σ2) → e−(p3, σ3) + e+(p4, σ4). (12.32)

This limit is that in which the masses of the particles can be ignored (|p| >> m). In practice this means treating the
leptons as massless particles.

Some references are: H.J. Bhabha, 1936, BLP QED, Sec. 81, B/D RQM, Sec. 7.9, G/R QED, Sec. 3.4, Renton EI, Sec.
4.3, and Schwinger, PSF I, p. 306 - 309.

The invariant amplitude M = M1 −M2 has two terms. Using the definitions

s = (p 1 + p 2)
2, t = (p 1 − p 3)

2, u = (p 1 − p 4)
2, (12.33)

and the abbreviations

u1 = u(p 1, σ1), v4 = v(p 4, σ4), ū3 = ū(p 3, σ3), v̄2 = v̄(p 2, σ2) (12.34)

we have

M1 = −e2 ū3 γµ u1 v̄2γµ v4

t
, (12.35)

and

M2 = −e2 v̄2 γµ u1 ū3γµ v4

s
. (12.36)

The batch file bhabha1.mac uses the Dirac package functions pullfac, VP, to_ao2, Avsq, and fr_ao2.

The first section of bhabha1.mac derives the unpolarized differential cross section, first in an arbitrary frame in terms
of s, t, u, and then in the CM frame in terms of the scattering angle th, using symbolic methods.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/bhabha1.mac
(%i2) " ======================================================"
(%i3) " file bhabha1.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-02
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(%i9) " BHABHA SCATTERING "
(%i10) " HIGH ENERGY LIMIT, CENTER OF MOMENTUM FRAME, NEGLECT MASSES "
(%i11) " e(-,p1,s1) + e(+,p2,s2) --> e(-,p3,s3) + e(+,p4,s4) "
(%i12) " m = electron and positron mass is set to zero."
(%i13) " ------------------------------------------ "
(%i14) "NON-POLARIZED DIFFERENTIAL CROSS SECTION: SYMBOLIC METHODS"
(%i15) " POPULATE THE LIST invarR OF 4-VEC DOT PRODUCT VALUES, "
(%i16) " Using p1 + p2 = p3 + p4, s = (p1+p2)ˆ2 = (p3+p4)ˆ2 ,"
(%i17) " t = (p1-p3)ˆ2 = (p2-p4)ˆ2,"
(%i18) " and u = (p1-p4)ˆ2 = (p2-p3)ˆ2 "
(%i19) " CASE HIGH ENERGY (HE) LIMIT E >> m "
(%i20) " ---------------------------------------------"
(%i21) invar(D(p1,p1) = 0,D(p1,p2) = s/2,D(p1,p3) = (-t)/2,D(p1,p4) = (-u)/2,

D(p2,p2) = 0,D(p2,p3) = (-u)/2,D(p2,p4) = (-t)/2,D(p3,p3) = 0,
D(p3,p4) = s/2,D(p4,p4) = 0)

(%i22) "------------------------------------------------------"
(%i23) " With a sum over all helicities implied,"
(%i24) " |Mfi|ˆ2 = M1n/tˆ2 + M2n/sˆ2 -M12n/(t*s) - M21n/(t*s) "
(%i25) " M1n = tˆ2 * M1*conj(M1), M2n = sˆ2 * M2*conj(M2) "
(%i26) " M12n = (t*s)*M1*conj(M2), M21n = (t*s)*M2*conj(M1), and: "
(%i27) M1n:factor(Con(tr(p3,mu,p1,nu)*tr(p2,mu,p4,nu),mu,nu))
(%o27) 8*(uˆ2+sˆ2)
(%i28) M2n:factor(Con(tr(p2,mu,p1,nu)*tr(p3,mu,p4,nu),mu,nu))
(%o28) 8*(uˆ2+tˆ2)
(%i29) " NOTE AUTOMATIC PRETRACE CONTRACTION OF REPEATED "
(%i30) " LORENTZ INDICES WITHIN A SINGLE TRACE OCCURS USING tr."
(%i31) M12n:factor(tr(p3,mu,p1,nu,p2,mu,p4,nu))
(%o31) -8*uˆ2
(%i32) M21n:factor(tr(p2,mu,p1,nu,p3,mu,p4,nu))
(%o32) -8*uˆ2
(%i33) MfiSQ:pullfac((-M21n)/(t*s)+(-M12n)/(t*s)+M2n/sˆ2+M1n/tˆ2,8)
(%o33) 8*((uˆ2+tˆ2)/sˆ2+(uˆ2+sˆ2)/tˆ2+2*uˆ2/(s*t))
(%i34) " We have absorbed eˆ4 into A, with eˆ2 = 4*%pi*alpha "
(%i35) " Averaging over initial spins means we need to divide A by 4"
(%i36) " to get the unpolarized differential cross section (CM, HE)"
(%i37) A:alphaˆ2/(4*s)
(%i38) dsigdo_unpol_CM_HE:A*MfiSQ/4
(%o38) alphaˆ2*((uˆ2+tˆ2)/sˆ2+(uˆ2+sˆ2)/tˆ2+2*uˆ2/(s*t))/(2*s)
(%i39) (display2d:true,display(dsigdo_unpol_CM_HE),display2d:false)

2 2 2 2 2
2 u + t u + s 2 u

alpha (------- + ------- + ----)
2 2 s t

s t
dsigdo_unpol_CM_HE = ---------------------------------

2 s

(%i40) " which agrees with Renton’s function of s,t, and u "
(%i41) " on page 159, Eq.(4.54) "
(%i42) " CONVERSION TO EXPLICIT FUNCTION OF SCATTERING ANGLE "
(%i43) assume(E > 0,th >= 0,th <= %pi)
(%i44) comp_def(p1(E,0,0,E),p2(E,0,0,-E),p3(E,E*sin(th),0,E*cos(th)),

p4(E,-E*sin(th),0,-E*cos(th)))
(%i45) s_th:VP(p2+p1,p2+p1)
(%o45) 4*Eˆ2
(%i46) t_th:factor(VP(p1-p3,p1-p3))
(%o46) 2*(cos(th)-1)*Eˆ2
(%i47) u_th:factor(VP(p1-p4,p1-p4))
(%o47) -2*(cos(th)+1)*Eˆ2
(%i48) " CONVERT FROM s, t, u TO th form "
(%i49) "--------------------------------------------------"
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(%i50) MfiSQ_th:(sub_stu(MfiSQ),factor(%%))
(%o50) 4*(cos(th)ˆ2+3)ˆ2/(cos(th)-1)ˆ2
(%i51) A_th:subst(s = s_th,A)
(%o51) alphaˆ2/(16*Eˆ2)
(%i52) dsigdo_unpol_th:A_th*MfiSQ_th/4
(%o52) alphaˆ2*(cos(th)ˆ2+3)ˆ2/(16*(cos(th)-1)ˆ2*Eˆ2)
(%i53) (display2d:true,display(dsigdo_unpol_th),display2d:false)

2 2 2
alpha (cos (th) + 3)

dsigdo_unpol_th = ----------------------
2 2

16 (cos(th) - 1) E

(%i54) "------------------------------------------------------------"
(%i55) " which agrees with Renton, p. 160 "

The next section of bhabha1.mac uses explicit Dirac spinors and matrices to compute the polarized amplitudes.

(%i56) " HIGH ENERGY POLARIZED AMPLITUDES USING EXPLICIT DIRAC SPINORS "
(%i57) " ------------------------------------------------- "
(%i58) t_th2:to_ao2(t_th,th)
(%o58) -4*sin(th/2)ˆ2*Eˆ2
(%i59) " dirac spinor amplitude given global s1,s2,s3,s4 "
(%i60) dA():=(

(up1:UU(E,E,0,0,s1),up3b:sbar(UU(E,E,th,0,s3)),
vp2b:sbar(VV(E,E,%pi,0,s2)),vp4:VV(E,E,%pi-th,%pi,s4)),

Mt:(a13:up3b . Gam[_mu%] . up1,a42:vp2b . Gam[_mu%] . vp4,
mcon(a13*a42,_mu%),expand(trigsimp(%%))),M1:Mt/t_th2,

Ms:(a12:vp2b . Gam[_mu%] . up1,a43:up3b . Gam[_mu%] . vp4,
mcon(a12*a43,_mu%),expand(trigsimp(%%))),M2:Ms/s_th,M1-M2)

(%i61) " example: RR --> RR "
(%i62) [s1,s2,s3,s4]:[1,1,1,1]
(%i63) dA()
(%o63) 2/sin(th/2)ˆ2
(%i64) " Make table of polarized amplitudes. "
(%i65) " Accumulate sum mssq of square of amplitudes."
(%i66) block([sL,sv1,sv2,sv3,sv4,temp],sL:[1,-1],mssq:0,print(" "),

print(" s1 s2 s3 s4 amplitude "),print(" "),
for sv1 in sL do

for sv2 in sL do
for sv3 in sL do

for sv4 in sL do
([s1,s2,s3,s4]:[sv1,sv2,sv3,sv4],temp:dA(),
mssq:Avsq(temp)+mssq,print(" "),
print(s1,s2,s3,s4," ",temp)),

mssq:expand(fr_ao2(mssq,th)))

s1 s2 s3 s4 amplitude

1 1 1 1 2/sin(th/2)ˆ2

1 1 1 -1 0

1 1 -1 1 0

1 1 -1 -1 0

1 -1 1 1 0

1 -1 1 -1 2*cos(th/2)ˆ2/sin(th/2)ˆ2-2*cos(th/2)ˆ2
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1 -1 -1 1 -2*sin(th/2)ˆ2

1 -1 -1 -1 0

-1 1 1 1 0

-1 1 1 -1 -2*sin(th/2)ˆ2

-1 1 -1 1 2*cos(th/2)ˆ2/sin(th/2)ˆ2-2*cos(th/2)ˆ2

-1 1 -1 -1 0

-1 -1 1 1 0

-1 -1 1 -1 0

-1 -1 -1 1 0

-1 -1 -1 -1 2/sin(th/2)ˆ2
(%i67) " Sum of squares of polarized amplitudes:"
(%i68) mssq
(%o68) 4*cos(th)ˆ4/(cos(th)ˆ2-2*cos(th)+1)

+24*cos(th)ˆ2/(cos(th)ˆ2-2*cos(th)+1)+36/(cos(th)ˆ2-2*cos(th)+1)
(%i69) " COMPARE WITH SYMBOLIC RESULT MfiSQ_th CALCULATED ABOVE"
(%i70) trigsimp(mssq-MfiSQ_th)
(%o70) 0
(%i71) " WHICH SHOWS THEY ARE EQUIVALENT."

12.9 bhabha2.mac: Arbitrary Energy Bhabha Scattering

The batch file bhabha2.mac works out bhabha scattering for arbitrary particle energy in the CM frame. See the references
and kinematic notation in the previous section dealing with bhabha1.mac. The batch file bhabha1.mac uses the
Dirac package functions pullfac, VP, sub_stu, to_ao2, Avsq, and fr_ao2.

In addition, some kinematic substitution functions are defined in this batch file

• The function E_pm(expr) makes the replacement Eˆ2 --> mˆ2 + pˆ2,

• The function p_Em (expr) makes the replacement pˆ2 --> Eˆ2 - mˆ2\mv,

• The function Ep_m (expr) makes the replacement sqrt (E-p)*sqrt (E+p) --> m,

• The function Ep_Mm (expr) makes the two replacements: 1. E --> M/2, 2. pˆ2 --> Mˆ2/4 - mˆ2,
where M is the total center of momentum frame energy.

The first section of bhabha2.mac calculates the differential scattering cross section in the CM frame using symbolic
methods.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
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" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/bhabha2.mac
(%i2) " ======================================================"
(%i3) " file bhabha2.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-02

(%i9) " BHABHA SCATTERING "
(%i10) " Finite mass, Arbitrary Energy, CENTER OF MOMENTUM FRAME "
(%i11) " e(-,p1,s1) + e(+,p2,s2) --> e(-,p3,s3) + e(+,p4,s4) "
(%i12) " ------------------------------------------ "
(%i13) " SYMBOLIC TRACES FOR UNPOLARIZED DIFFERENTIAL CROSS SECTION "
(%i14) " Supply s, t, and u expressions for dot products "
(%i15) " ---------------------------------------------- "
(%i16) invar(D(p1,p1) = mˆ2,D(p1,p2) = s/2-mˆ2,D(p1,p3) = mˆ2-t/2,

D(p1,p4) = mˆ2-u/2,D(p2,p2) = mˆ2,D(p2,p3) = mˆ2-u/2,
D(p2,p4) = mˆ2-t/2,D(p3,p3) = mˆ2,D(p3,p4) = s/2-mˆ2,
D(p4,p4) = mˆ2)

(%i17) " With a sum over all helicities implied,"
(%i18) " |Mfi|ˆ2 = M1n/tˆ2 + M2n/sˆ2 -M12n/(t*s) - M21n/(t*s) "
(%i19) " M1n = tˆ2 * M1*conj(M1), M2n = sˆ2 * M2*conj(M2) "
(%i20) " M12n = (t*s)*M1*conj(M2), M21n = (t*s)*M2*conj(M1), and: "
(%i21) M1n:Con(tr(m+p3,mu,m+p1,nu)*tr(p2-m,mu,p4-m,nu),mu,nu)
(%o21) 8*uˆ2-32*mˆ2*u+32*mˆ2*t+8*sˆ2-32*mˆ2*s+64*mˆ4
(%i22) M2n:Con(tr(p2-m,mu,m+p1,nu)*tr(m+p3,mu,p4-m,nu),mu,nu)
(%o22) 8*uˆ2-32*mˆ2*u+8*tˆ2-32*mˆ2*t+32*mˆ2*s+64*mˆ4
(%i23) " NOTE AUTOMATIC PRETRACE CONTRACTION OF REPEATED "
(%i24) " LORENTZ INDICES WITHIN A SINGLE TRACE OCCURS USING tr."
(%i25) M12n:tr(m+p3,mu,m+p1,nu,p2-m,mu,p4-m,nu)
(%o25) -8*uˆ2+48*mˆ2*u-16*mˆ2*t-16*mˆ2*s-32*mˆ4
(%i26) M21n:tr(p2-m,mu,m+p1,nu,m+p3,mu,p4-m,nu)
(%o26) -8*uˆ2+48*mˆ2*u-16*mˆ2*t-16*mˆ2*s-32*mˆ4
(%i27) " sum over spins of |Mfi|ˆ2 in terms of s,t,u "
(%i28) MfiSQ:(-M21n)/(t*s)+(-M12n)/(t*s)+M2n/sˆ2+M1n/tˆ2
(%o28) (8*uˆ2-32*mˆ2*u+8*tˆ2-32*mˆ2*t+32*mˆ2*s+64*mˆ4)/sˆ2

+(8*uˆ2-32*mˆ2*u+32*mˆ2*t+8*sˆ2-32*mˆ2*s+64*mˆ4)/tˆ2
+2*(8*uˆ2-48*mˆ2*u+16*mˆ2*t+16*mˆ2*s+32*mˆ4)/(s*t)

(%i29) " replace s, t, u in terms of scatt. angle th "
(%i30) assume(E > 0,p > 0,th >= 0,th <= %pi)
(%i31) comp_def(p1(E,0,0,p),p2(E,0,0,-p),p3(E,p*sin(th),0,p*cos(th)),

p4(E,-p*sin(th),0,-p*cos(th)))
(%i32) E_pm(expr):=expand(ratsubst(mˆ2+pˆ2,Eˆ2,expr))
(%i33) s_th:VP(p2+p1,p2+p1)
(%o33) 4*Eˆ2
(%i34) t_th:factor(VP(p1-p3,p1-p3))
(%o34) 2*pˆ2*(cos(th)-1)
(%i35) u_th:factor(VP(p1-p4,p1-p4))
(%o35) -2*pˆ2*(cos(th)+1)
(%i36) " ------------------------------------------------- "
(%i37) MfiSQ_th:sub_stu(MfiSQ)
(%i38) " replace Eˆ2 by mˆ2 + pˆ2 "
(%i39) MfiSQ_p:E_pm(MfiSQ_th)
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(%i40) MfiSQ_p:trigsimp(MfiSQ_p)
(%o40) (4*pˆ8*sin(th)ˆ4+(-8*mˆ2*pˆ6*cos(th)-32*pˆ8-72*mˆ2*pˆ6-52*mˆ4*pˆ4)

*sin(th)ˆ2+(32*mˆ2*pˆ6+80*mˆ4*pˆ4+56*mˆ6*pˆ2)*cos(th)
+64*pˆ8+160*mˆ2*pˆ6+128*mˆ4*pˆ4+40*mˆ6*pˆ2+16*mˆ8)

/((pˆ8+2*mˆ2*pˆ6+mˆ4*pˆ4)*cos(th)ˆ2
+(-2*pˆ8-4*mˆ2*pˆ6-2*mˆ4*pˆ4)*cos(th)+pˆ8+2*mˆ2*pˆ6+mˆ4*pˆ4)

(%i41) " ------------------------------------------------"
(%i42) " compare to Greiner, Reinhardt expression p. 148 "
(%i43) GR1:(2*pˆ4*(cos(th/2)ˆ4+1)+4*pˆ2*mˆ2*cos(th/2)ˆ2+mˆ4)/(pˆ4*sin(th/2)ˆ4)
(%o43) (2*pˆ4*(cos(th/2)ˆ4+1)+4*mˆ2*pˆ2*cos(th/2)ˆ2+mˆ4)/(pˆ4*sin(th/2)ˆ4)
(%i44) GR2:(pˆ4*(cos(th)ˆ2+1)+4*pˆ2*mˆ2+3*mˆ4)/Eˆ4
(%o44) (pˆ4*(cos(th)ˆ2+1)+4*mˆ2*pˆ2+3*mˆ4)/Eˆ4
(%i45) GR3:(-(4*pˆ4*cos(th/2)ˆ4+8*pˆ2*mˆ2*cos(th/2)ˆ2+3*mˆ4))

/(Eˆ2*pˆ2*sin(th/2)ˆ2)
(%o45) (-4*pˆ4*cos(th/2)ˆ4-8*mˆ2*pˆ2*cos(th/2)ˆ2-3*mˆ4)/(pˆ2*sin(th/2)ˆ2*Eˆ2)
(%i46) " replace th/2 and Eˆ2 for comparison "
(%i47) GR1_r:fr_ao2(GR1,th)
(%i48) GR2_r:E_pm(GR2)
(%i49) GR3_r:E_pm(fr_ao2(GR3,th))
(%i50) GR:trigsimp(expand(GR3_r+GR2_r+GR1_r))
(%i51) trigsimp(GR-MfiSQ_p/4)
(%o51) 0
(%i52) " which shows the equivalence we need "
(%i53) " dividing MfiSQ by 4 comes from averaging over"
(%i54) " the initial helicities "
(%i55) " We have absorbed eˆ4 into A, with eˆ2 = 4*%pi*alpha "
(%i56) " to get the unpolarized differential cross section (CM)"
(%i57) A:alphaˆ2/(4*s_th)
(%i58) GR_expr:GR3+GR2+GR1
(%i59) dsigdo_unpol_CM:A*GR_expr
(%i60) (display2d:true,display(dsigdo_unpol_CM),display2d:false)

4 4 th 2 2 2 th 4
- 4 p cos (--) - 8 m p cos (--) - 3 m

2 2 2
dsigdo_unpol_CM = (alpha (-----------------------------------------

2 2 th 2
p sin (--) E

2
4 2 2 2 4

p (cos (th) + 1) + 4 m p + 3 m
+ ----------------------------------

4
E

4 4 th 2 2 2 th 4
2 p (cos (--) + 1) + 4 m p cos (--) + m

2 2 2
+ -------------------------------------------))/(16 E )

4 4 th
p sin (--)

2
(%i61) " which agrees with G/R, Exer. 3.8, eqn. 21, p. 148 "

The next section of bhabha2.mac uses explicit Dirac spinors and matrices to compute polarized amplitudes.

(%i62) " =========================================================== "
(%i63) " POLARIZED DIRAC SPINOR AMPLITUDES "
(%i64) " ---------------------------------------------------------"
(%i65) p_Em(expr):=expand(ratsubst(Eˆ2-mˆ2,pˆ2,expr))
(%i66) Ep_m(expr):=expand(ratsubst(m,sqrt(E-p)*sqrt(p+E),expr))
(%i67) Ep_Mm(expr):=(expand(ratsubst(Mˆ2/4-mˆ2,pˆ2,expr)),

expand(ratsubst(M/2,E,%%)))
(%i68) " -----------------------------------------------"
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(%i69) " convert t_th to th/2 form "
(%i70) t_th2:to_ao2(t_th,th)
(%o70) -4*pˆ2*sin(th/2)ˆ2
(%i71) " dirac spinor amplitude given global s1,s2,s3,s4 "
(%i72) dA():=(

(up1:UU(E,p,0,0,s1),up3b:sbar(UU(E,p,th,0,s3)),
vp2b:sbar(VV(E,p,%pi,0,s2)),vp4:VV(E,p,%pi-th,%pi,s4)),

Mt:(a13:up3b . Gam[mu] . up1,a42:vp2b . Gam[mu] . vp4,
mcon(a13*a42,mu),Ep_m(%%),E_pm(%%),trigsimp(%%)),M1:Mt/t_th2,

Ms:(a12:vp2b . Gam[mu] . up1,a43:up3b . Gam[mu] . vp4,
mcon(a12*a43,mu),Ep_m(%%),E_pm(%%),trigsimp(%%)),M2:Ms/s_th,

M2-M1)
(%i73) " example: RR --> RR "
(%i74) [s1,s2,s3,s4]:[1,1,1,1]
(%o74) [1,1,1,1]
(%i75) dA()
(%o75) (4*mˆ2-8*mˆ2*sin(th/2)ˆ2)/(4*Eˆ2)

+(-4*mˆ2*cos(th/2)ˆ2-8*pˆ2)/(4*pˆ2*sin(th/2)ˆ2)
(%i76) " =========================================================== "
(%i77) " table of polarized amplitudes generates global mssq "
(%i78) block([sL,sv1,sv2,sv3,sv4,temp],sL:[1,-1],mssq:0,print(" "),

print(" s1 s2 s3 s4 amplitude "),print(" "),
for sv1 in sL do

for sv2 in sL do
for sv3 in sL do

for sv4 in sL do
([s1,s2,s3,s4]:[sv1,sv2,sv3,sv4],temp:dA(),
print(" "),print(s1,s2,s3,s4," ",temp),
temp:E_pm(temp),mssq:Avsq(temp)+mssq),

mssq:E_pm(mssq),mssq:expand(fr_ao2(mssq,th)),mssq:trigsimp(mssq))

s1 s2 s3 s4 amplitude

1 1 1 1 (4*mˆ2-8*mˆ2*sin(th/2)ˆ2)/(4*Eˆ2)+(-4*mˆ2*cos(th/2)ˆ2-8*pˆ2)
/(4*pˆ2*sin(th/2)ˆ2)

1 1 1 -1 2*m*cos(th/2)*sin(th/2)/E-m*cos(th/2)*E/(pˆ2*sin(th/2))

1 1 -1 1 m*cos(th/2)*E/(pˆ2*sin(th/2))-2*m*cos(th/2)*sin(th/2)/E

1 1 -1 -1 (4*mˆ2-8*mˆ2*sin(th/2)ˆ2)/(4*Eˆ2)+mˆ2/pˆ2

1 -1 1 1 m*cos(th/2)*E/(pˆ2*sin(th/2))-2*m*cos(th/2)*sin(th/2)/E

1 -1 1 -1 (8*pˆ2+8*mˆ2)*cos(th/2)ˆ2/(4*Eˆ2)+(-8*pˆ2-4*mˆ2)*cos(th/2)ˆ2
/(4*pˆ2*sin(th/2)ˆ2)

1 -1 -1 1 (8*pˆ2+8*mˆ2)*sin(th/2)ˆ2/(4*Eˆ2)-mˆ2/pˆ2

1 -1 -1 -1 m*cos(th/2)*E/(pˆ2*sin(th/2))-2*m*cos(th/2)*sin(th/2)/E

-1 1 1 1 2*m*cos(th/2)*sin(th/2)/E-m*cos(th/2)*E/(pˆ2*sin(th/2))

-1 1 1 -1 (8*pˆ2+8*mˆ2)*sin(th/2)ˆ2/(4*Eˆ2)-mˆ2/pˆ2

-1 1 -1 1 (8*pˆ2+8*mˆ2)*cos(th/2)ˆ2/(4*Eˆ2)+(-8*pˆ2-4*mˆ2)*cos(th/2)ˆ2
/(4*pˆ2*sin(th/2)ˆ2)

-1 1 -1 -1 2*m*cos(th/2)*sin(th/2)/E-m*cos(th/2)*E/(pˆ2*sin(th/2))

-1 -1 1 1 (4*mˆ2-8*mˆ2*sin(th/2)ˆ2)/(4*Eˆ2)+mˆ2/pˆ2
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-1 -1 1 -1 2*m*cos(th/2)*sin(th/2)/E-m*cos(th/2)*E/(pˆ2*sin(th/2))

-1 -1 -1 1 m*cos(th/2)*E/(pˆ2*sin(th/2))-2*m*cos(th/2)*sin(th/2)/E

-1 -1 -1 -1 (4*mˆ2-8*mˆ2*sin(th/2)ˆ2)/(4*Eˆ2)+(-4*mˆ2*cos(th/2)ˆ2-8*pˆ2)
/(4*pˆ2*sin(th/2)ˆ2)

(%i79) "------------------------------------------"
(%i80) " sum of squares of polarized amplitudes:"
(%i81) mssq
(%o81) (4*pˆ8*sin(th)ˆ4+(-8*mˆ2*pˆ6*cos(th)-32*pˆ8-72*mˆ2*pˆ6-52*mˆ4*pˆ4)

*sin(th)ˆ2+(32*mˆ2*pˆ6+80*mˆ4*pˆ4+56*mˆ6*pˆ2)*cos(th)
+64*pˆ8+160*mˆ2*pˆ6+128*mˆ4*pˆ4+40*mˆ6*pˆ2+16*mˆ8)

/((pˆ8+2*mˆ2*pˆ6+mˆ4*pˆ4)*cos(th)ˆ2
+(-2*pˆ8-4*mˆ2*pˆ6-2*mˆ4*pˆ4)*cos(th)+pˆ8+2*mˆ2*pˆ6+mˆ4*pˆ4)

(%i82) " SHOW THIS IS THE SAME AS MfiSQ_th computed above with traces "
(%i83) MfiSQ_p:E_pm(MfiSQ_th)
(%i84) trigsimp(mssq-MfiSQ_p)
(%o84) 0
(%i85) " which shows equality."
(%i86) " =========================================================== "

12.10 photon1.mac: Photon Transverse Polarization 3-Vector Sums

In this section we use Maxima to work out some well known properties of photon polarization 3-vectors corresponding to
physical (external) photons, using the batch file photon1.mac. Some references to this subject are: G/R QED p. 187,
Weinberg I p. 352, 360, 368, Renton p. 166, and Gross p. 315.

Let ek s be a real photon polarization 3-vector which is transverse to the initial photon 3-momentum k, with s = 1 being
parallel to the scattering plane, and s = 2 being perpendicular to the scattering plane.

Let ek′ r be a real photon polarization 3-vector which is transverse to the final photon 3-momentum k′ with r = 1 being

parallel to the scattering plane, and r = 2 being perpendicular to the scattering plane. Then we have the relations

2∑
s=1

(ek s · ek′ r)
2 = 1−

(
k̂ · ek′ r

)2
(12.37)

2∑
s,r=1

(ek s · ek′ r)
2 = 1 + cos2 θ (12.38)

Here we are using real polarization 3-vectors to describe states of linear polarization.

(%i1) batch("photon1.mac")$
read and interpret file: #pC:/work4/photon1.mac
(%i2) display2d : false
(%i3) " ======================================================"
(%i4) " file photon1.mac "
(%i5) " Maxima by Example, Ch. 12 "
(%i6) " Dirac Algebra and Quantum Electrodynamics "
(%i7) " Edwin L Woollett, woollett@charter.net "
(%i8) " http://www.csulb.edu/˜woollett "
(%i9) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-02
(%i10) "-----------------------------------------------------"
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(%i11) " PROPERTIES AND SUMS OF TRANSVERSE POLARIZATION VECTORS "
(%i12) " ----------------------------------------------------- "
(%i13) " define 3-vectors as lists "
(%i14) " scattering plane is z-x plane "
(%i15) k_vec:[0,0,k]
(%i16) kp_vec:[kp*sin(th),0,kp*cos(th)]
(%i17) " e[1] X e[2] = k_vec/k "
(%i18) e[1]:[1,0,0]
(%i19) e[1] . e[1]
(%o19) 1
(%i20) e[1] . k_vec
(%o20) 0
(%i21) e[2]:[0,1,0]
(%i22) e[2] . e[2]
(%o22) 1
(%i23) e[2] . e[1]
(%o23) 0
(%i24) e[2] . k_vec
(%o24) 0
(%i25) " ep[1] X ep[2] = kp_vec/kp "
(%i26) " Case: parallel to the scattering plane "
(%i27) ep[1]:[cos(th),0,-sin(th)]
(%i28) trigsimp(ep[1] . ep[1])
(%o28) 1
(%i29) ep[1] . kp_vec
(%o29) 0
(%i30) " Case: perpendicular to the scattering plane "
(%i31) ep[2]:[0,1,0]
(%i32) ep[2] . ep[2]
(%o32) 1
(%i33) ep[2] . ep[1]
(%o33) 0
(%i34) ep[2] . kp_vec
(%o34) 0
(%i35) "============================================="
(%i36) " photon transverse polarization sum over both leads to "
(%i37) " (1 + cos(th)ˆ2 ) "
(%i38) sum(sum((e[s] . ep[r])ˆ2,s,1,2),r,1,2)
(%o38) cos(th)ˆ2+1
(%i39) "============================================="
(%i40) " Sum over only e[1] and e[2] values leads to "
(%i41) " sum ( (e[s] . ep[r])ˆ2,s,1,2) = 1 - (ku . ep[r])ˆ2 "
(%i42) " where ku is unit vector along k_vec "
(%i43) ku:k_vec/k
(%o43) [0,0,1]
(%i44) " first for r = 1 "
(%i45) sum((e[s] . ep[1])ˆ2,s,1,2)
(%o45) cos(th)ˆ2
(%i46) trigsimp(1-(ku . ep[1])ˆ2)
(%o46) cos(th)ˆ2
(%i47) " next for r = 2 "
(%i48) sum((e[s] . ep[2])ˆ2,s,1,2)
(%o48) 1
(%i49) 1-(ku . ep[2])ˆ2
(%o49) 1
(%i50) "============================================="
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12.11 Covariant Physical External Photon Polarization 4-Vectors - A Review

We will use the following relation for covariant physical photon polarization 4-vectors which are 4-orthogonal to the
photon 4-momentum vector. This formalism (Sterman, p. 220, De Wit/Smith, p.141, Schwinger, p. 73 and pp. 291 - 294,
Jauch/Rohrlich, p. 440) uses gauge freedom within the Lorentz gauge.

The two physical polarization states of real external photons corresond to λ = 1, 2, and for µ, ν = 0, 1, 2, 3,

P µ ν(k) =
∑

λ=1,2

eµ
k λ e ν∗

k λ = −gµ ν +
(k µ k̄ ν + k ν k̄ µ)

k · k̄ , (12.39)

where there exists a reference frame in which if k µ = (k0,k) then k̄ µ = (k0,−k).

Let nµ be a unit timelike 4-vector which is 4-orthogonal to eµ
k λ. Then define

k̄ µ = −k µ + 2 nµ (k · n). (12.40)

In an arbitrary frame, k · k = 0, k̄ · k̄ = 0, k · ek λ = 0, k̄ · ek λ = 0, n · ek λ = 0, n · n = +1, k · k̄ = 2 (k · n)2 and

e∗k λ · ek λ′ = −δλλ′, λ, λ′ = 1, 2 (12.41)

An alternative but less compact form of the physical photon polarization tensor P µ ν(k) is

P µ ν(k) =
∑

λ=1,2

eµ
k λ e ν∗

k λ = −g µ ν − k µ k ν

(k · n)2 +
(k µ nν + k ν nµ)

k · n (12.42)

We can always identify the unit timelike 4-vector nµ with either the total 4-momentum vector (thus working in the CM
frame) or the 4-momentum of a particular particle (thus working in the rest frame of that particle).

Thus if in a chosen frame, {pµ} = {m, 0, 0, 0}, we identify nµ = pµ/m, so that {nµ} = {1, 0, 0, 0}, then in that
frame k̄0 = k0 and k̄j = −kj .

Then n · ek λ = 0 implies that e0
k λ = 0, and then k · ek λ = 0 reduces to k · ek λ = 0 (for λ = 1, 2), and the two

polarization 3-vectors ek λ must be chosen perpendicular to k and to each other: e∗k 1 · ek 2 = 0.

12.12 compton0.mac: Compton Scattering by a Spin 0 Structureless Charged Particle

In this section we use the batch file compton0.mac to work out details of Compton scattering of scalar charged par-
ticles. Some references to this subject can be found in G/R QED, p 435, B/D RQM, p. 193, Schwinger PSF I, p290,
Aitchison RQM, p87, De Wit/Smith, p 147, I/Z p. 286.

Three diagrams contribute to Compton scattering of a scalar charged particle which we can for convenience think of as

π+(p1 + γ(k1, λ1) → π+(p2 + γ(k2, λ2) (12.43)

Let

s = (k1 + p1)
2, t = (k1 − k2)

2, u = (k1 − p2)
2. (12.44)

Four momentum conservation means p1 + k1 = p2 + k2. If we ignore a factor −e2 and use real photon polarization

4-vectors, the invariant amplitude is

M = eµ
k2 λ2

(
2 gµ ν − (2 p2 + k2)µ (2 p1 + k1)ν

s−m2 − (2 p1 − k2)µ (2 p2 − k1)ν

u−m2

)
eν
k1 λ1

(12.45)
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Use of k1 · ek1 λ1 = 0, k2 · ek2 λ2 = 0, s−m2 = 2 p 1 · k1, and u−m2 = −2 p 2 · k1 leads to

M = 2 eµ
k2 λ2

Tµ ν e ν
k1 λ1

(12.46)

where

Tµ ν = gµ ν − p 2 µ p 1 ν

k1 · p 1
+

p 2 ν p 1 µ

k1 · p 2
(12.47)

We form the absolute square of M and sum over λ2 first,∑

λ2

|M |2 = 4 Tµ ν e ν
k1 λ1

P µα(k2) Tα β eβ
k1 λ1

= −4 Tµ ν T µ
β e ν

k1 λ1
eβ
k1 λ1

(12.48)

Using the compact form of P µ α(k2), only the first term contributes at this stage. The second term contribution is

proportional to

Tµ ν e ν
k1 λ1

k µ
2 k̄ α

2 Tα β eβ
k1 λ1

. Using k1 · p1 = k 2 · p 2 and k1 · p 2 = k 2 · p1,

kµ
2 Tµ ν = (k2 + p2 − p1)ν = k1 ν (12.49)

But then k1 ν e ν
k1 λ1

= 0. Likewise the third term contribution is zero because k α
2 Tα β = k1 β , and k1 β eβ

k1 λ1
= 0.

We now sum over λ1. ∑

λ1, λ2

|M |2 = −4 Tµ ν P ν β(k1) T µ
β = 4 (Tµ ν T µ ν − 2) , (12.50)

in which all three terms of P ν β(k1) contribute.

For example, the second term is proportional to
(
Tµ ν kν

1 k̄β
1 T µ

β

)
/
(
k1 · k̄1

)
. The numerator is equal to the de-

nominator, since kν
1 Tµ ν = (k1 + p1 − p2)µ = k2 µ, and k2 µ T µ

β = k1 β , as we saw above.

In the compton0.mac code, the expression T µ ν is represented by t_munu, written in terms of the constructs D, UI,
and Gm which the Dirac package recognises. The contraction Tµ ν T µ ν becomes Con (t_munuˆ2).

The batch file compton0.mac uses the Dirac package functions VP and ev_Ds.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/compton0.mac
(%i2) " ======================================================"
(%i3) " file compton0.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
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(%i8) print(" ver: ",_binfo%," date: ",mydate)
ver: Maxima 5.21.1 date: 2010-09-04

(%i9) " COMPTON SCATTERING OF STRUCTURELESS SPIN 0 PARTICLE "
(%i10) " which we will call (pi,gamma) scattering "
(%i11) " gamma(k1,s1) + pi(p1) --> gamma(k2,s2) + pi(p2) "
(%i12) " POPULATE THE LIST invarR OF 4-VEC DOT PRODUCT VALUES. "
(%i13) " Express 4-vector dot products in terms of s, t, u, and mˆ2 "
(%i14) " Using s = (p1+k1)ˆ2 = (p2+k2)ˆ2, t = (k2-k1)ˆ2 = "
(%i15) " (p2-p1)ˆ2, u = (k2-p1)ˆ2 = (p2-k1)ˆ2, s + t + u = 2*mˆ2 "
(%i16) invar(D(p1,p1) = mˆ2,D(p1,k1) = (s-mˆ2)/2,D(p1,k2) = (-(u-mˆ2))/2,

D(p1,p2) = (u+s)/2,D(p2,p2) = mˆ2,D(p2,k1) = (-(u-mˆ2))/2,
D(p2,k2) = (s-mˆ2)/2,D(k1,k1) = 0,D(k1,k2) = (u+s)/2-mˆ2,
D(k2,k2) = 0)

(%i17) " 1. UNPOLARIZED RESULT IN ARBITRARY FRAME (s,t,u form) "
(%i18) " amplitude is M_fi "
(%i19) " M_fi = -2*eˆ2*( D(e2_cc,e1) - D(e2_cc,p2)*D(e1,p1)/D(k1,p1) "
(%i20) " + D(e2_cc,p1)*D(e1,p2)/D(k1,p2) ) "
(%i21) " The parenthesis expression can be written as the "
(%i22) " contraction (assume here real pol. vectors ) "
(%i23) " sum (sum (e2[mu]*T[mu,nu]*e1[mu],mu,0,3),nu,0,3) "
(%i24) " where T[mu,nu] is the expression t_munu : "
(%i25) " -------------------------------------------------"
(%i26) t_munu:UI(p1,mu)*UI(p2,nu)/D(k1,p2)-UI(p1,nu)*UI(p2,mu)/D(k1,p1)

+Gm(mu,nu)
(%i27) "========================================================="
(%i28) " Note Schwinger’s expression (3-12.93) used here, "
(%i29) " which he derives on page 73, and further discusses p.294"
(%i30) " The Lorentz gauge photon polarization 4-vector always has"
(%i31) " the properties: 1). D(k,e(k,s)) = 0, "
(%i32) " 2). D(n,e(k,s)) = 0, 3). D(kbar,e(k,s)) = 0 "
(%i33) " 4). D(e(k,s)_cc,e(k,r)) = -kroneker-delta(s,r) "
(%i34) " Within the Lorentz gauge one still has gauge freedom "
(%i35) " since one can choose the unit timelike vector nˆmu to"
(%i36) " have any components, with kbarˆmu = -kˆmu + 2*nˆmu*D(k,n). "
(%i37) " In an frame in which n = (1,0,0,0) (which --> D(n,n) = 1)"
(%i38) " the spatial components of kbar are the opposite of those "
(%i39) " of k. One can identify n with any convenient 4-vector in "
(%i40) " the problem "
(%i41) "==========================================================="
(%i42) " Evaluate Mssq = abs. value squared of M_fi."
(%i43) " pull out factor eˆ4 and sum over polarizations of both photons "
(%i44) " The result is : "
(%i45) Mssq:ratsimp(4*(Con(t_munuˆ2)-2))
(%o45) ((8*sˆ2+8*mˆ4)*uˆ2-32*mˆ6*u+8*mˆ4*sˆ2-32*mˆ6*s+40*mˆ8)

/((sˆ2-2*mˆ2*s+mˆ4)*uˆ2+(-2*mˆ2*sˆ2+4*mˆ4*s-2*mˆ6)*u+mˆ4*sˆ2-2*mˆ6*s
+mˆ8)

(%i46) " LAB FRAME EVALUATION "
(%i47) " initial pion rest frame evaluation in terms of"
(%i48) " scattering angle of final photon relative to initial"
(%i49) " photon direction (z - x plane) "
(%i50) " kinematics with initial ’pion’ p1 at rest. "
(%i51) " initial photon k1 moving along positive z axis. "
(%i52) assume(m > 0,k > 0,kp > 0,th >= 0,th <= %pi)
(%i53) comp_def(p1(m,0,0,0),k1(k,0,0,k),k2(kp,kp*sin(th),0,kp*cos(th)),

p2(-kp+k+m,-kp*sin(th),0,k-kp*cos(th)))
(%i54) " ---------------------------------------------------------"
(%i55) " conservation of relativistic energy gives "
(%i56) " m + k = E_p2 + kp "
(%i57) " and conservation of 3 or 4-momentum implies "
(%i58) " kp = m*k/(m + k*(1-cos(th))) "
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(%i59) " ---------------------------------------"
(%i60) " find replacement rule for kp using conservation of 4-mom"
(%i61) kp_rule:solve(VP(-k2+k1+p1,-k2+k1+p1) = ev_invar(D(p2,p2)),kp)
(%o61) [kp = -k*m/(k*cos(th)-m-k)]
(%i62) s_th:VP(k1+p1,k1+p1)
(%o62) mˆ2+2*k*m
(%i63) t_th:(VP(k1-k2,k1-k2),ev(%%,kp_rule))
(%o63) 2*kˆ2*m/(k*cos(th)-m-k)-2*kˆ2*m*cos(th)/(k*cos(th)-m-k)
(%i64) u_th:(VP(k2-p1,k2-p1),ev(%%,kp_rule))
(%o64) 2*k*mˆ2/(k*cos(th)-m-k)+mˆ2
(%i65) " replace s by s_th, etc "
(%i66) Mssq_lab:factor(sub_stu(Mssq))
(%o66) 4*(cos(th)ˆ2+1)
(%i67) " having pulled out eˆ4 from Mssq "
(%i68) A:alphaˆ2*(kp/k)ˆ2/(4*mˆ2)
(%o68) alphaˆ2*kpˆ2/(4*kˆ2*mˆ2)
(%i69) " -------------------------------------- "
(%i70) " To get unpolarized differential cross section, "
(%i71) " divide sum over spins Mssq_lab by 2 from average "
(%i72) " over polarization of the initial photon. "
(%i73) dsigdo_lab_unpol:A*Mssq_lab/2
(%i74) (display2d:true,display(dsigdo_lab_unpol),display2d:false)

2 2 2
alpha kp (cos (th) + 1)

dsigdo_lab_unpol = -------------------------
2 2

2 k m

(%i75) " which agrees with G/R QED p. 437 Eq.(14) "
(%i76) " since r_0ˆ2 = alphaˆ2/mˆ2 "
(%i77) " ======================================="
(%i78) "---------------------------------------------------"
(%i79) " 2. LINEAR PHOTON POLARIZATION CASE "
(%i80) " ------ lab frame, Coulomb gauge --------------"
(%i81) " Leave real photon polarization 4-vectors e1,e2 in amplitude. "
(%i82) " replace p1 dot products using lab frame coulomb gauge."
(%i83) " replace p2 dot products with e1,e2 "
(%i84) " using 4-mom conservation relation. "
(%i85) " The D(p1,e1) and D(p1,e2) replacements depend on our "
(%i86) " lab frame Coulomb gauge choices. "
(%i87) " Recall that D has property symmetric, so "
(%i88) " D(a,b) = D(b,a). "
(%i89) " choose real polarization vectors => linear pol."
(%i90) invar(D(e1,e1) = -1,D(k1,e1) = 0,D(e2,e2) = -1,D(k2,e2) = 0,

D(p1,e1) = 0,D(p1,e2) = 0,D(e1,p2) = -D(e1,k2),
D(e2,p2) = D(e2,k1))

(%i91) Ampl:D(e2,c)*D(e1,d)/(u-mˆ2)+D(e2,a)*D(e1,b)/(s-mˆ2)-2*D(e1,e2)
(%o91) D(c,e2)*D(d,e1)/(u-mˆ2)+D(a,e2)*D(b,e1)/(s-mˆ2)-2*D(e1,e2)
(%i92) " the amplitude is real so just need Amplˆ2 for cross section "
(%i93) Ampsq:expand(Amplˆ2)
(%o93) D(c,e2)ˆ2*D(d,e1)ˆ2/(uˆ2-2*mˆ2*u+mˆ4)

+2*D(a,e2)*D(b,e1)*D(c,e2)*D(d,e1)/(s*u-mˆ2*u-mˆ2*s+mˆ4)
-4*D(c,e2)*D(d,e1)*D(e1,e2)/(u-mˆ2)
+D(a,e2)ˆ2*D(b,e1)ˆ2/(sˆ2-2*mˆ2*s+mˆ4)
-4*D(a,e2)*D(b,e1)*D(e1,e2)/(s-mˆ2)+4*D(e1,e2)ˆ2

(%i94) " replace a,b,c,d "
(%i95) Ampsq1:subst([a = k2+2*p2,b = k1+2*p1,c = 2*p1-k2,d = 2*p2-k1],Ampsq)
(%o95) D(e1,2*p2-k1)ˆ2*D(e2,2*p1-k2)ˆ2/(uˆ2-2*mˆ2*u+mˆ4)

+2*D(e1,2*p1+k1)*D(e1,2*p2-k1)*D(e2,2*p1-k2)*D(e2,2*p2+k2)
/(s*u-mˆ2*u-mˆ2*s+mˆ4)-4*D(e1,e2)*D(e1,2*p2-k1)*D(e2,2*p1-k2)/(u-mˆ2)

+D(e1,2*p1+k1)ˆ2*D(e2,2*p2+k2)ˆ2/(sˆ2-2*mˆ2*s+mˆ4)
-4*D(e1,e2)*D(e1,2*p1+k1)*D(e2,2*p2+k2)/(s-mˆ2)+4*D(e1,e2)ˆ2
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(%i96) " expand dot products and use invariants list invarR "
(%i97) Ampsq2:ev_Ds(Ampsq1)
(%o97) 4*D(e1,e2)ˆ2
(%i98) " we see that there is no further reference to s and u in this result"
(%i99) " multiply by A to get polarized cross section "
(%i100) dsigdo_lab_pol:A*Ampsq2
(%i101) (display2d:true,display(dsigdo_lab_pol),display2d:false)

2 2 2
alpha D (e1, e2) kp

dsigdo_lab_pol = ---------------------
2 2

k m

(%i102) " which agrees with G/R QED p. 437, Eq.(12) "
(%i103) " since r_0ˆ2 = alphaˆ2/mˆ2 "
(%i104) " In Coulomb gauge lab frame the four vector dot product square "
(%i105) " D(e2,e1)ˆ2 reduces to dot(e2_vec,e1_vec)ˆ2 "
(%i106) " We recover the unpolarized result above if we sum over both "
(%i107) " e1 and e2 values and divide by 2 since we are averaging over "
(%i108) " the e1 values (see above section on transverse pol. vector sums)"
(%i109) "----------------------------------------------------------------"
(%i110) " If we only average over the polarization of the incident photon"
(%i111) " and leave the polarization of the final photon arbitrary, we "
(%i112) " replace (1+cos(th)ˆ2) by ( 1 - dot(ku,e2_vec)ˆ2) which gives "
(%i113) " 1 for e2_vec chosen perpendicular to the scattering plane, and "
(%i114) " gives sin(th)ˆ2 for e2_vec chosen parallel to the scattering "
(%i115) " plane, leading to the scattered photons polarized preferentially"
(%i116) " in a direction perpendicular to the scattering plane."

12.13 compton1.mac: Lepton-photon scattering

The scattering event is

e−(p1, σ1) + γ(k1, λ1) → e−(p2, σ2) + γ(k2, λ2). (12.51)

The invariant amplitude is M = M1 + M2, where, ignoring the charge squared factor e2,

M1 =
ū2 Γ1 u1

u−m2 , Γ1 = e/1 (p/1 − k/2 + m) e/∗2), u = (p1 − k2)
2 (12.52)

and

M2 =
ū2 Γ2 u1

s−m2 , Γ2 = e/∗2 (p/1 + k/1 + m) e/1, s = (p1 + k1)
2 (12.53)

The first section of compton1.mac calculates the unpolarized differential cross section, proportional to
∑

λ1, λ2, σ1, σ2

|M1 + M2|2. (12.54)

One the the four terms is
∑ |M1|2. If we first sum on λ1, the result is proportional to

∑

λ1

ū2 e/1 Γa u1 ū1 Γb e/1 u2 =

(∑

λ1

eµ
k1 λ1

eτ
k1 λ1

)
ū2 γµ Γa u1 ū1 Γb γτ u2 (12.55)

A convenient, simplifying feature of the lepton photon interaction is that only the first (metric tensor) term of P µ τ (k1)

need be retained, since the other terms produce zero contribution (as is discussed in quantum field theory texts). Thus for
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lepton photon interactions we effectively have

P µ ν(k1) ⇒ −gµ ν (12.56)

Thus the sum on λ1 above reduces to

−ū2 γµ Γa u1 ū1 Γb γµ u2. (12.57)

After summing over λ2, σ1, σ2 as well, and again ignoring the factor e4,

∑

λ1, λ2, σ1, σ2

|M1|2 =
Trace {(p/2 + m)γµ(p/1 − k/2 + m)γν(p/1 + m)γν(p/1 − k/2 + m)γµ }

(u−m2)2

(12.58)
The compton1.mac code uses the symbol m1sq for the trace in the numerator, and uses the symbol Mssq_unpol
for

∑ |M1 + M2|2 (see also the run line (%i32)). The Dirac package functions VP, D_sub, take_parts,ts, and
pullfac are used in this code.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/compton1.mac
(%i2) " ======================================================"
(%i3) " file compton1.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-06

(%i9) " --------------------------------------------"
(%i10) " UNPOLARIZED LEPTON - PHOTON SCATTERING "
(%i11) " for example : "
(%i12) " ---------------------------------------------"
(%i13) " e(-,p1,m) + gamma(k1) --> e(-,p2,m) + gamma(k2) "
(%i14) " ----------------------------------------------"
(%i15) " Arbitrary Frame Covariant Symbolic Methods "
(%i16) " in an arb frame, D(k1,p1) = D(k2,p2) "
(%i17) " and D(k1,p2) = D(k2,p1) "
(%i18) " In an arbitrary frame we can express everything "
(%i19) " in terms of mˆ2, D(k1,p1) and D(k2,p1) "
(%i20) " with a view to then evaluating in the rest frame"
(%i21) " of the initial electron: p1 = (m,0,0,0) (lab frame) "
(%i22) " ---------------------------------------------"
(%i23) invar(D(p1,p1) = mˆ2,D(p2,p2) = mˆ2,D(k1,k1) = 0,D(k2,k2) = 0,

D(p1,p2) = -D(k2,p1)+D(k1,p1)+mˆ2,D(k1,p2) = D(k2,p1),
D(k2,p2) = D(k1,p1),D(k1,k2) = D(k1,p1)-D(k2,p1))

(%i24) m1sq:tr(m+p2,mu,m-k2+p1,nu,m+p1,nu,m-k2+p1,mu)
(%o24) 32*mˆ4-32*D(k2,p1)*mˆ2+32*D(k1,p1)*D(k2,p1)
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(%i25) m2sq:tr(m+p2,mu,m+k1+p1,nu,m+p1,nu,m+k1+p1,mu)
(%o25) 32*mˆ4+32*D(k1,p1)*mˆ2+32*D(k1,p1)*D(k2,p1)
(%i26) m1m2sq:tr(m+p2,mu,m-k2+p1,nu,m+p1,mu,m+k1+p1,nu)
(%o26) 32*mˆ4-16*D(k2,p1)*mˆ2+16*D(k1,p1)*mˆ2
(%i27) m2m1sq:tr(m+p2,mu,m+k1+p1,nu,m+p1,mu,m-k2+p1,nu)
(%o27) 32*mˆ4-16*D(k2,p1)*mˆ2+16*D(k1,p1)*mˆ2
(%i28) m1m2sq-m2m1sq
(%o28) 0
(%i29) " The interference terms are equal, so "
(%i30) " -----------------------------------------------"
(%i31) " Form the expression :"
(%i32) " Mssq_unpol = m1sq/(u-mˆ2)ˆ2 + m2sq/(s-mˆ2)ˆ2 "
(%i33) " + 2*m1m2sq/((u-mˆ2)*(s-mˆ2)), "
(%i34) " with u-mˆ2 = -2*D(k2,p1), s-mˆ2 = 2*D(k1,p1), "
(%i35) " using u = (p1 - k2)ˆ2, s = (p1 + k1)ˆ2 "
(%i36) " ( we use sloppy notation pˆ2 for D(p,p) here )"
(%i37) " -----------------------------------------------"
(%i38) Mssq_unpol:expand((-2*m1m2sq)/(4*D(k2,p1)*D(k1,p1))

+m2sq/(4*D(k1,p1)ˆ2)+m1sq/(4*D(k2,p1)ˆ2))
(%o38) -16*mˆ4/(D(k1,p1)*D(k2,p1))+8*mˆ4/D(k2,p1)ˆ2+8*mˆ4/D(k1,p1)ˆ2

-16*mˆ2/D(k2,p1)+16*mˆ2/D(k1,p1)
+8*D(k2,p1)/D(k1,p1)+8*D(k1,p1)/D(k2,p1)

(%i39) " pull factor of 8 out of definition "
(%i40) Mssq_unpol8:expand(Mssq_unpol/8)
(%o40) -2*mˆ4/(D(k1,p1)*D(k2,p1))+mˆ4/D(k2,p1)ˆ2+mˆ4/D(k1,p1)ˆ2-2*mˆ2/D(k2,p1)

+2*mˆ2/D(k1,p1)+D(k2,p1)/D(k1,p1)
+D(k1,p1)/D(k2,p1)

(%i41) "---------------------------------------------------------"
(%i42) " LAB FRAME EVALUATION UNPOLARIZED "
(%i43) " rest frame of initial electron "
(%i44) " --------------------------------------------------------"
(%i45) assume(m > 0,k > 0,kp > 0,th >= 0,th <= %pi)
(%i46) comp_def(p1(m,0,0,0),k1(k,0,0,k),k2(kp,kp*sin(th),0,kp*cos(th)),

p2(-kp+k+m,-kp*sin(th),0,k-kp*cos(th)))
(%i47) " use conservation of 4-momentum to find kp "
(%i48) kp_rule:solve(VP(-k2+k1+p1,-k2+k1+p1) = ev_invar(D(p2,p2)),kp)
(%o48) [kp = -k*m/(k*cos(th)-m-k)]
(%i49) " To compare results, only replace kp in terms 1-5 "
(%i50) " leave kp alone in terms 6-7 "
(%i51) " D_sub (e,[D1,D2,..] uses noncov on each D(p1,p2) in list"
(%i52) M1t5:take_parts(Mssq_unpol8,1,5)
(%o52) -2*mˆ4/(D(k1,p1)*D(k2,p1))+mˆ4/D(k2,p1)ˆ2+mˆ4/D(k1,p1)ˆ2-2*mˆ2/D(k2,p1)

+2*mˆ2/D(k1,p1)
(%i53) M6t7:take_parts(Mssq_unpol8,6,7)
(%o53) D(k2,p1)/D(k1,p1)+D(k1,p1)/D(k2,p1)
(%i54) M6t7:D_sub(M6t7,[D(k1,p1),D(k2,p1)])
(%o54) kp/k+k/kp
(%i55) M1t5:D_sub(M1t5,[D(k1,p1),D(k2,p1)])
(%o55) -2*mˆ2/(k*kp)+mˆ2/kpˆ2+mˆ2/kˆ2-2*m/kp+2*m/k
(%i56) M1t5:trigsimp(ev(M1t5,kp_rule))
(%o56) cos(th)ˆ2-1
(%i57) " ts is our alternative trigsimp function "
(%i58) M1t5:ts(M1t5,th)
(%o58) -sin(th)ˆ2
(%i59) " restore overall factor of 8 "
(%i60) Mssq_unpol:8*(M6t7+M1t5)
(%o60) 8*(-sin(th)ˆ2+kp/k+k/kp)
(%i61) A:alphaˆ2*(kp/k)ˆ2/(4*mˆ2)
(%o61) alphaˆ2*kpˆ2/(4*kˆ2*mˆ2)
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(%i62) " -------------------------------------- "
(%i63) " To get unpolarized differential cross section, "
(%i64) " divide sum over spins Mssq_unpol by 4 from average "
(%i65) " over spin of initial electron and initial photon. "
(%i66) dsigdo_lab_unpol:A*Mssq_unpol/4
(%i67) (display2d:true,display(dsigdo_lab_unpol),display2d:false)

2 2 2 kp k
alpha kp (- sin (th) + -- + --)

k kp
dsigdo_lab_unpol = ---------------------------------

2 2
2 k m

(%i68) " which agrees with BLP (86.9) "

To calculate the differential cross section for given photon (linear) polarizations (but summing over the inital and final
elecron helicities), we retain the photon polarization vector factors e/k1λ1 and e/k2λ2 inside the trace created by summing
over the electron helicities.

We already have the basic defining inner products ek1λ1 · ek1λ1 = −1, k1 · ek1λ1 = 0, ek2λ2 · ek2λ2 = −1, and
k2 · ek2λ2 = 0.

Since we want a result appropriate to the rest frame of the initial electron p1, we identify nµ = pµ
1/m so that the compo-

nents of nµ are (1, 0, 0, 0).

Then n · ek1λ1 = 0 implies that e0
k1λ1

= 0 and n · ek2λ2 = 0 implies that e0
k2λ2

= 0.

Then ek1λ1 = (0, ek1λ1) and ek2λ2 = (0, ek2λ2).

Since the components of pµ
1 are (m, 0, 0, 0), we then have p1 ·ek1λ1 = 0 and p1 ·ek2λ2 = 0. And using 4-momentum

conservation, the former equation implies 0 = ek1λ1 · (k2 + p2 − k1), and hence ek1λ1 · p2 = −ek1λ1 · k2.

Finally we replace ek2λ2 · p2 = ek2λ2 · k1, using again 4-momentum conservation and the previous relations.

In our code, e1 stands for ek1λ1 and e2 stands for ek2λ2 .

(%i69) "======================================================"
(%i70) "----UNPOLARIZED ELECTRONS, POLARIZED PHOTONS ------------"
(%i71) "------- rest frame of initial electron p1 ------------- "
(%i72) " Leave photon polarization 4-vectors e1,e2 in trace. "
(%i73) " replace p1 dot products using p1 rest frame choice."
(%i74) " replace p2 dot products with e1,e2 "
(%i75) " using 4-mom conservation relation. "
(%i76) " The D(p1,e1) and D(p1,e2) replacements depend on our "
(%i77) " p1 rest frame choice."
(%i78) " Recall that D has property symmetric, so "
(%i79) " D(a,b) = D(b,a). "
(%i80) invar(D(e1,e1) = -1,D(k1,e1) = 0,D(e2,e2) = -1,D(k2,e2) = 0,

D(p1,e1) = 0,D(p1,e2) = 0,D(e1,p2) = -D(e1,k2),
D(e2,p2) = D(e2,k1))

(%i81) M1sq:tr(m+p2,e1,m-k2+p1,e2,m+p1,e2,m-k2+p1,e1)
(%o81) 8*D(k1,p1)*D(k2,p1)-16*D(e1,k2)ˆ2*D(k2,p1)
(%i82) M2sq:tr(m+p2,e2,m+k1+p1,e1,m+p1,e1,m+k1+p1,e2)
(%o82) 8*D(k1,p1)*D(k2,p1)+16*D(e2,k1)ˆ2*D(k1,p1)
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(%i83) M1m2sq:tr(m+p2,e1,m-k2+p1,e2,m+p1,e1,m+k1+p1,e2)
(%o83) -16*D(e1,e2)ˆ2*D(k1,p1)*D(k2,p1)+8*D(k1,p1)*D(k2,p1)

+8*D(e2,k1)ˆ2*D(k2,p1)
-8*D(e1,k2)ˆ2*D(k1,p1)

(%i84) M2m1sq:tr(m+p2,e2,m+k1+p1,e1,m+p1,e2,m-k2+p1,e1)
(%o84) -16*D(e1,e2)ˆ2*D(k1,p1)*D(k2,p1)+8*D(k1,p1)*D(k2,p1)

+8*D(e2,k1)ˆ2*D(k2,p1)
-8*D(e1,k2)ˆ2*D(k1,p1)

(%i85) M2m1sq-M1m2sq
(%o85) 0
(%i86) " The interference terms are equal, so "
(%i87) Mssq_pol:expand((-2*M1m2sq)/(4*D(k2,p1)*D(k1,p1))

+M2sq/(4*D(k1,p1)ˆ2)+M1sq/(4*D(k2,p1)ˆ2))
(%o87) 2*D(k2,p1)/D(k1,p1)+2*D(k1,p1)/D(k2,p1)+8*D(e1,e2)ˆ2-4
(%i88) " avoid use of noncov(D(e1,e2)) which would expand D(e1,e2)"
(%i89) " in terms of undefined components, by instead using ev"
(%i90) " or D_sub for selected replacements. "
(%i91) Mssq_pol:D_sub(Mssq_pol,[D(k1,p1),D(k2,p1)])
(%o91) 2*kp/k+2*k/kp+8*D(e1,e2)ˆ2-4
(%i92) Mssq_pol:pullfac(Mssq_pol,2)
(%o92) 2*(kp/k+k/kp+4*D(e1,e2)ˆ2-2)
(%i93) "To get electron unpolarized, photon polarized differential cross section,"
(%i94) " divide Mssq_pol by 2 from average over helicity of initial electron. "
(%i95) dsigdo_lab_pol:A*Mssq_pol/2
(%i96) (display2d:true,display(dsigdo_lab_pol),display2d:false)

2 2 kp k 2
alpha kp (-- + -- + 4 D (e1, e2) - 2)

k kp
dsigdo_lab_pol = ---------------------------------------

2 2
4 k m

(%i97) " which agrees with the Klein-Nishina form quoted by Weinberg (8.7.39)"
(%i98) "============================================================"
(%i99) " Now assume unpolarized initial photon. Average the "
(%i100) " polarized photon dsigdo(r,s) over the two possible values "
(%i101) " of r which specifies the transverse polarization "
(%i102) " vector of incident photon e1_vec. With nˆmu = (1,0,0,0)"
(%i103) " D(e1,e2)ˆ2 --> { dot3 (e1_vec,e2_vec) }ˆ2 "
(%i104) " and sum (D(e1(r),e2(s))ˆ2,r,1,2) --> 1 - {dot3(ku,e2_vec(s)}ˆ2"
(%i105) " with ku = unit 3-vector along the z axis, dot3(a,b) = 3-vec dot prod. "
(%i106) " and dsigdo(s) = sum(dsigdo(r,s),r,1,2)/2 "
(%i107) " The overall result is recovered with: "
(%i108) dsigdo_s:subst(4*D(e1,e2)ˆ2 = 2-2*dot3(ku,e2_vec)ˆ2,dsigdo_lab_pol)
(%i109) (display2d:true,display(dsigdo_s),display2d:false)

2 2 2 kp k
alpha kp (- 2 dot3 (ku, e2_vec) + -- + --)

k kp
dsigdo_s = --------------------------------------------

2 2
4 k m

(%i110) "---------------------------------------------------------"
(%i111) " which agrees with Weinberg (8.7.40) "
(%i112) " Summing the above over the two possible values of "
(%i113) " final photon polarization s then leads to our "
(%i114) " unpolarized result above "
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12.14 pair1.mac: Unpolarized Two Photon Pair Annihilation

The pair annihilation to two photon event is

e−(p1, σ1) + e+(p2, σ2) → γ(k1, λ1) + γ(k2, λ2). (12.59)

With the definitions

s = (p1 + p2)
2, t = (p1 − k1)

2, u = (p1 − k2)
2, (12.60)

and the abbreviations

u1 = u(p1, σ1), v̄2 = v̄(p2, σ2), e∗1 = e∗k1,λ1
, e∗2 = e∗k2,λ2

, (12.61)

M = M1 + M2, with

M1 =
e2 v̄2 e/∗2 (p/1 − k/1 + m) e/∗1 u1

t−m2 (12.62)

and

M2 =
e2 v̄2 e/∗1 (p/1 − k/2 + m) e/∗2 u1

u−m2 . (12.63)

Some references for this calculation are Griffith p. 241, G/R QED: (p. 192 rest frame of electron, p. 198 CM frame), P/S
p. 168, BLP p. 370, Schwinger p. 314, Kaku p. 170, I/Z p. 230, and B/D p. 132.

The batch file pair1.mac works out the unpolarized differential cross section first in an arbitrary frame, and then in
the CM frame. To compare our result with G/R in the CM frame, we express the result in terms of (E,v), where
p = E*v, Eˆ2 = mˆ2 + pˆ2, with v (the dimensionless velocity of either of the incident leptons relative to the
CM frame) having values 0 ≤ v < 1.

The Dirac package functions D_sub and ts are used.

(%i1) load(work)$
work4 dirac.mac

dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/pair1.mac
(%i2) " ======================================================"
(%i3) " file pair1.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-08
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(%i9) " --------------------------------------------"
(%i10) " UNPOLARIZED PAIR ANNIHILATION "
(%i11) " ---------------------------------------------"
(%i12) " e(-,p1) + e(+,p2) --> gamma(k1) + gamma(k2) "
(%i13) " ----------------------------------------------"
(%i14) " Arbitrary Frame Covariant Symbolic Methods "
(%i15) " ---------------------------------------------"
(%i16) " POPULATE THE LIST invarR OF 4-VEC DOT PRODUCT VALUES. "
(%i17) " Express 4-vector dot products in terms of t, u, and mˆ2 "
(%i18) " Using s = (p1+p2)ˆ2 = (k1+k2)ˆ2, t = (p1-k1)ˆ2 = "
(%i19) " (k2-p2)ˆ2, u = (p1-k2)ˆ2 = (k1-p2)ˆ2, s + t + u = 2*mˆ2 "
(%i20) " ---------------------------------------------------"
(%i21) invar(D(p1,p1) = mˆ2,D(p1,k1) = (mˆ2-t)/2,D(p1,k2) = (mˆ2-u)/2,

D(p1,p2) = (-(u+t))/2,D(p2,p2) = mˆ2,D(p2,k1) = (mˆ2-u)/2,
D(p2,k2) = (mˆ2-t)/2,D(k1,k1) = 0,D(k1,k2) = mˆ2-(u+t)/2,
D(k2,k2) = 0)

(%i22) "------------------------------------------------------"
(%i23) " sum |M|ˆ2 over spins of electrons and polarizations "
(%i24) " of the photons, which leads to the expression: "
(%i25) " -------------------------------------------------"
(%i26) " m1sq/(t-mˆ2)ˆ2 + m2sq/(u-mˆ2)ˆ2 + "
(%i27) " (m1m2sq+m2m1sq)/((t-mˆ2)*(u-mˆ2))"
(%i28) " -------------------------------------------------"
(%i29) " -- where (ignoring eˆ4) --- "
(%i30) m1sq:tr(p2-m,mu,m-k1+p1,nu,m+p1,nu,m-k1+p1,mu)
(%o30) 8*t*u-8*mˆ2*u-24*mˆ2*t-8*mˆ4
(%i31) m2sq:tr(p2-m,mu,m-k2+p1,nu,m+p1,nu,m-k2+p1,mu)
(%o31) 8*t*u-24*mˆ2*u-8*mˆ2*t-8*mˆ4
(%i32) m1m2sq:tr(p2-m,mu,m-k1+p1,nu,m+p1,mu,m-k2+p1,nu)
(%o32) -8*mˆ2*u-8*mˆ2*t-16*mˆ4
(%i33) m2m1sq:tr(p2-m,mu,m-k2+p1,nu,m+p1,mu,m-k1+p1,nu)
(%o33) -8*mˆ2*u-8*mˆ2*t-16*mˆ4
(%i34) m1m2sq-m2m1sq
(%o34) 0
(%i35) Mssq:ratsimp(2*m1m2sq/((t-mˆ2)*(u-mˆ2))+m2sq/(u-mˆ2)ˆ2+m1sq/(t-mˆ2)ˆ2)
(%o35) ((8*t-8*mˆ2)*uˆ3+(24*mˆ4-56*mˆ2*t)*uˆ2+(8*tˆ3-56*mˆ2*tˆ2+112*mˆ4*t)*u

-8*mˆ2*tˆ3+24*mˆ4*tˆ2-48*mˆ8)
/((tˆ2-2*mˆ2*t+mˆ4)*uˆ2+(-2*mˆ2*tˆ2+4*mˆ4*t-2*mˆ6)*u+mˆ4*tˆ2-2*mˆ6*t

+mˆ8)
(%i36) "----- replace t and u in terms of dot products in arb frame ------ "
(%i37) Mssq_dot:expand(subst([t = mˆ2-2*D(k1,p1),u = mˆ2-2*D(k2,p1)],Mssq))
(%o37) -16*mˆ4/(D(k1,p1)*D(k2,p1))-8*mˆ4/D(k2,p1)ˆ2-8*mˆ4/D(k1,p1)ˆ2

+16*mˆ2/D(k2,p1)+16*mˆ2/D(k1,p1)
+8*D(k2,p1)/D(k1,p1)+8*D(k1,p1)/D(k2,p1)

(%i38) "=================================================="
(%i39) " specialize to center of momentum frame "
(%i40) "---------------------------------------------------"
(%i41) " kinematics in center of momentum frame "
(%i42) " p_vec_mag : E*v, v = velocity rel to CM frame "
(%i43) " Eˆ2 = mˆ2 + pˆ2 = mˆ2/(1 - vˆ2) "
(%i44) " initial electron 3-mom in dir. of pos z axis"
(%i45) " e(-,p1) e(+,p2) --> gamma(k1) gamma(k2) "
(%i46) " CM energy = 2*E shared equally by incident"
(%i47) " fermions and outgoing photons "
(%i48) assume(m > 0,E > 0,th >= 0,th <= %pi)
(%i49) comp_def(p1(E,0,0,v*E),p2(E,0,0,-v*E),k1(E,E*sin(th),0,E*cos(th)),

k2(E,-E*sin(th),0,-E*cos(th)))
(%i50) " pf/pi = E/p = E/(vE) = 1/v "
(%i51) " dsigdo_CM = A*|M|ˆ2 for given pol, where "
(%i52) " having absorbed eˆ4 into A, eˆ2 = 4*%pi*alpha"
(%i53) A:alphaˆ2/(16*v*Eˆ2)
(%o53) alphaˆ2/(16*v*Eˆ2)
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(%i54) " convert to a function of angle th between "
(%i55) " p1_vec and k1_vec "
(%i56) Mssq_th:D_sub(Mssq_dot,[D(k1,p1),D(k2,p1)])
(%o56) -16*mˆ4/((Eˆ2-cos(th)*v*Eˆ2)*(cos(th)*v*Eˆ2+Eˆ2))

+8*(Eˆ2-cos(th)*v*Eˆ2)/(cos(th)*v*Eˆ2+Eˆ2)+16*mˆ2/(cos(th)*v*Eˆ2+Eˆ2)
-8*mˆ4/(cos(th)*v*Eˆ2+Eˆ2)ˆ2+16*mˆ2/(Eˆ2-cos(th)*v*Eˆ2)
-8*mˆ4/(Eˆ2-cos(th)*v*Eˆ2)ˆ2+8*(cos(th)*v*Eˆ2+Eˆ2)/(Eˆ2-cos(th)*v*Eˆ2)

(%i57) Mssq_th:trigsimp(subst(Eˆ2 = mˆ2/(1-vˆ2),Mssq_th))
(%o57) -((16*sin(th)ˆ4+16)*vˆ4-32*sin(th)ˆ2*vˆ2-16)

/(cos(th)ˆ4*vˆ4-2*cos(th)ˆ2*vˆ2+1)
(%i58) " simplify the denominator - override default factor "
(%i59) mt1d:denom(Mssq_th)
(%o59) cos(th)ˆ4*vˆ4-2*cos(th)ˆ2*vˆ2+1
(%i60) mt1d:ratsubst(x,vˆ2*cos(th)ˆ2,mt1d)
(%o60) xˆ2-2*x+1
(%i61) mt1d:factor(mt1d)
(%o61) (x-1)ˆ2
(%i62) mt1d:subst(x = vˆ2*cos(th)ˆ2,mt1d)
(%o62) (cos(th)ˆ2*vˆ2-1)ˆ2
(%i63) " simplify the numerator "
(%i64) mt1n:num(Mssq_th)
(%o64) -(16*sin(th)ˆ4+16)*vˆ4+32*sin(th)ˆ2*vˆ2+16
(%i65) " pull out factor of 16 from numerator "
(%i66) mt1n16:factor(mt1n)/16
(%o66) -sin(th)ˆ4*vˆ4-vˆ4+2*sin(th)ˆ2*vˆ2+1
(%i67) " change sin(th) to cos(th) in numerator "
(%i68) mt1n16:expand(ts(mt1n16,th))
(%o68) -cos(th)ˆ4*vˆ4+2*cos(th)ˆ2*vˆ4-2*vˆ4-2*cos(th)ˆ2*vˆ2+2*vˆ2+1
(%i69) " simplified num/denom expression: "
(%i70) Mssq_unpol:16*mt1n16/mt1d
(%o70) 16*(-cos(th)ˆ4*vˆ4+2*cos(th)ˆ2*vˆ4-2*vˆ4-2*cos(th)ˆ2*vˆ2+2*vˆ2+1)

/(cos(th)ˆ2*vˆ2-1)ˆ2
(%i71) " divide by 4 from averaging over initial spin "
(%i72) " and polarization "
(%i73) dsigdo_CM:A*Mssq_unpol/4
(%i74) (display2d:true,display(dsigdo_CM),display2d:false)
dsigdo_CM =

2 4 4 2 4 4 2 2 2
alpha (- cos (th) v + 2 cos (th) v - 2 v - 2 cos (th) v + 2 v + 1)
------------------------------------------------------------------------

2 2 2 2
4 v (cos (th) v - 1) E

(%i75) " which agrees with Greiner and Reinhardt, p.201, eqn (17)"
(%i76) "----------------------------------------------------------"

12.15 pair2.mac: Polarized Two Photon Pair Annihilation Amplitudes

The pair annihilation to two photon event is

e−(p1, σ1) + e+(p2, σ2) → γ(k1, λ1) + γ(k2, λ2). (12.64)

With the definitions

s = (p1 + p2)
2, t = (p1 − k1)

2, u = (p1 − k2)
2. (12.65)

If we use explicit Dirac spinors and matrices and photon polarization 3-vectors to calculate polarized amplitudes in which
both the leptons and photons have definite helicities in the CM frame, we start with the polarized amplitude already writ-
ten down in the previous section dealing with pair1.mac.
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With the abbreviations

u1 = u(p1, σ1), v̄2 = v̄(p2, σ2), e∗1 = e∗k1,λ1
, e∗2 = e∗k2,λ2

, (12.66)

M = M1 + M2, with

M1 =
e2 v̄2 e/∗2 (p/1 − k/1 + m) e/∗1 u1

t−m2 (12.67)

and

M2 =
e2 v̄2 e/∗1 (p/1 − k/2 + m) e/∗2 u1

u−m2 . (12.68)

Here we use explicit Dirac spinor methods in the CM frame, letting each lepton have the energy E = M/2, with M the
total CM frame energy, and then each lepton has 3-momentum magnitude p = E*v = M*v/2. We also have the di-
mensionless lepton CM frame speed v = sqrt( 1 - 4*mˆ2/Mˆ2 ). Each outgoing photon has energy k = M/2
and each photon has 3-momentum magnitude k.

We use the photon polarization conventions of F. Gross. (See Franz Gross, Rel. Q. Mech. and Fld. Theory, pages 54,
218, and Schwinger, PSF I, Sec. 3-13-98.)

The outgoing photons are chosen to be travelling along the +z and −z axes. We let e(ẑ, λ) be the photon polarization

3-vector describing a photon travelling in the +z direction, with λ = 1 being a positive helicity state and λ = −1 being

a negative helicity state. Then

e(ẑ, 1) = − 1√
2

(x̂ + i ŷ), (12.69)

and

e(ẑ,−1) =
1√
2

(x̂− i ŷ). (12.70)

We let e(−ẑ, λ) be the photon polarization 3-vector describing a photon travelling in the−z direction, with λ = 1 being

a positive helicity state and λ = −1 being a negative helicity state. Then

e(−ẑ, 1) =
1√
2

(x̂− i ŷ) = Ry(π) e(ẑ, 1), (12.71)

and

e(−ẑ,−1) = − 1√
2

(x̂ + i ŷ) = Ry(π) e(ẑ,−1). (12.72)

For our calculation, since the photons are in the final state, we need complex conjugates of these. The first example
discussed is RR --> RR, which means two right-handed electrons (actually positive helicity) turn into two positive
helicity photons. For this first example, we define CM frame components with the line:

comp_def(p1(M/2,M*v*sin(th)/2,0,M*v*cos(th)/2),k1(M/2,0,0,M/2),
k2(M/2,0,0,(-M)/2),e1_cc(0,(-1)/sqrt(2),%i/sqrt(2),0),
e2_cc(0,1/sqrt(2),%i/sqrt(2),0))

which shows that the photon with 4-momentum k1 is travelling along the positive z axis, and the polarization state of this
photon is described by the 4-vector e1_cc with the components (0,(-1)/sqrt(2),%i/sqrt(2),0) in which the
three spatial components agree with e(ẑ, 1)∗.
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Likewise, the photon with 4-momentum k2 is travelling along the negative z axis, and the symbol e2_cc is the 4-
vector describing its positive helicity state, with components (0,1/sqrt(2),%i/sqrt(2),0) whose spatial com-
ponents agree with e(−ẑ, 1)∗.

The cases considered are RR --> RR, RR --> LL, RR --> RL, RR --> LR, RL --> RL, RL --> LR, and
RL --> RR (this last case has amplitude equal to zero).

Since we want to compare our results with Schwinger’s results, some involved manipulations are necessary in each
case to arrive at a comparable form.

(%i1) load(work)$
work4 dirac.mac

dgexp

dgcon

dgtrace

dgeval

dgmatrix

massL = [m,M]

indexL = [la,mu,nu,rh,si,ta,al,be,ga]

scalarL = []

" reserved program capital letter name use: "

" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"

" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/pair2.mac
(%i2) " ======================================================"
(%i3) " file pair2.mac "
(%i4) " Maxima by Example, Ch. 12 "
(%i5) " Dirac Algebra and Quantum Electrodynamics "
(%i6) " Edwin L Woollett, woollett@charter.net "
(%i7) " http://www.csulb.edu/˜woollett "
(%i8) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-08

(%i9) " --------------------------------------------"
(%i10) " POLARIZED PAIR ANNIHILATION in CM Frame "
(%i11) " ---------------------------------------------"
(%i12) " e(-,p1) + e(+,p2) --> gamma(k1) + gamma(k2) "
(%i13) " ----------------------------------------------"
(%i14) " AMPLITUDES USING EXPLICIT DIRAC SPINORS "
(%i15) " ----------------------------------------------"
(%i16) " Define the needed Dirac spinors and barred spinors. "
(%i17) " For example, RR --> RR amplitude without the factor eˆ2, and"
(%i18) " either t-mˆ2 or u-mˆ2 in the denominator . The photon 3-momenta"
(%i19) " magnitudes are equal to M/2, where M = 2*E = CM frame energy."
(%i20) " M >= 2*m, and ’low energy’ corresponds to M at its lower limit,"
(%i21) " for which v is close to value 0, and ’high energy’ corresponds"
(%i22) " to M >> m, for which v approaches its maximum value 1 "
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(%i23) " The lepton 3-momentum magnitudes are each equal to E*v = M*v/2 "
(%i24) " where v is the dimensionless velocity with "
(%i25) " vˆ2 = pˆ2/Eˆ2 = (Eˆ2-mˆ2)/Eˆ2 = 1- 4*mˆ2/Mˆ2 "
(%i26) " All particle energies are equal to M/2."
(%i27) " ----------------------------------------------------"
(%i28) " CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,+1) gamma(k2,+1) "
(%i29) " ----------------------------------------------------"
(%i30) " Both the electron and positron have helicity +1. "
(%i31) " Each of the final gammas have helicity +1. "
(%i32) "For a given set of helicity quantum numbers, the amplitude is the"
(%i33) " sum of two terms: Mtn/(t-mˆ2) + Mun/(u-mˆ2) , where "
(%i34) " Mtd = t-mˆ2 = -2*D(k1,p1), Mud = u-mˆ2 = -2*D(k2,p1). "
(%i35) " --------------------------------------------------"
(%i36) " To simplify the photon helicity 3-vectors, let k1_3vec be "
(%i37) " along the positive z axis, and k2_3vec be along the "
(%i38) " minus z axis, p1_3vec in the z-x plane at an angle of "
(%i39) " th radians to k1_3vec."
(%i40) (up1:UU(M/2,M*v/2,th,0,1),vp2b:sbar(VV(M/2,M*v/2,%pi-th,%pi,1)))
(%i41) " ------------------------------------------------------"
(%i42) " We need to define the components of the four vectors "
(%i43) " p1, k1, k2, e1_cc, and e2_cc relative to the CM frame"
(%i44) " For the photon polarization 4-vectors, we use the phase"
(%i45) " conventions of Franz Gross, Rel. Q. Mech. and Fld. Theory"
(%i46) " pages 54, 218, and 230. e1_cc means complex conjugate of e1. "
(%i47) " Without the ’cc’, e1 means here e (z_hat,+1) "
(%i48) " and e2 means here e (-z_hat,+1) "
(%i49) comp_def(p1(M/2,M*v*sin(th)/2,0,M*v*cos(th)/2),k1(M/2,0,0,M/2),

k2(M/2,0,0,(-M)/2),e1_cc(0,(-1)/sqrt(2),%i/sqrt(2),0),
e2_cc(0,1/sqrt(2),%i/sqrt(2),0))

(%i50) " denominators "
(%i51) Mtd:-2*pullfac(noncov(D(k1,p1)),Mˆ2/4)
(%o51) -(1-cos(th)*v)*Mˆ2/2
(%i52) Mud:-2*pullfac(noncov(D(k2,p1)),Mˆ2/4)
(%o52) -(cos(th)*v+1)*Mˆ2/2
(%i53) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o53) matrix([2*m,0,-2*(M/2-cos(th)*v*M/2),0],[0,0,0,0],

[-2*(cos(th)*v*M/2-M/2),0,2*m,0],[0,0,0,0])
(%i54) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o54) matrix([0,0,0,0],[0,2*m,0,-2*(cos(th)*v*M/2+M/2)],[0,0,0,0],

[0,-2*(-cos(th)*v*M/2-M/2),0,2*m])
(%i55) " M1 = Mtn/Mtd "
(%i56) Mtn:vp2b . g1 . up1
(%o56) sin((%pi-th)/2)*sqrt((v+1)*M/2)

*(2*m*cos(th/2)*sqrt((v+1)*M/2)
-2*cos(th/2)*sqrt(-(v-1)*M/2)*(cos(th)*v*M/2-M/2))

-sin((%pi-th)/2)*sqrt(-(v-1)*M/2)
*(2*m*cos(th/2)*sqrt(-(v-1)*M/2)
-2*cos(th/2)*sqrt((v+1)*M/2)*(M/2-cos(th)*v*M/2))

(%i57) expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o57) -cos(th/2)ˆ2*cos(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2

+cos(th/2)ˆ2*sqrt(1-v)*sqrt(v+1)*Mˆ2+2*m*cos(th/2)ˆ2*v*M
(%i58) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o58) -2*m*cos(th/2)ˆ2*cos(th)*v*M+2*m*cos(th/2)ˆ2*v*M+2*m*cos(th/2)ˆ2*M
(%i59) pullfac(%,2*m*M*cos(th/2)ˆ2)
(%o59) 2*m*cos(th/2)ˆ2*(-cos(th)*v+v+1)*M
(%i60) expand(ratsubst((cos(th)+1)/2,cos(th/2)ˆ2,%))
(%o60) -m*cos(th)ˆ2*v*M+m*v*M+m*cos(th)*M+m*M
(%i61) Mtn:pullfac(%,m*M)
(%o61) m*(-cos(th)ˆ2*v+v+cos(th)+1)*M
(%i62) M1:Mtn/Mtd
(%o62) -2*m*(-cos(th)ˆ2*v+v+cos(th)+1)/((1-cos(th)*v)*M)



54

(%i63) " M2 = Mun/Mud "
(%i64) Mun:vp2b . g2 . up1
(%o64) cos((%pi-th)/2)*sqrt((v+1)*M/2)

*(2*m*sin(th/2)*sqrt((v+1)*M/2)
-2*sin(th/2)*sqrt(-(v-1)*M/2)*(-cos(th)*v*M/2-M/2))

-cos((%pi-th)/2)*sqrt(-(v-1)*M/2)
*(2*m*sin(th/2)*sqrt(-(v-1)*M/2)
-2*sin(th/2)*sqrt((v+1)*M/2)*(cos(th)*v*M/2+M/2))

(%i65) expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o65) sin(th/2)ˆ2*cos(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2

+sin(th/2)ˆ2*sqrt(1-v)*sqrt(v+1)*Mˆ2+2*m*sin(th/2)ˆ2*v*M
(%i66) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o66) 2*m*sin(th/2)ˆ2*cos(th)*v*M+2*m*sin(th/2)ˆ2*v*M+2*m*sin(th/2)ˆ2*M
(%i67) pullfac(%,2*m*M*sin(th/2)ˆ2)
(%o67) 2*m*sin(th/2)ˆ2*(cos(th)*v+v+1)*M
(%i68) Mun:expand(ratsubst((1-cos(th))/2,sin(th/2)ˆ2,%))
(%o68) -m*cos(th)ˆ2*v*M+m*v*M-m*cos(th)*M+m*M
(%i69) Mun:pullfac(%,m*M)
(%o69) m*(-cos(th)ˆ2*v+v-cos(th)+1)*M
(%i70) M2:Mun/Mud
(%o70) -2*m*(-cos(th)ˆ2*v+v-cos(th)+1)/((cos(th)*v+1)*M)
(%i71) " Add amplitudes and simplify trig functions "
(%i72) Mfi:trigsimp(M2+M1)
(%o72) (4*m*v+4*m)/((cos(th)ˆ2*vˆ2-1)*M)
(%i73) " factor numerator and pull out minus sign in denom "
(%i74) Mfi_n:factor(num(Mfi))
(%o74) 4*m*(v+1)
(%i75) Mfi_d:pullfac(expand(denom(Mfi)),-M)
(%o75) -(1-cos(th)ˆ2*vˆ2)*M
(%i76) Mfi:Mfi_n/Mfi_d
(%o76) -4*m*(v+1)/((1-cos(th)ˆ2*vˆ2)*M)
(%i77) (display2d:true,

disp("CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,+1) gamma(k2,+1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,+1) gamma(k2,+1)

4 m (v + 1)
Mfi = - -------------------

2 2
(1 - cos (th) v ) M

(%i78) " which agrees with Schwinger, PSF I, (3-13-98)"
(%i79) "----------------------------------------------"
(%i80) "CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,-1) gamma(k2,-1) "
(%i81) " -------------------------------------------------"
(%i82) comp_def(e1_cc(0,1/sqrt(2),%i/sqrt(2),0),

e2_cc(0,(-1)/sqrt(2),%i/sqrt(2),0))
(%i83) listarray(e1_cc)
(%o83) [0,1/sqrt(2),%i/sqrt(2),0]
(%i84) listarray(e2_cc)
(%o84) [0,-1/sqrt(2),%i/sqrt(2),0]
(%i85) " the spinors and denominators are the same "
(%i86) " recompute the g1 and g2 matrices "
(%i87) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o87) matrix([0,0,0,0],[0,2*m,0,-2*(cos(th)*v*M/2-M/2)],[0,0,0,0],

[0,-2*(M/2-cos(th)*v*M/2),0,2*m])
(%i88) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o88) matrix([2*m,0,-2*(-cos(th)*v*M/2-M/2),0],[0,0,0,0],

[-2*(cos(th)*v*M/2+M/2),0,2*m,0],[0,0,0,0])
(%i89) " ------------------------------------"
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(%i90) " M1 = Mtn/Mtd "
(%i91) Mtn:vp2b . g1 . up1
(%o91) cos((%pi-th)/2)*sqrt((v+1)*M/2)

*(2*m*sin(th/2)*sqrt((v+1)*M/2)
-2*sin(th/2)*sqrt(-(v-1)*M/2)*(M/2-cos(th)*v*M/2))

-cos((%pi-th)/2)*sqrt(-(v-1)*M/2)
*(2*m*sin(th/2)*sqrt(-(v-1)*M/2)
-2*sin(th/2)*sqrt((v+1)*M/2)*(cos(th)*v*M/2-M/2))

(%i92) expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o92) sin(th/2)ˆ2*cos(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2

-sin(th/2)ˆ2*sqrt(1-v)*sqrt(v+1)*Mˆ2+2*m*sin(th/2)ˆ2*v*M
(%i93) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o93) 2*m*sin(th/2)ˆ2*cos(th)*v*M+2*m*sin(th/2)ˆ2*v*M-2*m*sin(th/2)ˆ2*M
(%i94) pullfac(%,2*m*M*sin(th/2)ˆ2)
(%o94) 2*m*sin(th/2)ˆ2*(cos(th)*v+v-1)*M
(%i95) expand(ratsubst((1-cos(th))/2,sin(th/2)ˆ2,%))
(%o95) -m*cos(th)ˆ2*v*M+m*v*M+m*cos(th)*M-m*M
(%i96) Mtn:pullfac(%,m*M)
(%o96) m*(-cos(th)ˆ2*v+v+cos(th)-1)*M
(%i97) M1:Mtn/Mtd
(%o97) -2*m*(-cos(th)ˆ2*v+v+cos(th)-1)/((1-cos(th)*v)*M)
(%i98) "------------------------------"
(%i99) " M2 = Mun/Mud "
(%i100) Mun:vp2b . g2 . up1
(%o100) sin((%pi-th)/2)*sqrt((v+1)*M/2)

*(2*m*cos(th/2)*sqrt((v+1)*M/2)
-2*cos(th/2)*sqrt(-(v-1)*M/2)*(cos(th)*v*M/2+M/2))

-sin((%pi-th)/2)*sqrt(-(v-1)*M/2)
*(2*m*cos(th/2)*sqrt(-(v-1)*M/2)
-2*cos(th/2)*sqrt((v+1)*M/2)*(-cos(th)*v*M/2-M/2))

(%i101) expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o101) -cos(th/2)ˆ2*cos(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2

-cos(th/2)ˆ2*sqrt(1-v)*sqrt(v+1)*Mˆ2+2*m*cos(th/2)ˆ2*v*M
(%i102) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o102) -2*m*cos(th/2)ˆ2*cos(th)*v*M+2*m*cos(th/2)ˆ2*v*M-2*m*cos(th/2)ˆ2*M
(%i103) pullfac(%,2*m*M*cos(th/2)ˆ2)
(%o103) 2*m*cos(th/2)ˆ2*(-cos(th)*v+v-1)*M
(%i104) expand(ratsubst((cos(th)+1)/2,cos(th/2)ˆ2,%))
(%o104) -m*cos(th)ˆ2*v*M+m*v*M-m*cos(th)*M-m*M
(%i105) Mun:pullfac(%,m*M)
(%o105) m*(-cos(th)ˆ2*v+v-cos(th)-1)*M
(%i106) M2:Mun/Mud
(%o106) -2*m*(-cos(th)ˆ2*v+v-cos(th)-1)/((cos(th)*v+1)*M)
(%i107) " Add amplitudes and simplify trig functions "
(%i108) Mfi:trigsimp(M2+M1)
(%o108) (4*m*v-4*m)/((cos(th)ˆ2*vˆ2-1)*M)
(%i109) " factor numerator and pull out minus sign in denom "
(%i110) Mfi_n:pullfac(num(Mfi),-4*m)
(%o110) -4*m*(1-v)
(%i111) Mfi_d:pullfac(expand(denom(Mfi)),-M)
(%o111) -(1-cos(th)ˆ2*vˆ2)*M
(%i112) Mfi:Mfi_n/Mfi_d
(%o112) 4*m*(1-v)/((1-cos(th)ˆ2*vˆ2)*M)
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(%i113) (display2d:true,
disp("CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,-1) gamma(k2,-1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,-1) gamma(k2,-1)

4 m (1 - v)
Mfi = -------------------

2 2
(1 - cos (th) v ) M

(%i114) " which agrees with Schwinger, PSF I, (3-13-98)"
(%i115) "----------------------------------------------"
(%i116) "CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,1) gamma(k2,-1) "
(%i117) " -------------------------------------------------"
(%i118) comp_def(e1_cc(0,(-1)/sqrt(2),%i/sqrt(2),0))
(%i119) listarray(e1_cc)
(%o119) [0,-1/sqrt(2),%i/sqrt(2),0]
(%i120) " the spinors and denominators are the same "
(%i121) " recompute the g1 and g2 matrices "
(%i122) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o122) matrix([0,0,0,0],[0,0,sin(th)*v*M,0],[0,0,0,0],[-sin(th)*v*M,0,0,0])
(%i123) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o123) matrix([0,0,0,0],[0,0,sin(th)*v*M,0],[0,0,0,0],[-sin(th)*v*M,0,0,0])
(%i124) " ------------------------------------"
(%i125) " M1 = Mtn/Mtd "
(%i126) Mtn:vp2b . g1 . up1
(%o126) -2*cos((%pi-th)/2)*cos(th/2)*sin(th)*v*M*sqrt(-(v-1)*M/2)

*sqrt((v+1)*M/2)
(%i127) " M1 = Mtn/Mtd "
(%i128) Mtn:vp2b . g1 . up1
(%o128) -2*cos((%pi-th)/2)*cos(th/2)*sin(th)*v*M*sqrt(-(v-1)*M/2)

*sqrt((v+1)*M/2)
(%i129) expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o129) -cos(th/2)*sin(th/2)*sin(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2
(%i130) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o130) -2*m*cos(th/2)*sin(th/2)*sin(th)*v*M
(%i131) Mtn:ratsubst(sin(th)/2,cos(th/2)*sin(th/2),%)
(%o131) -m*sin(th)ˆ2*v*M
(%i132) M1:Mtn/Mtd
(%o132) 2*m*sin(th)ˆ2*v/((1-cos(th)*v)*M)
(%i133) "------------------------------"
(%i134) " M2 = Mun/Mud "
(%i135) Mun:vp2b . g2 . up1
(%o135) -2*cos((%pi-th)/2)*cos(th/2)*sin(th)*v*M*sqrt(-(v-1)*M/2)

*sqrt((v+1)*M/2)
(%i136) expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o136) -cos(th/2)*sin(th/2)*sin(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2
(%i137) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o137) -2*m*cos(th/2)*sin(th/2)*sin(th)*v*M
(%i138) Mun:ratsubst(sin(th)/2,cos(th/2)*sin(th/2),%)
(%o138) -m*sin(th)ˆ2*v*M
(%i139) M2:Mun/Mud
(%o139) 2*m*sin(th)ˆ2*v/((cos(th)*v+1)*M)
(%i140) " ----------------------------------------"
(%i141) " Add amplitudes and simplify trig functions "
(%i142) Mfi:trigsimp(M2+M1)
(%o142) -4*m*sin(th)ˆ2*v/((cos(th)ˆ2*vˆ2-1)*M)
(%i143) Mfi:num(Mfi)/pullfac(expand(denom(Mfi)),-M)
(%o143) 4*m*sin(th)ˆ2*v/((1-cos(th)ˆ2*vˆ2)*M)
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(%i144) (display2d:true,
disp("CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,+1) gamma(k2,-1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,+1) gamma(k2,-1)

2
4 m sin (th) v

Mfi = -------------------
2 2

(1 - cos (th) v ) M

(%i145) " ------------------------------------------------"
(%i146) "----------------------------------------------"
(%i147) "CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,-1) gamma(k2,+1) "
(%i148) " -------------------------------------------------"
(%i149) comp_def(e1_cc(0,1/sqrt(2),%i/sqrt(2),0),

e2_cc(0,1/sqrt(2),%i/sqrt(2),0))
(%i150) listarray(e1_cc)
(%o150) [0,1/sqrt(2),%i/sqrt(2),0]
(%i151) listarray(e2_cc)
(%o151) [0,1/sqrt(2),%i/sqrt(2),0]
(%i152) " the spinors and denominators are the same "
(%i153) " recompute the g1 and g2 matrices "
(%i154) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o154) matrix([0,0,0,sin(th)*v*M],[0,0,0,0],[0,-sin(th)*v*M,0,0],[0,0,0,0])
(%i155) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o155) matrix([0,0,0,sin(th)*v*M],[0,0,0,0],[0,-sin(th)*v*M,0,0],[0,0,0,0])
(%i156) " ------------------------------------"
(%i157) " ------------------------------------"
(%i158) " M1 = Mtn/Mtd "
(%i159) Mtn:vp2b . g1 . up1
(%o159) -2*sin((%pi-th)/2)*sin(th/2)*sin(th)*v*M*sqrt(-(v-1)*M/2)

*sqrt((v+1)*M/2)
(%i160) expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o160) -cos(th/2)*sin(th/2)*sin(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2
(%i161) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o161) -2*m*cos(th/2)*sin(th/2)*sin(th)*v*M
(%i162) Mtn:ratsubst(sin(th)/2,cos(th/2)*sin(th/2),%)
(%o162) -m*sin(th)ˆ2*v*M
(%i163) M1:Mtn/Mtd
(%o163) 2*m*sin(th)ˆ2*v/((1-cos(th)*v)*M)
(%i164) "------------------------------"
(%i165) " M2 = Mun/Mud "
(%i166) Mun:vp2b . g2 . up1
(%o166) -2*sin((%pi-th)/2)*sin(th/2)*sin(th)*v*M*sqrt(-(v-1)*M/2)

*sqrt((v+1)*M/2)
(%i167) expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o167) -cos(th/2)*sin(th/2)*sin(th)*sqrt(1-v)*v*sqrt(v+1)*Mˆ2
(%i168) expand(ratsubst(2*m/M,sqrt(1-vˆ2),rootscontract(%)))
(%o168) -2*m*cos(th/2)*sin(th/2)*sin(th)*v*M
(%i169) Mun:ratsubst(sin(th)/2,cos(th/2)*sin(th/2),%)
(%o169) -m*sin(th)ˆ2*v*M
(%i170) M2:Mun/Mud
(%o170) 2*m*sin(th)ˆ2*v/((cos(th)*v+1)*M)
(%i171) " --------------------------------"
(%i172) Mfi:trigsimp(M2+M1)
(%o172) -4*m*sin(th)ˆ2*v/((cos(th)ˆ2*vˆ2-1)*M)
(%i173) Mfi:num(Mfi)/pullfac(expand(denom(Mfi)),-M)
(%o173) 4*m*sin(th)ˆ2*v/((1-cos(th)ˆ2*vˆ2)*M)
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(%i174) (display2d:true,
disp("CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,-1) gamma(k2,+1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,+1) --> gamma(k1,-1) gamma(k2,+1)

2
4 m sin (th) v

Mfi = -------------------
2 2

(1 - cos (th) v ) M

(%i175) " ------------------------------------------------"
(%i176) " Schwinger’s amplitude for these last two cases differs by a minus sign "
(%i177) " ----------------------------------------------- "
(%i178) " CASES LEPTONS HAVE OPPOSITE HELICITIES: see Schwinger (3-13-97). "
(%i179) "----------------------------------------------"
(%i180) "CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,+1) gamma(k2,-1) "
(%i181) " -------------------------------------------------"
(%i182) " recompute vp2b "
(%i183) vp2b:sbar(VV(M/2,M*v/2,%pi-th,%pi,-1))
(%i184) " denominators Mtd, Mud remain the same "
(%i185) " recompute g1 and g2 "
(%i186) comp_def(e1_cc(0,(-1)/sqrt(2),%i/sqrt(2),0),

e2_cc(0,(-1)/sqrt(2),%i/sqrt(2),0))
(%i187) listarray(e1_cc)
(%o187) [0,-1/sqrt(2),%i/sqrt(2),0]
(%i188) listarray(e2_cc)
(%o188) [0,-1/sqrt(2),%i/sqrt(2),0]
(%i189) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o189) matrix([0,0,0,0],[0,0,sin(th)*v*M,0],[0,0,0,0],[-sin(th)*v*M,0,0,0])
(%i190) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o190) matrix([0,0,0,0],[0,0,sin(th)*v*M,0],[0,0,0,0],[-sin(th)*v*M,0,0,0])
(%i191) " ------------------------------------"
(%i192) " ------------------------------------"
(%i193) " M1 = Mtn/Mtd "
(%i194) Mtn:vp2b . g1 . up1
(%o194) sin((%pi-th)/2)*cos(th/2)*sin(th)*v*(v+1)*Mˆ2/2

-sin((%pi-th)/2)*cos(th/2)*sin(th)*(v-1)*v*Mˆ2/2
(%i195) Mtn:expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o195) cos(th/2)ˆ2*sin(th)*v*Mˆ2
(%i196) M1:Mtn/Mtd
(%o196) -2*cos(th/2)ˆ2*sin(th)*v/(1-cos(th)*v)
(%i197) "------------------------------"
(%i198) " M2 = Mun/Mud "
(%i199) Mun:vp2b . g2 . up1
(%o199) sin((%pi-th)/2)*cos(th/2)*sin(th)*v*(v+1)*Mˆ2/2

-sin((%pi-th)/2)*cos(th/2)*sin(th)*(v-1)*v*Mˆ2/2
(%i200) Mun:expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o200) cos(th/2)ˆ2*sin(th)*v*Mˆ2
(%i201) M2:Mun/Mud
(%o201) -2*cos(th/2)ˆ2*sin(th)*v/(cos(th)*v+1)
(%i202) " -----------------------------"
(%i203) trigsimp(M2+M1)
(%o203) 4*cos(th/2)ˆ2*sin(th)*v/(cos(th)ˆ2*vˆ2-1)
(%i204) Mfi:(-num(%))/(-denom(%))
(%o204) -4*cos(th/2)ˆ2*sin(th)*v/(1-cos(th)ˆ2*vˆ2)
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(%i205) (display2d:true,
disp("CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,+1) gamma(k2,-1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,+1) gamma(k2,-1)

2 th
4 cos (--) sin(th) v

2
Mfi = - --------------------

2 2
1 - cos (th) v

(%i206) " -------------------------------------------------"
(%i207) " This differs by a sign compared to Schwinger. "
(%i208) " -----------------------------------------------"
(%i209) "CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,-1) gamma(k2,+1) "
(%i210) " -------------------------------------------------"
(%i211) " spinors and denominators are the same , recompute g1 and g2"
(%i212) comp_def(e1_cc(0,1/sqrt(2),%i/sqrt(2),0),

e2_cc(0,1/sqrt(2),%i/sqrt(2),0))
(%i213) listarray(e1_cc)
(%o213) [0,1/sqrt(2),%i/sqrt(2),0]
(%i214) listarray(e2_cc)
(%o214) [0,1/sqrt(2),%i/sqrt(2),0]
(%i215) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o215) matrix([0,0,0,sin(th)*v*M],[0,0,0,0],[0,-sin(th)*v*M,0,0],[0,0,0,0])
(%i216) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o216) matrix([0,0,0,sin(th)*v*M],[0,0,0,0],[0,-sin(th)*v*M,0,0],[0,0,0,0])
(%i217) " M1 = Mtn/Mtd "
(%i218) Mtn:vp2b . g1 . up1
(%o218) cos((%pi-th)/2)*sin(th/2)*sin(th)*(v-1)*v*Mˆ2/2

-cos((%pi-th)/2)*sin(th/2)*sin(th)*v*(v+1)*Mˆ2/2
(%i219) Mtn:expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o219) -sin(th/2)ˆ2*sin(th)*v*Mˆ2
(%i220) M1:Mtn/Mtd
(%o220) 2*sin(th/2)ˆ2*sin(th)*v/(1-cos(th)*v)
(%i221) Mun:vp2b . g2 . up1
(%o221) cos((%pi-th)/2)*sin(th/2)*sin(th)*(v-1)*v*Mˆ2/2

-cos((%pi-th)/2)*sin(th/2)*sin(th)*v*(v+1)*Mˆ2/2
(%i222) Mun:expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o222) -sin(th/2)ˆ2*sin(th)*v*Mˆ2
(%i223) M2:Mun/Mud
(%o223) 2*sin(th/2)ˆ2*sin(th)*v/(cos(th)*v+1)
(%i224) " -----------------------------"
(%i225) trigsimp(M2+M1)
(%o225) -4*sin(th/2)ˆ2*sin(th)*v/(cos(th)ˆ2*vˆ2-1)
(%i226) Mfi:(-num(%))/(-denom(%))
(%o226) 4*sin(th/2)ˆ2*sin(th)*v/(1-cos(th)ˆ2*vˆ2)
(%i227) (display2d:true,

disp("CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,-1) gamma(k2,+1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,-1) gamma(k2,+1)

2 th
4 sin (--) sin(th) v

2
Mfi = --------------------

2 2
1 - cos (th) v

(%i228) " -------------------------------------------------"
(%i229) " This differs by a sign compared to Schwinger. "
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(%i230) " -------------------------------------------------"
(%i231) "CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,+1) gamma(k2,+1) "
(%i232) " -------------------------------------------------"
(%i233) comp_def(e1_cc(0,(-1)/sqrt(2),%i/sqrt(2),0),

e2_cc(0,1/sqrt(2),%i/sqrt(2),0))
(%i234) listarray(e1_cc)
(%o234) [0,-1/sqrt(2),%i/sqrt(2),0]
(%i235) listarray(e2_cc)
(%o235) [0,1/sqrt(2),%i/sqrt(2),0]
(%i236) g1:sL(e2_cc) . (m*I4-sL(k1)+sL(p1)) . sL(e1_cc)
(%o236) matrix([2*m,0,-2*(M/2-cos(th)*v*M/2),0],[0,0,0,0],

[-2*(cos(th)*v*M/2-M/2),0,2*m,0],[0,0,0,0])
(%i237) g2:sL(e1_cc) . (m*I4-sL(k2)+sL(p1)) . sL(e2_cc)
(%o237) matrix([0,0,0,0],[0,2*m,0,-2*(cos(th)*v*M/2+M/2)],[0,0,0,0],

[0,-2*(-cos(th)*v*M/2-M/2),0,2*m])
(%i238) " M1 = Mtn/Mtd "
(%i239) Mtn:vp2b . g1 . up1
(%o239) cos((%pi-th)/2)*sqrt(-(v-1)*M/2)

*(2*m*cos(th/2)*sqrt((v+1)*M/2)
-2*cos(th/2)*sqrt(-(v-1)*M/2)*(cos(th)*v*M/2-M/2))

-cos((%pi-th)/2)*sqrt((v+1)*M/2)
*(2*m*cos(th/2)*sqrt(-(v-1)*M/2)
-2*cos(th/2)*sqrt((v+1)*M/2)*(M/2-cos(th)*v*M/2))

(%i240) expand(ratsubst(sin(th/2),cos((%pi-th)/2),%))
(%o240) cos(th/2)*sin(th/2)*Mˆ2-cos(th/2)*sin(th/2)*cos(th)*v*Mˆ2
(%i241) expand(ratsubst(sin(th)/2,cos(th/2)*sin(th/2),%))
(%o241) sin(th)*Mˆ2/2-cos(th)*sin(th)*v*Mˆ2/2
(%i242) Mtn:pullfac(%,sin(th)*Mˆ2/2)
(%o242) sin(th)*(1-cos(th)*v)*Mˆ2/2
(%i243) M1:Mtn/Mtd
(%o243) -sin(th)
(%i244) Mun:vp2b . g2 . up1
(%o244) sin((%pi-th)/2)*sqrt((v+1)*M/2)

*(2*m*sin(th/2)*sqrt(-(v-1)*M/2)
-2*sin(th/2)*sqrt((v+1)*M/2)*(cos(th)*v*M/2+M/2))

-sin((%pi-th)/2)*sqrt(-(v-1)*M/2)
*(2*m*sin(th/2)*sqrt((v+1)*M/2)
-2*sin(th/2)*sqrt(-(v-1)*M/2)*(-cos(th)*v*M/2-M/2))

(%i245) expand(ratsubst(cos(th/2),sin((%pi-th)/2),%))
(%o245) -cos(th/2)*sin(th/2)*cos(th)*v*Mˆ2-cos(th/2)*sin(th/2)*Mˆ2
(%i246) expand(ratsubst(sin(th)/2,cos(th/2)*sin(th/2),%))
(%o246) -cos(th)*sin(th)*v*Mˆ2/2-sin(th)*Mˆ2/2
(%i247) Mun:factor(%)
(%o247) -sin(th)*(cos(th)*v+1)*Mˆ2/2
(%i248) M2:Mun/Mud
(%o248) sin(th)
(%i249) Mfi:M2+M1
(%o249) 0
(%i250) (display2d:true,

disp("CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,+1) gamma(k2,+1) "),
display(Mfi),display2d:false)
CASE: e(-,p1,+1) e(+,p2,-1) --> gamma(k1,+1) gamma(k2,+1)

Mfi = 0

(%i251) " The amplitude is zero for this case. "
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12.16 moller3.mac: Squared Polarized Amplitudes Using Symbolic or Explicit Matrix Trace Methods

We provid examples of using trace methods for the square of a polarized amplitude in the case of arbitrary energy (finite
mass) Moller scattering. This detailed verification using both explicit matrix traces and the symbolic traces takes several
minutes to carry out for each case, with the symbolic nc_tr method (equivalent to noncov (tr(..))) requiring
about five times as much computation time as the explicit matrix method m_tr.

The new feature is the tr or m_tr argument S(sv, Sp), in which either sv = 1 or sv = -1, and Sp is a symbol
for the particle spin 4-vector associated with the particle’s 4-momentum.

In the explicit matrix method, such an argument inserts a matrix factor P(sv,Sp), which turns into the matrix
(I4 + sv*Gam[5].sL(Sp))/2. This is the matrix version of the finite mass spin projection operator, and requires
a frame dependent definition (using comp_def) of the components of the spin 4-vector corresponding to a particle’s
4-momentum. ( See our section on high energy physics notation.)

When used with the symbolic tr method, the result is a factor 1
2
(1 + σ γ5 s/), with σ = ±1 being the value of sv and

s/ being (Sp)µ γµ.

Here is the batch file moller3.mac:

/* file moller3.mac
m_tr and nc_tr comparisons of
the square of polarized amplitudes
compared with dirac spinor results
found in moller2.mac
*/

" moller3.mac "$
"*********************************************"$
print (" ver: ",_binfo%," date: ",mydate )$

" Maxima by Example, Ch. 12 "$
" Dirac Algebra and Quantum Electrodynamics "$
" Edwin L. Woollett "$
" http://www.csulb.edu/˜woollett "$
" woollett@charter.net "$
"SQUARED POLARIZED AMPLITUDES VIA SYMBOLIC AND MATRIX TRACE METHODS"$
" FOR ARBITRARY ENERGY MOLLER SCATTERING "$
" e(-,p1,sv1) + e(-,p2,sv2) --> e(-,p3,sv3) + e(-,p4,sv4) "$
" --------------------------------------------------------"$

invar (D(p1,p1) = mˆ2,
D(p2,p2) = mˆ2,
D(p3,p3) = mˆ2,
D(p4,p4) = mˆ2,
D(p1,Sp1) = 0,
D(Sp1,Sp1) = -1,
D(p2,Sp2) = 0,
D(Sp2,Sp2) = -1,
D(p3,Sp3) = 0,
D(Sp3,Sp3) = -1,
D(p4,Sp4) = 0,
D(Sp4,Sp4) = -1 )$



62

comp_def ( p1( E,0,0,p),
Sp1 (p/m,0,0,E/m),
p2( E,0,0,-p),
Sp2 (p/m,0,0,-E/m),
p3 (E,p*sin(th),0,p*cos(th)),
Sp3 (p/m,E*sin(th)/m,0,E*cos(th)/m),
p4 (E,-p*sin(th),0,-p*cos(th)),
Sp4 (p/m,-E*sin(th)/m,0,-E*cos(th)/m))$

p_Em (expr) := expand (ratsubst(Eˆ2-mˆ2,pˆ2,expr))$

E_pm (expr) := expand (ratsubst (pˆ2 + mˆ2,Eˆ2,expr))$

s_th : VP (p1+p2,p1+p2);

t_th : VP (p1-p3,p1-p3);

u_th : VP (p1-p4,p1-p4);

t_th2 : to_ao2 (t_th,th);

u_th2 : to_ao2 (u_th,th);

t_thE : p_Em(t_th);

u_thE : p_Em(u_th);

load("MSQcomp.mac")$

and here is the automated comparison code which Moller3.mac loads:

/* file MSQcomp.mac */

/* comparison code for moller3.mac */
disp (" MSQcomp() to compare matrix trace, symbolic trace
methods for square of polarized amplitudes
with square of spinor amplitudes. This is an
automated comparison, assuming A_spinor is
globally defined and also global sv1,sv2,sv3,sv4.
To see progress details, set details to true.")$

details:false$
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/************************************************************/
MSQcomp () :=

block(

if not details then (disp (" this comparison could take 3 plus minutes ")),

A_spinor_th : fr_ao2 (A_spinor,th),

A_spSQ : E_pm (A_spinor_thˆ2),

if details then display (A_spSQ),

M1n_m : trigsimp (E_pm (mcon ( m_tr (S(sv3,Sp3),p3+m,mu,S(sv1,Sp1),p1+m,nu)*
m_tr (S(sv4,Sp4),p4+m,mu,S(sv2,Sp2),p2+m,nu), mu,nu))),

if details then (disp ("M1n_m"), display (M1n_m)),

M1n_s : trigsimp (E_pm (econ ( nc_tr (S(sv3,Sp3),p3+m,mu,S(sv1,Sp1),p1+m,nu)*
nc_tr (S(sv4,Sp4),p4+m,mu,S(sv2,Sp2),p2+m,nu), mu,nu))),

if details then (disp ("M1n_s"),display (M1n_s)),

M1n_diff : M1n_s - M1n_m,

if details then print (" M1n_s - M1n_m = ",M1n_diff),

if M1n_diff # 0 then (
disp ("M1n symbolic method # matrix method disagree "),
return (M1n_diff)),

M2n_m : trigsimp (E_pm (mcon ( m_tr (S(sv4,Sp4),p4+m,mu,S(sv1,Sp1),p1+m,nu)*
m_tr (S(sv3,Sp3),p3+m,mu,S(sv2,Sp2),p2+m,nu), mu,nu))),

if details then disp ("M2n_m"),

M2n_s : trigsimp (E_pm (econ ( nc_tr (S(sv4,Sp4),p4+m,mu,S(sv1,Sp1),p1+m,nu)*
nc_tr (S(sv3,Sp3),p3+m,mu,S(sv2,Sp2),p2+m,nu), mu,nu))),

if details then disp ("M2n_s"),

M2n_diff : M2n_s - M2n_m,



64

if details then print (" M2n_s - M2n_m = ",M2n_diff),

if M2n_diff # 0 then (
disp ("M2n symbolic method # matrix method disagree "),
return (M2n_diff)),

M12n_m : trigsimp (E_pm (mcon ( m_tr (S(sv3,Sp3),p3+m,mu,S(sv1,Sp1),p1+m,
nu,S(sv4,Sp4),p4+m,mu,S(sv2,Sp2),p2+m,nu),mu,nu))),

if details then disp ("M12n_m"),

M12n_s : trigsimp (E_pm (nc_tr (S(sv3,Sp3),p3+m,mu,S(sv1,Sp1),p1+m,
nu,S(sv4,Sp4),p4+m,mu,S(sv2,Sp2),p2+m,nu))),

if details then disp ("M12n_s"),

M12n_diff : M12n_s - M12n_m,

if details then print (" M12n_s - M12n_m = ",M12n_diff),

if M12n_diff # 0 then (
disp ("M21n symbolic method # matrix method disagree "),
return (M21n_diff)),

M21n_m : trigsimp (E_pm (mcon ( m_tr (S(sv4,Sp4),p4+m,mu,S(sv1,Sp1),p1+m,
nu,S(sv3,Sp3),p3+m,mu,S(sv2,Sp2),p2+m,nu),mu,nu))),

if details then disp ("M21n_m"),

M21n_s : trigsimp (E_pm (nc_tr (S(sv4,Sp4),p4+m,mu,S(sv1,Sp1),p1+m,
nu,S(sv3,Sp3),p3+m,mu,S(sv2,Sp2),p2+m,nu))),

if details then disp ("M21n_s"),

if details then print (" M21n_s - M21n_m = ",M21n_s - M21n_m),

M21n_diff : M21n_s - M21n_m,

if details then print (" M21n_s - M21n_m = ",M21n_diff),

if M21n_diff # 0 then (
disp ("M21n symbolic method # matrix method disagree "),
return (M21n_diff)),
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MfiSQ : expand (M1n_m/t_thˆ2 + M2n_m/u_thˆ2 - M12n_m/(t_th*u_th)
- M21n_m/(t_th*u_th)),

MfiSQ : trigsimp (MfiSQ),

MSQ_diff : trigsimp (MfiSQ - A_spSQ),

if MSQ_diff = 0 then disp (" agreement ")

else disp (" no agreement "),

display ([sv1,sv2,sv3,sv4]))$

and here are some cases worked out:
(%i1) load(work)$

work4 dirac.mac
dgexp
dgcon

dgtrace
dgeval
dgmatrix

massL = [m,M]
indexL = [la,mu,nu,rh,si,ta,al,be,ga]
scalarL = []
" reserved program capital letter name use: "
" Chi, Con, D, Eps, G, G5, Gam, Gm, LI, Nlist, Nlast, UI, P, S, Sig"
" UU, VP, VV, I2, Z2, CZ2, I4, Z4, CZ4, RZ4, N1,N2,... "

read and interpret file: #pc:/work4/moller3.mac
(%i2) " moller3.mac "
(%i3) "*********************************************"
(%i4) print(" ver: ",_binfo%," date: ",mydate)

ver: Maxima 5.21.1 date: 2010-09-11

(%i5) " Maxima by Example, Ch. 12 "
(%i6) " Dirac Algebra and Quantum Electrodynamics "
(%i7) " Edwin L. Woollett "
(%i8) " http://www.csulb.edu/˜woollett "
(%i9) " woollett@charter.net "
(%i10) "SQUARED POLARIZED AMPLITUDES VIA SYMBOLIC AND MATRIX TRACE METHODS"
(%i11) " FOR ARBITRARY ENERGY MOLLER SCATTERING "
(%i12) " e(-,p1,sv1) + e(-,p2,sv2) --> e(-,p3,sv3) + e(-,p4,sv4) "
(%i13) " --------------------------------------------------------"
(%i14) invar(D(p1,p1) = mˆ2,D(p2,p2) = mˆ2,D(p3,p3) = mˆ2,D(p4,p4) = mˆ2,

D(p1,Sp1) = 0,D(Sp1,Sp1) = -1,D(p2,Sp2) = 0,D(Sp2,Sp2) = -1,
D(p3,Sp3) = 0,D(Sp3,Sp3) = -1,D(p4,Sp4) = 0,D(Sp4,Sp4) = -1)

(%i15) comp_def(p1(E,0,0,p),Sp1(p/m,0,0,E/m),p2(E,0,0,-p),Sp2(p/m,0,0,(-E)/m),
p3(E,p*sin(th),0,p*cos(th)),
Sp3(p/m,E*sin(th)/m,0,E*cos(th)/m),
p4(E,-p*sin(th),0,-p*cos(th)),
Sp4(p/m,(-E*sin(th))/m,0,(-E*cos(th))/m))

(%i16) p_Em(expr):=expand(ratsubst(Eˆ2-mˆ2,pˆ2,expr))
(%i17) E_pm(expr):=expand(ratsubst(mˆ2+pˆ2,Eˆ2,expr))
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(%i18) s_th:VP(p2+p1,p2+p1)
(%o18) 4*Eˆ2
(%i19) t_th:VP(p1-p3,p1-p3)
(%o19) 2*pˆ2*cos(th)-2*pˆ2
(%i20) u_th:VP(p1-p4,p1-p4)
(%o20) -2*pˆ2*cos(th)-2*pˆ2
(%i21) t_th2:to_ao2(t_th,th)
(%o21) -4*pˆ2*sin(th/2)ˆ2
(%i22) u_th2:to_ao2(u_th,th)
(%o22) 4*pˆ2*sin(th/2)ˆ2-4*pˆ2
(%i23) t_thE:p_Em(t_th)
(%o23) 2*cos(th)*Eˆ2-2*Eˆ2-2*mˆ2*cos(th)+2*mˆ2
(%i24) u_thE:p_Em(u_th)
(%o24) -2*cos(th)*Eˆ2-2*Eˆ2+2*mˆ2*cos(th)+2*mˆ2
(%i25) load("MSQcomp.mac")
" MSQcomp() to compare matrix trace, symbolic trace\

methods for square of polarized amplitudes\
with square of spinor amplitudes. This is an\
automated comparison, assuming A_spinor is\
globally defined and also global sv1,sv2,sv3,sv4.\
To see progress details, set details to true."

/* ===========================
case RR --> LL

*/
(%i27) [sv1,sv2,sv3,sv4]:[1,1,-1,-1]$
(%i28) A_spinor : 2*mˆ2/pˆ2$
(%i29) MSQcomp();
" this comparison could take 3 plus minutes "

" agreement "
[sv1,sv2,sv3,sv4] = [1,1,-1,-1]
/*
================================
case RR --> RL
*/
(%i30) [sv1,sv2,sv3,sv4]:[1,1,1,-1]$
(%i31) A_spinor : m*sin(th/2)*E/(pˆ2*cos(th/2))-m*cos(th/2)*E/(pˆ2*sin(th/2))$
(%i32) MSQcomp();
" this comparison could take 3 plus minutes "

" agreement "
[sv1,sv2,sv3,sv4] = [1,1,1,-1]
(%i33) time(%);
(%o33) [199.12]
/*
=============================
case RR --> RR
*/
(%i34) [sv1,sv2,sv3,sv4]:[1,1,1,1]$
(%i35) A_spinor : mˆ2*sin(th/2)ˆ2/(pˆ2*cos(th/2)ˆ2)+2*sin(th/2)ˆ2/cos(th/2)ˆ2

+mˆ2*cos(th/2)ˆ2/(pˆ2*sin(th/2)ˆ2)
+2*cos(th/2)ˆ2/sin(th/2)ˆ2+4$

(%i36) MSQcomp();
" this comparison could take 3 plus minutes "

" agreement "
[sv1,sv2,sv3,sv4] = [1,1,1,1]
/*
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=============================
case RL --> RL
*/
(%i37) [sv1,sv2,sv3,sv4]:[1,-1,1,-1]$
(%i38) A_spinor : mˆ2*cos(th/2)ˆ2/(pˆ2*sin(th/2)ˆ2)+

2*cos(th/2)ˆ2/sin(th/2)ˆ2-mˆ2/pˆ2$
(%i39) MSQcomp();
" this comparison could take 3 plus minutes "

" agreement "
[sv1,sv2,sv3,sv4] = [1,-1,1,-1]
/*
==========================
case RL --> LR
*/
(%i40) [sv1,sv2,sv3,sv4]:[1,-1,-1,1]$
(%i41) A_spinor : mˆ2*sin(th/2)ˆ2/(pˆ2*cos(th/2)ˆ2)+

2*sin(th/2)ˆ2/cos(th/2)ˆ2-mˆ2/pˆ2$
(%i42) MSQcomp();
" this comparison could take 3 plus minutes "

" agreement "
[sv1,sv2,sv3,sv4] = [1,-1,-1,1]
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12.17 List of Dirac Package Files and Example Batch Files

The Dirac package consists of

• dirac.mac: This file loads in the other files and includes some utility functions and program startup settings.

• dgexp.mac: This file has code for symbolic expansions.

• dgcon.mac: This file has code for symbolic Lorentz index contraction.

• dgtrace.mac: This file has code for symbolic traces of products of gamma matrices.

• dgeval.mac: This file has code for frame dependent evaluation, such as noncov.

• dgmatrix.mac: This file has most of the code used for explicit Dirac spinor and matrix calculations.

The file dgfunctions.txt has an alphabetical listing of most of the Dirac package functions, together with a reference
to the file in which the code can be found. There are twelve example batch files discussed in this chapter. In alphabetical
order these are:

• bhabha1.mac: High energy electron-positron scattering.

• bhabha2.mac: Arbitrary energy electron-positron scattering.

• compton0.mac: Photon plus scalar charged particle scattering.

• compton1.mac: Photon plus Lepton scattering.

• moller0.mac: Scalar plus scalar charged particle scattering.

• moller1.mac: High energy limit of electron plus electron scattering.

• moller2.mac: Arbitrary energy electron plus electron scattering.

• moller3.mac: Use of explicit matrix trace methods and symbolic trace methods for the squared polarized am-
plitudes for arbitrary energy electron plus electron scattering.

• pair1.mac: Unpolarized two photon annihilation of an electron-positron pair.

• pair2.mac: Polarized two photon annihilation of an electron-positron pair.

• photon1.mac: Sum identities for photon polarization 3-vectors.

• traceConEx.mac demonstrates many of the most used package functions.

In addition to the above files, there is the file MSQcomp.mac which defines a function used by moller3.mac.


	mbe1.pdf
	mbe2.pdf
	mbe3.pdf
	mbe4.pdf
	mbe5.pdf
	mbe6.pdf
	mbe7.pdf
	mbe8.pdf
	mbe9.pdf
	mbe10.pdf
	mbe11.pdf
	mbe12.pdf
	mbe_reg.pdf
	mbe1intro.pdf
	mbe2plotfit.pdf
	mbe3ode1.pdf
	mbe4solve.pdf
	mbe5qdraw.pdf
	mbe6calc1.pdf
	mbe7sint.pdf
	mbe8nint.pdf
	mbe9bfloat.pdf
	mbe10fltrans.pdf
	mbe11fft.pdf
	mbe12dirac.pdf

